File size: 68,253 Bytes
303c2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
import itertools
import math
from dataclasses import dataclass

import hydra.utils
import lightning as L
import numpy as np
import torch
import torch.nn.functional as F
import torchmetrics
from torch import Tensor

import dataloader_gosai
import models
import noise_schedule
import utils
import oracle
from scipy.stats import wasserstein_distance, pearsonr
from finetune_utils import to_one_hot

LOG2 = math.log(2)
LOGGER = utils.get_logger(__name__)


def _sample_categorical(categorical_probs):
    gumbel_norm = (
        1e-10
        - (torch.rand_like(categorical_probs) + 1e-10).log())
    return (categorical_probs / gumbel_norm).argmax(dim=-1).to(dtype=torch.long)

def _sample_categorical_gradient(categorical_probs, temp = 1.0):
    gumbel_norm = (
        1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
    output = torch.nn.functional.softmax((torch.log(categorical_probs)-torch.log(gumbel_norm))/temp, 2)
    return output

def _unsqueeze(x, reference):
    return x.view(
        * x.shape,
        * ((1,) * (len(reference.shape) - len(x.shape))))

def sample_batched_categorical(categorical_probs, batch_size):
    """
    Generates `m` distinct sequences sampled from categorical probabilities 
    using the Gumbel distribution to ensure randomness while following probabilities
    
    Args:
        categorical_probs (torch.Tensor): tensor of shape (sequence_length, vocab_length)
                                          representing categorical probabilities
        m (int): number of distinct sequences to sample
    
    Returns:
        torch.Tensor: tensor of shape (m, sequence_length), where each row is a 
                      distinct sequence of sampled category indices.
    """
    _, sequence_length, vocab_size = categorical_probs.shape

    # add Gumbel noise and sample m sequences
    gumbel_noise = (-torch.log(-torch.log(torch.rand(batch_size, sequence_length, vocab_size) + 1e-10) + 1e-10)).to(categorical_probs.device)
    noisy_scores = torch.log(categorical_probs) + gumbel_noise  # add Gumbel noise to log probabilities
    
    # select the highest score (most likely category after Gumbel noise)
    sampled_sequences = noisy_scores.argmax(dim=-1).to(dtype=torch.long)  # shape: (m, sequence_length)

    return sampled_sequences

def sample_batched_top_k(categorical_probs, batch_size, k):
    """
    Generates `m` sequences sampled from the top-k probabilities of each token
    using Gumbel noise to ensure randomness and reduce bias towards the most likely options.

    Args:
        categorical_probs (torch.Tensor): A tensor of shape (sequence_length, vocab_length)
                                          representing categorical probabilities.
        m (int): Number of sequences to sample.
        k (int): Number of top probabilities to consider for sampling.

    Returns:
        torch.Tensor: A tensor of shape (m, sequence_length), where each row is a 
                      sampled sequence of category indices.
    """
    _, sequence_length, vocab_length = categorical_probs.shape

    # Add Gumbel noise to the log probabilities
    gumbel_noise = -torch.log(-torch.log(torch.rand(batch_size, sequence_length, vocab_length) + 1e-10) + 1e-10).to(categorical_probs.device)
    noisy_scores = torch.log(categorical_probs[None, :, :]) + gumbel_noise  # Shape: (m, sequence_length, vocab_length)

    # Get the top-k categories based on noisy scores
    top_k_scores, top_k_indices = torch.topk(noisy_scores, k, dim=-1)  # Shape: (m, sequence_length, k)

    # Convert top-k scores back to probabilities and normalize
    top_k_probs = torch.softmax(top_k_scores, dim=-1).to(categorical_probs.device)  # Shape: (m, sequence_length, k)

    # Sample randomly from the top-k probabilities
    sampled_indices_in_top_k = torch.multinomial(top_k_probs.reshape(-1, k), num_samples=1).squeeze(-1).to(categorical_probs.device)
    sampled_indices_in_top_k = sampled_indices_in_top_k.view(batch_size, sequence_length).to(categorical_probs.device)  # Shape: (batch_size, sequence_length)

    # Map sampled indices back to the original vocabulary indices
    sampled_sequences = torch.gather(top_k_indices, -1, sampled_indices_in_top_k.unsqueeze(-1)).squeeze(-1).to(categorical_probs.device).to(dtype=torch.long)

    return sampled_sequences

@dataclass
class Loss:
    loss: torch.FloatTensor
    nlls: torch.FloatTensor
    token_mask: torch.FloatTensor


class NLL(torchmetrics.aggregation.MeanMetric):
    pass


class BPD(NLL):
  def compute(self) -> Tensor:
    """Computes the bits per dimension.

    Returns:
      bpd
    """
    return self.mean_value / self.weight / LOG2


class Perplexity(NLL):
    def compute(self) -> Tensor:
        """Computes the Perplexity.

        Returns:
        Perplexity
        """
        return torch.exp(self.mean_value / self.weight)


class Diffusion(L.LightningModule):
    def __init__(
        self,
        config,
        eval=False):
        
        super().__init__()
        self.save_hyperparameters()
        self.config = config
        self.vocab_size = 4
        self.sampler = self.config.sampling.predictor
        self.antithetic_sampling = self.config.training.antithetic_sampling
        self.importance_sampling = self.config.training.importance_sampling
        self.change_of_variables = self.config.training.change_of_variables
        # add mask token
        self.mask_index = self.vocab_size
        self.vocab_size += 1
        self.parameterization = self.config.parameterization
    
        # dna backbone model
        if self.config.backbone == 'cnn':
            self.backbone = models.dnaconv.CNNModel(
                self.config.model, alphabet_size=self.vocab_size, num_cls=3) # num_cls is not used since classifier is always set to False
        else:
            raise ValueError(f'Unknown backbone: {self.config.backbone}')

        self.T = self.config.T
        self.subs_masking = self.config.subs_masking

        self.softplus = torch.nn.Softplus()
        # metrics are automatically reset at end of epoch
        metrics = torchmetrics.MetricCollection({
            'nll': NLL(),
            'bpd': BPD(),
            'ppl': Perplexity(),
        })
        metrics.set_dtype(torch.float64)
        self.train_metrics = metrics.clone(prefix='train/')
        self.valid_metrics = metrics.clone(prefix='val/')
        self.test_metrics = metrics.clone(prefix='test/')

