#Code for checking 1 sample image import os import numpy as np from tensorflow.keras.preprocessing import image from tensorflow.keras.models import load_model # Set correct image size based on training IMG_SIZE = (128, 128) # Load your model model = load_model("best_model.h5") # Get class names from folders DATA_DIR = r"C:\Users\arsul\Desktop\RESISC45\NWPU-RESISC45" CLASS_NAMES = sorted(os.listdir(DATA_DIR)) # Load and preprocess the image img_path = r"C:\Users\arsul\Desktop\RESISC45\ball-courts.jpg" img = image.load_img(img_path, target_size=IMG_SIZE) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension # Make prediction preds = model.predict(img_array) predicted_class = CLASS_NAMES[np.argmax(preds)] print(f"Predicted class: {predicted_class}")