        # generative perplexity
        self.gen_ppl_metric = Perplexity()
        self.noise = noise_schedule.get_noise(self.config,
                                            dtype=self.dtype)
        
        # ema
        if self.config.training.ema > 0:
            self.ema = models.ema.ExponentialMovingAverage(
                itertools.chain(self.backbone.parameters(),
                                self.noise.parameters()),
                decay=self.config.training.ema)
        else:
            self.ema = None
    
        self.lr = self.config.optim.lr
        self.sampling_eps = self.config.training.sampling_eps
        self.time_conditioning = self.config.time_conditioning
        self.neg_infinity = -1000000.0
        self.fast_forward_epochs = None
        self.fast_forward_batches = None
        self._validate_configuration()

        # subset of data for evaluation
        if eval:
            self.eval_sets_sp = oracle.subset_for_eval(n=config.eval.subset_size) 
            self.eval_sets_sp_clss = oracle.subset_eval_groundtruth(self.eval_sets_sp)
            self.eval_sets_sp_preds = oracle.subset_eval_preds(self.eval_sets_sp) 
            self.eval_sets_sp_kmers = oracle.subset_eval_kmers(self.eval_sets_sp) 
            self.emb_pca = oracle.cal_emb_pca(oracle.subset_for_eval(n=40000), n_components=50)
            self.eval_sets_sp_embs_pca = oracle.subset_eval_embs_pca(self.eval_sets_sp, self.emb_pca) 
  
    def _validate_configuration(self):
        assert not (self.change_of_variables and self.importance_sampling)
        assert self.parameterization == 'subs'


    def on_load_checkpoint(self, checkpoint):
        if self.ema:
            self.ema.load_state_dict(checkpoint['ema'])
        # Copied from:
        # https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py#L41
        self.fast_forward_epochs = checkpoint['loops']['fit_loop']['epoch_progress']['current']['completed']
        self.fast_forward_batches = checkpoint['loops'][
            'fit_loop']['epoch_loop.batch_progress'][
                'current']['completed']

    
    def on_save_checkpoint(self, checkpoint):
        if self.ema:
            checkpoint['ema'] = self.ema.state_dict()
        # Copied from:
        # https://github.com/Dao-AILab/flash-attention/blob/main/training/src/tasks/seq.py
        # ['epoch_loop.batch_progress']['total']['completed'] is 1 iteration
        # behind, so we're using the optimizer's progress.
        checkpoint['loops']['fit_loop'][
            'epoch_loop.batch_progress']['total'][
                'completed'] = checkpoint['loops']['fit_loop'][
                'epoch_loop.automatic_optimization.optim_progress'][
                    'optimizer']['step']['total'][
                    'completed'] * self.trainer.accumulate_grad_batches
        checkpoint['loops']['fit_loop'][
            'epoch_loop.batch_progress']['current'][
                'completed'] = checkpoint['loops']['fit_loop'][
                'epoch_loop.automatic_optimization.optim_progress'][
                    'optimizer']['step']['current'][
                    'completed'] * self.trainer.accumulate_grad_batches
        # _batches_that_stepped tracks the number of global steps, not the number
        # of local steps, so we don't multiply with self.trainer.accumulate_grad_batches here.
        checkpoint['loops']['fit_loop'][
            'epoch_loop.state_dict'][
                '_batches_that_stepped'] = checkpoint['loops']['fit_loop'][
                'epoch_loop.automatic_optimization.optim_progress'][
                    'optimizer']['step']['total']['completed']
        if 'sampler' not in checkpoint.keys():
            checkpoint['sampler'] = {}
        if hasattr(self.trainer.train_dataloader.sampler, 'state_dict'):
            sampler_state_dict = self.trainer.train_dataloader.sampler.state_dict()
            checkpoint['sampler']['random_state'] = sampler_state_dict.get('random_state', None)
        else:
            checkpoint['sampler']['random_state'] = None

    def on_train_start(self):
        if self.ema:
            self.ema.move_shadow_params_to_device(self.device)
        
        distributed = (
            self.trainer._accelerator_connector.use_distributed_sampler
            and self.trainer._accelerator_connector.is_distributed)
        
        print('distributed:', distributed)

        if distributed:
            sampler_cls = dataloader_gosai.FaultTolerantDistributedSampler
        else:
            sampler_cls = dataloader_gosai.RandomFaultTolerantSampler
        
        updated_dls = []
        for dl in self.trainer.fit_loop._combined_loader.flattened:
            if hasattr(dl.sampler, 'shuffle'):
                dl_sampler = sampler_cls(dl.dataset, shuffle=dl.sampler.shuffle)
            else:
                dl_sampler = sampler_cls(dl.dataset)
                if (distributed and self.fast_forward_epochs is not None
                    and self.fast_forward_batches is not None):
                    
                    dl_sampler.load_state_dict({
                        'epoch': self.fast_forward_epochs,
                        'counter': (self.fast_forward_batches
                                    * self.config.loader.batch_size)})
                updated_dls.append(
                    torch.utils.data.DataLoader(
                        dl.dataset,
                        batch_size=self.config.loader.batch_size,
                        num_workers=self.config.loader.num_workers,
                        pin_memory=self.config.loader.pin_memory,
                        sampler=dl_sampler,
                        shuffle=False,
                        persistent_workers=True))
                
        self.trainer.fit_loop._combined_loader.flattened = updated_dls

    def optimizer_step(self, *args, **kwargs):
        super().optimizer_step(*args, **kwargs)
        if self.ema:
            self.ema.update(itertools.chain(
                self.backbone.parameters(),
                self.noise.parameters()))

    # subs parameterization from MDLM
    def _subs_parameterization(self, logits, xt):
        logits[:, :, self.mask_index] += self.neg_infinity
        logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
        if xt.ndim > 2 and xt.shape[-1] == self.vocab_size:
            # this is for finetuning setting when the input is one-hot encoded or probs
            xt = xt.argmax(dim=-1)
        unmasked_indices = (xt != self.mask_index)
        logits[unmasked_indices] = self.neg_infinity
        logits[unmasked_indices, xt[unmasked_indices]] = 0
        return logits

    def _process_sigma(self, sigma):
        if sigma is None:
            assert self.parameterization == 'ar'
            return sigma
        if sigma.ndim > 1:
            sigma = sigma.squeeze(-1)
        if not self.time_conditioning:
            sigma = torch.zeros_like(sigma)
        assert sigma.ndim == 1, sigma.shape
        return sigma

    def forward(self, x, sigma):
        """Returns log score."""
        sigma = self._process_sigma(sigma)
        
        x = x.to(dtype=torch.long)
        
        with torch.cuda.amp.autocast(dtype=torch.float32):
            logits = self.backbone(x, sigma)
            
        if self.parameterization == 'subs':
            return self._subs_parameterization(logits=logits, xt=x)
        
        return logits

    # might need changing to match wdce loss
    def _compute_loss(self, batch, prefix):
        
        if 'attention_mask' in batch:
            attention_mask = batch['attention_mask']
        else:
            attention_mask = None
        losses = self._loss(batch['seqs'], attention_mask)
        loss = losses.loss

        
        if prefix == 'train':
            self.train_metrics.update(losses.nlls, losses.token_mask)
            metrics = self.train_metrics
        elif prefix == 'val':
            self.valid_metrics.update(losses.nlls, losses.token_mask)
            metrics = self.valid_metrics
        elif prefix == 'test':
            self.test_metrics.update(losses.nlls, losses.token_mask)
            metrics = self.test_metrics
        else:
            raise ValueError(f'Invalid prefix: {prefix}')

        self.log_dict(metrics, on_step=False, on_epoch=True, sync_dist=True)
        
        return loss

    def on_train_epoch_start(self):
        self.backbone.train()
        self.noise.train()

    def training_step(self, batch, batch_idx):
        loss = self._compute_loss(batch, prefix='train')
        self.log(name='trainer/loss',
                value=loss.item(),
                on_step=True,
                on_epoch=False,
                sync_dist=True)
        return loss

    def on_validation_epoch_start(self):
        if self.ema:
            self.ema.store(itertools.chain(
                    self.backbone.parameters(),
                    self.noise.parameters()))
            self.ema.copy_to(itertools.chain(
                    self.backbone.parameters(),
                    self.noise.parameters()))
        self.backbone.eval()
        self.noise.eval()
        assert self.valid_metrics.nll.mean_value == 0
        assert self.valid_metrics.nll.weight == 0

    def validation_step(self, batch, batch_idx):
        return self._compute_loss(batch, prefix='val')

    def on_validation_epoch_end(self):
        if ((self.config.eval.compute_perplexity_on_sanity
                or not self.trainer.sanity_checking)
                and self.config.eval.generate_samples
                and not self.parameterization == 'ar'):
            all_samples, all_detoeknized_samples = [], []
            
            for _ in range(self.config.sampling.num_sample_batches):
                
                samples = self._sample().detach().cpu().numpy()
                detokenized_samples = dataloader_gosai.batch_dna_detokenize(samples)
                all_samples.append(samples)
                all_detoeknized_samples.extend(detokenized_samples)
                
            all_samples = np.concatenate(all_samples, axis=0)
            ws_distance_dict = self.cal_wasserstein_distance(all_detoeknized_samples)
            pearsonr_list = self.cal_kmer_pearsonr(all_detoeknized_samples)
            ws_embpca_list = self.cal_ws_distance_embpca(all_detoeknized_samples)
      
        current_step = self.trainer.global_step
        LOGGER.info(f'Current step: {current_step}')
        LOGGER.info(f'Wasserstein distance: {ws_distance_dict}')
        LOGGER.info(f'3mer Pearsonr: {pearsonr_list}')
        LOGGER.info(f'Wasserstein distance embpca: {ws_embpca_list}')
        self.log('val/3mer_pearsonr', pearsonr_list, on_step=False, on_epoch=True, sync_dist=True)
        self.log('val/ws_embpca', ws_embpca_list, on_step=False, on_epoch=True, sync_dist=True)

        for key in ws_distance_dict:
            for cell_type in ws_distance_dict[key]:
                metric_values = ws_distance_dict[key][cell_type]
                if metric_values:  # Check if the list is not empty
                    # Assuming metric_values contains [train_metric, valid_metric, test_metric]
                    self.log(f'val/{key}_{cell_type}', metric_values[0], on_step=False, on_epoch=True, sync_dist=True)

        if self.ema:
            self.ema.restore(itertools.chain(self.backbone.parameters(),
                                self.noise.parameters()))
            
    ### VALIDATION METRICS ###
    def cal_wasserstein_distance(self, seqs):
        generated_preds = oracle.cal_gosai_pred_new(seqs)
        ws_distance_dict = {'truth': {'hepg2': [], 'k562': [], 'sknsh': []}, 
                            'preds': {'hepg2': [], 'k562': [], 'sknsh': []}} 
        ws_distance_dict['truth']['hepg2'].append(wasserstein_distance(generated_preds[:, 0], self.eval_sets_sp_clss[:, 0]))
        ws_distance_dict['truth']['k562'].append(wasserstein_distance(generated_preds[:, 1], self.eval_sets_sp_clss[:, 1]))
        ws_distance_dict['truth']['sknsh'].append(wasserstein_distance(generated_preds[:, 2], self.eval_sets_sp_clss[:, 2]))   
        ws_distance_dict['preds']['hepg2'].append(wasserstein_distance(generated_preds[:, 0], self.eval_sets_sp_preds[:, 0]))
        ws_distance_dict['preds']['k562'].append(wasserstein_distance(generated_preds[:, 1], self.eval_sets_sp_preds[:, 1]))
        ws_distance_dict['preds']['sknsh'].append(wasserstein_distance(generated_preds[:, 2], self.eval_sets_sp_preds[:, 2])) 
        return ws_distance_dict

    def cal_ws_distance_embpca(self, seqs):
        generated_embs = oracle.cal_gosai_emb(seqs)
        generated_embs_pca = self.emb_pca.transform(generated_embs.reshape(generated_embs.shape[0], -1))
        return oracle.get_wasserstein_dist(generated_embs_pca, self.eval_sets_sp_embs_pca)
  
    def compare_kmer(self, kmer1, kmer2, n_sp1, n_sp2):
        kmer_set = set(kmer1.keys()) | set(kmer2.keys())
        counts = np.zeros((len(kmer_set), 2))
        for i, kmer in enumerate(kmer_set):
            if kmer in kmer1:
                counts[i][1] = kmer1[kmer] * n_sp2 / n_sp1
            if kmer in kmer2:
                counts[i][0] = kmer2[kmer]
        return pearsonr(counts[:, 0], counts[:, 1])[0]

    def cal_kmer_pearsonr(self, seqs):
        generated_kmer = oracle.count_kmers(seqs)
        return self.compare_kmer(self.eval_sets_sp_kmers, generated_kmer, self.config.eval.subset_size, len(seqs))

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            itertools.chain(self.backbone.parameters(),
                            self.noise.parameters()),
            lr=self.config.optim.lr,
            betas=(self.config.optim.beta1, self.config.optim.beta2),
            eps=self.config.optim.eps,
            weight_decay=self.config.optim.weight_decay)

        scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=optimizer)
        scheduler_dict = {
            'scheduler': scheduler,
            'interval': 'step',
            'monitor': 'val/loss',
            'name': 'trainer/lr',
        }
        return [optimizer], [scheduler_dict]

    def q_xt(self, x, move_chance):
        """Computes the noisy sample xt.

        Args:
        x: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length), input. 
        move_chance: float torch.Tensor with shape (batch_size, 1).
        """
        move_indices = torch.rand(* x.shape, device=x.device) < move_chance
        
        xt = torch.where(move_indices, self.mask_index, x)
        return xt

    def _sample_prior(self, *batch_dims):
        """
            Returns array of fully masked sequences with same shape as input
        """
        return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)

    def _ddpm_caching_update(self, x, t, dt, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        move_chance_t = t[:, None, None]
        move_chance_s = (t - dt)[:, None, None]
        assert move_chance_t.ndim == 3, move_chance_t.shape
        if p_x0 is None:
            p_x0 = self.forward(x, sigma_t).exp()
        
        assert move_chance_t.ndim == p_x0.ndim
        q_xs = p_x0 * (move_chance_t - move_chance_s)
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        _x = _sample_categorical(q_xs)
        
        copy_flag = (x != self.mask_index).to(x.dtype)
        return p_x0, copy_flag * x + (1 - copy_flag) * _x

    def _ddpm_update(self, x, t, dt, return_process=False):
        sigma_t, _ = self.noise(t)
        sigma_s, _ = self.noise(t - dt)
        if sigma_t.ndim > 1:
            sigma_t = sigma_t.squeeze(-1)
        if sigma_s.ndim > 1:
            sigma_s = sigma_s.squeeze(-1)
        assert sigma_t.ndim == 1, sigma_t.shape
        assert sigma_s.ndim == 1, sigma_s.shape
        move_chance_t = 1 - torch.exp(-sigma_t) # t
        move_chance_s = 1 - torch.exp(-sigma_s)
        move_chance_t = move_chance_t[:, None, None]
        move_chance_s = move_chance_s[:, None, None]
        unet_conditioning = sigma_t
        log_p_x0 = self.forward(x, unet_conditioning)
        assert move_chance_t.ndim == log_p_x0.ndim
        q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        _x = _sample_categorical(q_xs)
        copy_flag = (x != self.mask_index).to(x.dtype)
        if return_process:
            return copy_flag * x + (1 - copy_flag) * _x, x, unet_conditioning, move_chance_t, copy_flag
        else:
            return copy_flag * x + (1 - copy_flag) * _x
  
    def _ar_sampler(self, bsz):
        # precompute token buffer
        num_pred_tokens = self.config.model.length - 1
        x = torch.zeros(
            (bsz, num_pred_tokens + 1),
            dtype=torch.long,
            device=self.device)
        x[:, 0] = self.tokenizer.bos_token_id
        # precompute noise
        noise = (torch.distributions.Gumbel(0, 1)
                .sample((bsz, num_pred_tokens, self.vocab_size))
                .to(self.device))
        for i in range(num_pred_tokens):
            next_logits = self.forward(x[:, :i + 1], None)[:, -1]
            y = (next_logits + noise[:, i]).argmax(-1)
            x[:, i + 1] = y
        return x

    @torch.no_grad()
    def _sample(self, num_steps=None, eps=1e-5, eval_sp_size=None):
        """Generate samples from the model."""
        if eval_sp_size is None:
            batch_size_per_gpu = self.config.loader.eval_batch_size
        else:
            batch_size_per_gpu = eval_sp_size
        if self.parameterization == 'ar':
            return self._ar_sampler(batch_size_per_gpu)
        # Lightning auto-casting is not working in this method for some reason
        if num_steps is None:
            num_steps = self.config.sampling.steps
        x = self._sample_prior(
            batch_size_per_gpu,
            self.config.model.length).to(self.device)
        
        timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        p_x0_cache = None

        for i in range(num_steps):
            t = timesteps[i] * torch.ones(x.shape[0], 1, device=self.device)
            
            if self.sampler == 'ddpm':
                x = self._ddpm_update(x, t, dt)
            elif self.sampler == 'ddpm_cache':
                p_x0_cache, x_next = self._ddpm_caching_update(x, t, dt, p_x0=p_x0_cache)
                if (not torch.allclose(x_next, x) or self.time_conditioning):
                    p_x0_cache = None
                x = x_next
            else:
                x = self._analytic_update(x, t, dt)

        if self.config.sampling.noise_removal:
            t = timesteps[-1] * torch.ones(x.shape[0], 1,
                                        device=self.device)
            if self.sampler == 'analytic':
                x = self._denoiser_update(x, t)
            else:
                unet_conditioning = self.noise(t)[0]
                logits = self.forward(x, unet_conditioning)
                x = logits[:, :, :-1].argmax(dim=-1)
        return x
    
    ### FOR THE EXPANSION AND ROLLOUT STEP ###
    def sample_finetuned_with_rnd(self, args, reward_model,pretrained, eps=1e-5):
        num_steps = args.total_num_steps
        x_rollout = self._sample_prior(
            args.batch_size,
            args.seq_length).to(self.device)
        
        log_rnd = torch.zeros(args.batch_size, device=self.device)
        
        timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        
        for i in range(num_steps):
            t = timesteps[i] * torch.ones(x_rollout.shape[0], 1, device=self.device)
            
            log_p, x_next, log_policy_step, log_pretrained_step = self.mcts_reverse_step(x_rollout, t=t, dt=dt, pretrained=pretrained)            
            log_rnd += log_pretrained_step - log_policy_step
            
            x_rollout = x_next
            
        # if mask token remains, fully unmask
        mask_positions = (x_rollout == self.mask_index)        # (B, L) bool

        # does **any** mask remain in any sequence
        any_mask_global = mask_positions.any().item()  # true if mask remains
        if any_mask_global:
            log_p, x_next = self.single_noise_removal(x_rollout, t=t, dt=dt)
            
            x_rollout = x_next
        
        x_final = x_rollout
        
        x_one_hot = to_one_hot(x_final)
        x_one_hot_reward = torch.transpose(x_one_hot, 1, 2)
        reward_preds = reward_model(x_one_hot_reward).squeeze(-1) # (num_children, 4)
        rewards = reward_preds[:, 0] # (num_children, 1)
        log_rnd = log_rnd + rewards / args.alpha
        mean_reward = rewards.mean()
        
        return x_final, log_rnd, rewards
    
    def sample_finetuned(self, args, reward_model, eps=1e-5):
        num_steps = args.total_num_steps
        x_rollout = self._sample_prior(
            args.batch_size,
            args.seq_length).to(self.device)
        
        timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        
        for i in range(num_steps):
            t = timesteps[i] * torch.ones(x_rollout.shape[0], 1, device=self.device)
            
            log_p, x_next = self.single_reverse_step(x_rollout, t=t, dt=dt)
                        
            x_rollout = x_next
            
        # if mask token remains, fully unmask
        mask_positions = (x_rollout == self.mask_index)        # (B, L) bool

        # does **any** mask remain in any sequence
        any_mask_global = mask_positions.any().item()  # true if mask remains
        if any_mask_global:
            log_p, x_next = self.single_noise_removal(x_rollout, t=t, dt=dt)
            
            x_rollout = x_next
        
        x_final = x_rollout
        
        x_one_hot = to_one_hot(x_final)
        x_one_hot_reward = torch.transpose(x_one_hot, 1, 2)
        reward_preds = reward_model(x_one_hot_reward).squeeze(-1) # (num_children, 4)
        rewards = reward_preds[:, 0] # (num_children, 1)
                
        mean_reward = rewards.mean()
        
        return x_final, mean_reward
    
    def compute_log_policy(self, token_array, x_next, t, dt):
        sigma_t, _ = self.noise(t)
        
        if token_array.ndim == 1:
            token_array = token_array.unsqueeze(0)
            
        if x_next.ndim == 1:
            x_next = x_next.unsqueeze(0)
                    
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        log_p = self.forward(token_array, sigma=sigma_t)
        p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        q_xs = p_x0 * (change_prob_t - change_prob_s)
        
        # zero-masking probability
        q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
        
        copy_flag = (token_array != self.mask_index)
        
        assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
        changed_mask = (~copy_flag)
        
        # compute the per-sequence log-probability under the pretrained model 
        log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)
        
        unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_policy_token.dtype)
        log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1) 
        
        # returns:
        # log_policy_step (B, ) log probability x_next tokens under policy
        if log_policy_step.ndim == 1:
            log_policy_step = log_policy_step.squeeze(0)
            
        return log_policy_step
    
    
    def single_reverse_step(self, token_array, t, dt, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        if p_x0 is None:
            log_p = self.forward(token_array, sigma=sigma_t)
            p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        q_xs = p_x0 * (change_prob_t - change_prob_s)
        
        # zero-masking probability
        q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
        
        x_changed = _sample_categorical(q_xs)
        
        copy_flag = (token_array != self.mask_index)
        
        int_copy_flag = copy_flag.to(token_array.dtype)
        x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed
        
        # returns:
        # log_p (B, L, D) log probabilties of each token under the policy model
        # x_next (B, L) next sequences
        return log_p, x_next
    
    
    def single_noise_removal(self, token_array, t, dt, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        if p_x0 is None:
            log_p = self.forward(token_array, sigma=sigma_t)
            p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        # changed for noise removal
        p_x0 = p_x0.clone()
        p_x0[:, :, self.mask_index] = 0.0 # prevent remaining a mask
        p_x0 = p_x0 / p_x0.sum(dim=-1, keepdim=True).clamp_min(1e-12)  # renorm over non-MASK
        q_xs = p_x0 * (change_prob_t - change_prob_s)   
        
        x_changed = _sample_categorical(q_xs)
        
        copy_flag = (token_array != self.mask_index)
        
        int_copy_flag = copy_flag.to(token_array.dtype)
        x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed

        # returns:
        # log_p (B, L, D) log probabilties of each token under the policy model
        # x_next (B, L) next sequences
        return log_p, x_next
    
    def mcts_reverse_step(self, token_array, t, dt, pretrained, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        if p_x0 is None:
            log_p = self.forward(token_array, sigma=sigma_t)
            p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        q_xs = p_x0 * (change_prob_t - change_prob_s)
        
        # zero-masking probability
        q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
        
        x_changed = _sample_categorical(q_xs)
        
        copy_flag = (token_array != self.mask_index)
        
        int_copy_flag = copy_flag.to(token_array.dtype)
        x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed

        # compute the log-probability under pretrained model at each step
        with torch.no_grad():
            # pretrained should output log-probs over vocab at each position given the *parent* (masked) input
            log_pre = pretrained.forward(token_array, sigma=sigma_t)

            # log-prob of the *sampled token* at each position
            log_pre_token = log_pre.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)  # [B*batch,L]

            # sum only over the sites actually sampled this step (i.e., where parent was mask)
            
            assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
            changed_mask = (~copy_flag)
            # mask of tokens that were unmasked in this step
            unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_pre_token.dtype)
            
            log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
        
        # compute the per-sequence log-probability under the pretrained model 
        log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)      # [B*batch,L]
        log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1) 
        
        # returns:
        # log_p (B, L, D) log probabilties of each token under the policy model
        # x_next (B, L) next sequences
        # log_policy_step (B, ) log probability of all unmasked tokens under policy
        # log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
        return log_p, x_next, log_policy_step, log_pretrained_step
    
    def mcts_noise_removal(self, token_array, t, dt, pretrained, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        if p_x0 is None:
            log_p = self.forward(token_array, sigma=sigma_t)
            p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        # changed for noise removal
        p_x0 = p_x0.clone()
        p_x0[:, :, self.mask_index] = 0.0 # prevent remaining a mask
        p_x0 = p_x0 / p_x0.sum(dim=-1, keepdim=True).clamp_min(1e-12)  # renorm over non-MASK
        q_xs = p_x0 * (change_prob_t - change_prob_s)   
        
        x_changed = _sample_categorical(q_xs)
        
        copy_flag = (token_array != self.mask_index)
        
        int_copy_flag = copy_flag.to(token_array.dtype)
        x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed

        # compute the log-probability under pretrained model at each step
        with torch.no_grad():
            # pretrained should output log-probs over vocab at each position given the *parent* (masked) input
            log_pre = pretrained.forward(token_array, sigma=sigma_t)

            # log-prob of the *sampled token* at each position
            log_pre_token = log_pre.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)  # [B*batch,L]

            # sum only over the sites actually sampled this step (i.e., where parent was mask)
            
            assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
            changed_mask = (~copy_flag)
            # mask of tokens that were unmasked in this step
            unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_pre_token.dtype)
            
            log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
        
        # compute the per-sequence log-probability under the pretrained model 
        log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)      # [B*batch,L]
        log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1) 
        
        # returns:
        # log_p (B, L, D) log probabilties of each token under the policy model
        # x_next (B, L) next sequences
        # log_policy_step (B, ) log probability of all unmasked tokens under policy
        # log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
        return log_p, x_next, log_policy_step, log_pretrained_step
    
    # first step in expansion
    def batch_mcts_reverse_step(self, token_array, t, dt, batch_size, pretrained, p_x0=None):
        
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        
        change_prob_t = t[:, None, None]
        change_prob_s = (t - dt)[:, None, None]
        
        assert change_prob_t.ndim == 3, change_prob_t.shape
        
        if token_array.dim() == 1:
            token_array = token_array.unsqueeze(0)
        
        # expand to match (num_children, L)
        
        if p_x0 is None:
            log_p = self.forward(token_array, sigma=sigma_t)
            p_x0 = log_p.exp()
        
        assert change_prob_t.ndim == p_x0.ndim
        
        q_xs = p_x0 * (change_prob_t - change_prob_s)
        
        # zero-masking probability
        q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
        
        # repeat the parent token along the first dimension which will be unmasked into distinct sequences
        token_array_expanded = token_array.repeat(batch_size, 1)
        
        if self.config.mcts.sampling == 0:
            x_changed = sample_batched_categorical(q_xs.to(self.device), batch_size)
        else:
            x_changed = sample_batched_top_k(q_xs.to(self.device), batch_size, self.config.mcts.sampling)
        
        copy_flag = (token_array_expanded != self.mask_index)
        
        int_copy_flag = copy_flag.to(token_array.dtype)
        x_children = int_copy_flag * token_array_expanded + (1 - int_copy_flag) * x_changed

        
        # compute the log-probability under pretrained model at each step
        with torch.no_grad():
            # pretrained should output log-probs over vocab at each position given the *parent* (masked) input
            log_pre = pretrained.forward(token_array, sigma=sigma_t)
            
            # expand to match the shape of x_children
            log_pre = log_pre.repeat(batch_size, 1, 1)

            # log-prob of the *sampled token* at each position
            log_pre_token = log_pre.gather(-1, x_children.unsqueeze(-1)).squeeze(-1)  # [B*batch,L]

            # sum only over the sites actually sampled this step (i.e., where parent was mask)
            
            assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
            changed_mask = (~copy_flag)
            # mask of tokens that were unmasked in this step
            unmasked_this_step = (changed_mask & (x_children != self.mask_index)).to(log_pre_token.dtype)
            
            log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
        
        # compute the per-child log-probability under the pretrained model 
        log_p = log_p.repeat(batch_size, 1, 1)
        log_policy_token = log_p.gather(-1, x_children.unsqueeze(-1)).squeeze(-1)  # (B, L) probability of each chosen token
        #print(log_policy_token)
        log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1) 
        
        # returns:
        # log_p (B, L, D) log probabilties of each token under the policy model
        # x_children (B, L) child sequences
        # log_policy_step (B, ) log probability of all unmasked tokens under policy
        # log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
        return log_p, x_children, log_policy_step, log_pretrained_step
    
    ### SPECIFIC TO DRAKES? ###
    def _ddpm_update_finetune_gradient(self, x, t, dt, copy_flag_temp, return_process=False):
    
        if x.ndim == 2 or x.shape[-1] != self.vocab_size:
            x = F.one_hot(x, num_classes=self.vocab_size).to(torch.float32)

        sigma_t, _ = self.noise(t)
        sigma_s, _ = self.noise(t - dt)
        if sigma_t.ndim > 1:
            sigma_t = sigma_t.squeeze(-1)
        if sigma_s.ndim > 1:
            sigma_s = sigma_s.squeeze(-1)
        assert sigma_t.ndim == 1, sigma_t.shape
        assert sigma_s.ndim == 1, sigma_s.shape
        move_chance_t = 1 - torch.exp(-sigma_t) # (1-eps)*t
        move_chance_s = 1 - torch.exp(-sigma_s)
        move_chance_t = move_chance_t[:, None, None]
        move_chance_s = move_chance_s[:, None, None]
        unet_conditioning = sigma_t
        log_p_x0 = self.forward(x, unet_conditioning)
        assert move_chance_t.ndim == log_p_x0.ndim
        q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
        
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        _x = _sample_categorical_gradient(q_xs, temp=self.config.finetuning.gumbel_softmax_temp)
        
        if copy_flag_temp is not None:
            copy_flag_prob = 1 - x[:, :, self.mask_index].unsqueeze(-1)
            soft_copy_flag = torch.nn.functional.sigmoid(copy_flag_prob/copy_flag_temp)
        else:
            soft_copy_flag = 1 - x[:, :, self.mask_index].unsqueeze(-1)

        if return_process:
            return soft_copy_flag * x + (1 - soft_copy_flag) * _x, x, unet_conditioning, move_chance_t, soft_copy_flag
        else:
            return soft_copy_flag * x + (1 - soft_copy_flag) * _x
    
   
    def _sample_finetune_gradient(self, num_steps=None, eps=1e-5, eval_sp_size=None, copy_flag_temp=None):
        """Generate samples from the model."""
        assert self.parameterization == 'subs' and self.sampler == 'ddpm'
        if eval_sp_size is None:
            batch_size_per_gpu = self.config.loader.eval_batch_size
        else:
            batch_size_per_gpu = eval_sp_size
        if num_steps is None:
            num_steps = self.config.sampling.steps
        x = self._sample_prior(
            batch_size_per_gpu,
            self.config.model.length).to(self.device)
        timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        p_x0_cache = None

        last_x_list = []
        condt_list = []
        move_chance_t_list = []
        copy_flag_list = []

        for i in range(num_steps):
            t = timesteps[i] * torch.ones(x.shape[0], 1, device=self.device)
            if self.sampler == 'ddpm':
                    if i < num_steps - self.config.finetuning.truncate_steps:
                        x, last_x, condt, move_chance_t, copy_flag = self._ddpm_update(x, t, dt, return_process=True)
                        x = x.detach()
                        copy_flag = copy_flag.unsqueeze(-1)
                        last_x = F.one_hot(last_x, num_classes=self.vocab_size).to(torch.float32).detach()
                    else: 
                        x, last_x, condt, move_chance_t, copy_flag = self._ddpm_update_finetune_gradient(x, t, dt, copy_flag_temp, return_process=True)
                
            last_x_list.append(last_x)
            condt_list.append(condt)
            move_chance_t_list.append(move_chance_t)
            copy_flag_list.append(copy_flag)

        x_argmax = x[:, :, :-1].argmax(dim=-1)
        x_argmax = torch.nn.functional.one_hot(x_argmax, num_classes=self.vocab_size-1).to(torch.float32)
        return x[:, :, :-1] + (x_argmax - x[:, :, :-1]).detach(), last_x_list, condt_list, move_chance_t_list, copy_flag_list
  
    @torch.no_grad()
    def _ddpm_update_finetune_controlled_SMC(self, x, t, dt, reward_model, alpha = 1.0):

        sigma_t, _ = self.noise(t)
        sigma_s, _ = self.noise(t - dt)
        if sigma_t.ndim > 1:
            sigma_t = sigma_t.squeeze(-1)
        if sigma_s.ndim > 1:
            sigma_s = sigma_s.squeeze(-1)
        assert sigma_t.ndim == 1, sigma_t.shape
        assert sigma_s.ndim == 1, sigma_s.shape
        move_chance_t = 1 - torch.exp(-sigma_t)
        move_chance_s = 1 - torch.exp(-sigma_s)
        move_chance_t = move_chance_t[:, None, None]
        move_chance_s = move_chance_s[:, None, None]
        unet_conditioning = sigma_t
        log_p_x0 = self.forward(x, unet_conditioning)
        assert move_chance_t.ndim == log_p_x0.ndim
        q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        copy_flag = (x != self.mask_index).to(x.dtype)
        sample = copy_flag * x + (1 - copy_flag) * _sample_categorical(q_xs)
        '''
        Calcualte exp(v_{t-1}(x_{t-1})/alpha)
        '''
        expected_x0 = self.forward(sample, sigma_s) # Calcualte E[x_0|x_{t-1}]
        expected_x0_arg = torch.argmax(expected_x0,dim=2)
        expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
        reward_num = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
        '''
        Calcualte exp(v_{t}(x_{t})/alpha)
        '''
        expected_x0 = self.forward(x, sigma_s) # Calcualte E[x_0|x_t]
        expected_x0_arg = torch.argmax(expected_x0,dim=2) 
        expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
        reward_den = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
    
        ratio = torch.exp(1.0/alpha * (reward_num - reward_den)) # Now calculate exp( (v_{t-1}(x_{t-1) -v_{t}(x_{t}) /alpha) 
        ratio = ratio.detach().cpu().numpy()
        final_sample_indices = np.random.choice(reward_num.shape[0], reward_num.shape[0], p =  ratio/ratio.sum() ) 
    
        return sample[final_sample_indices]
  
    def _ddpm_update_finetune_controlled_CG(self, x, t, dt, reward_model,  guidance_scale):

        sigma_t, _ = self.noise(t)
        sigma_s, _ = self.noise(t - dt)
        if sigma_t.ndim > 1:
            sigma_t = sigma_t.squeeze(-1)
        if sigma_s.ndim > 1:
            sigma_s = sigma_s.squeeze(-1)
        assert sigma_t.ndim == 1, sigma_t.shape
        assert sigma_s.ndim == 1, sigma_s.shape
        move_chance_t = 1 - torch.exp(-sigma_t)
        move_chance_s = 1 - torch.exp(-sigma_s)
        move_chance_t = move_chance_t[:, None, None]
        move_chance_s = move_chance_s[:, None, None]
        unet_conditioning = sigma_t
        log_p_x0 = self.forward(x, unet_conditioning)
        assert move_chance_t.ndim == log_p_x0.ndim
        q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
        x_onehot = F.one_hot(x, num_classes=5).float()

        x_grad = self.compute_gradient_CG(x_onehot, x, reward_model, sigma_s )
        guidance = guidance_scale * (x_grad - x_grad[:, :, self.mask_index][:, :, None])
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        q_xs = q_xs * guidance.exp()

        _x = _sample_categorical(q_xs)
        copy_flag = (x != self.mask_index).to(x.dtype)
        return copy_flag * x + (1 - copy_flag) * _x 

    def compute_gradient_CG(self, x_onehot, x, reward_model, sigma_s):
        x_onehot.requires_grad_(True)
        expected_x0 = self.forward(x_onehot, sigma_s) # Calcualte E[x_0|x_t]
        scores = reward_model(expected_x0.transpose(1, 2)[:,0:4,:])[:, 0]
        scores = scores.mean()
        scores.backward()
        x_grad = x_onehot.grad.clone()
        return x_grad

    def _ddpm_update_finetune_controlled_TDS(self, x, t, dt, reward_model, alpha = 1.0, guidance_scale=1000):
        # SMC with the twisted proposal

        sigma_t, _ = self.noise(t)
        sigma_s, _ = self.noise(t - dt)
        if sigma_t.ndim > 1:
            sigma_t = sigma_t.squeeze(-1)
        if sigma_s.ndim > 1:
            sigma_s = sigma_s.squeeze(-1)
        assert sigma_t.ndim == 1, sigma_t.shape
        assert sigma_s.ndim == 1, sigma_s.shape
        move_chance_t = 1 - torch.exp(-sigma_t)
        move_chance_s = 1 - torch.exp(-sigma_s)
        move_chance_t = move_chance_t[:, None, None]
        move_chance_s = move_chance_s[:, None, None]
        unet_conditioning = sigma_t
        log_p_x0 = self.forward(x, unet_conditioning)
        assert move_chance_t.ndim == log_p_x0.ndim
        q_xs = log_p_x0.exp() * (move_chance_t
                                - move_chance_s)
        x_onehot = F.one_hot(x, num_classes=5).float()

        x_grad = self.compute_gradient_CG(x_onehot, x, reward_model, sigma_s )
        guidance = guidance_scale * (x_grad - x_grad[:, :, self.mask_index][:, :, None])
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        # print(q_xs.sum(-1))
        q_xs = q_xs * guidance.exp()

        _x = _sample_categorical(q_xs)
        copy_flag = (x != self.mask_index).to(x.dtype)
        sample = copy_flag * x + (1 - copy_flag) * _x
        prob_multiplier = (1 - copy_flag) * torch.gather(guidance.exp(), 2, _x.unsqueeze(-1)).squeeze(-1) + copy_flag * torch.ones_like(_x)
        '''
        Calcualte exp(v_{t-1}(x_{t-1})/alpha)
        '''
        expected_x0 = self.forward(sample, sigma_s) # Calcualte E[x_0|x_{t-1}]
        expected_x0_arg = torch.argmax(expected_x0,dim=2)
        expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
        reward_num = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
        '''
        Calcualte exp(v_{t}(x_{t})/alpha)
        '''
        expected_x0 = self.forward(x, sigma_s) # Calcualte E[x_0|x_t]
        expected_x0_arg = torch.argmax(expected_x0,dim=2) 
        expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
        reward_den = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
        
        # set the nan values to 1
        prob_multiplier[torch.isnan(prob_multiplier)] = 1
        ratio = torch.exp(1.0/alpha * (reward_num - reward_den)) / prob_multiplier.prod(dim=-1)
        ratio = ratio.detach().cpu().numpy()
        final_sample_indices = np.random.choice(reward_num.shape[0], reward_num.shape[0], p =  ratio/ratio.sum() ) 
    
        return sample[final_sample_indices]
  
    @torch.no_grad()
    def controlled_sample_SMC(self, reward_model, alpha, num_steps=None, eps=1e-5, eval_sp_size=None):
        """Generate samples from the model."""
        if eval_sp_size is None:
            batch_size_per_gpu = self.config.loader.eval_batch_size
        else:
            batch_size_per_gpu = eval_sp_size
        if self.parameterization == 'ar':
            return self._ar_sampler(batch_size_per_gpu)
        # Lightning auto-casting is not working in this method for some reason
        if num_steps is None:
            num_steps = self.config.sampling.steps
        x = self._sample_prior(
            batch_size_per_gpu,
            self.config.model.length).to(self.device)
        timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        p_x0_cache = None

        for i in range(num_steps):
            t = timesteps[i] * torch.ones(
                    x.shape[0], 1, device=self.device)
            if self.sampler == 'ddpm':
                    x  = self._ddpm_update_finetune_controlled_SMC(x, t, dt, reward_model, alpha)
            else:
                    x = self._analytic_update(x, t, dt)

        if self.config.sampling.noise_removal:
            t = timesteps[-1] * torch.ones(x.shape[0], 1, device=self.device)
            if self.sampler == 'analytic':
                    x = self._denoiser_update(x, t)
            else:
                    unet_conditioning = self.noise(t)[0]
                    logits = self.forward(x, unet_conditioning)
                    x = logits[:, :, :-1].argmax(dim=-1)
        return x

    def controlled_sample_CG(self, reward_model, guidance_scale, num_steps=None, eps=1e-5, eval_sp_size=None):
        """Generate samples from the model."""
        if eval_sp_size is None:
            batch_size_per_gpu = self.config.loader.eval_batch_size
        else:
            batch_size_per_gpu = eval_sp_size
        if self.parameterization == 'ar':
            return self._ar_sampler(batch_size_per_gpu)
        # Lightning auto-casting is not working in this method for some reason
        if num_steps is None:
            num_steps = self.config.sampling.steps
        x = self._sample_prior(
            batch_size_per_gpu,
            self.config.model.length).to(self.device)
        timesteps = torch.linspace(
            1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        p_x0_cache = None

        for i in range(num_steps):
            t = timesteps[i] * torch.ones(
                x.shape[0], 1, device=self.device)
            if self.sampler == 'ddpm':
                x  = self._ddpm_update_finetune_controlled_CG(x, t, dt, reward_model, guidance_scale)
            else:
                x = self._analytic_update(x, t, dt)

        if self.config.sampling.noise_removal:
            t = timesteps[-1] * torch.ones(x.shape[0], 1,
                                        device=self.device)
            if self.sampler == 'analytic':
                x = self._denoiser_update(x, t)
            else:
                unet_conditioning = self.noise(t)[0]
                logits = self.forward(x, unet_conditioning)
                x = logits[:, :, :-1].argmax(dim=-1)
        return x

    def controlled_sample_TDS(self, reward_model, alpha, guidance_scale, num_steps=None, eps=1e-5, eval_sp_size=None):
        """Generate samples from the model."""
        if eval_sp_size is None:
            batch_size_per_gpu = self.config.loader.eval_batch_size
        else:
            batch_size_per_gpu = eval_sp_size
            
        if self.parameterization == 'ar':
            return self._ar_sampler(batch_size_per_gpu)

        if num_steps is None:
            num_steps = self.config.sampling.steps
        x = self._sample_prior(
            batch_size_per_gpu,
            self.config.model.length).to(self.device)
        timesteps = torch.linspace(
            1, eps, num_steps + 1, device=self.device)
        dt = (1 - eps) / num_steps
        p_x0_cache = None

        for i in range(num_steps):
            t = timesteps[i] * torch.ones(
                x.shape[0], 1, device=self.device)
            if self.sampler == 'ddpm':
                x  = self._ddpm_update_finetune_controlled_TDS(x, t, dt, reward_model,alpha, guidance_scale)
            else:
                x = self._analytic_update(x, t, dt)

        if self.config.sampling.noise_removal:
            t = timesteps[-1] * torch.ones(x.shape[0], 1,
                                        device=self.device)
            if self.sampler == 'analytic':
                x = self._denoiser_update(x, t)
            else:
                unet_conditioning = self.noise(t)[0]
                logits = self.forward(x, unet_conditioning)
                x = logits[:, :, :-1].argmax(dim=-1)
        return x

    @torch.no_grad()
    def get_likelihood(self, x0, num_steps=None, eps=1e-5, n_samples=1):
        """Compute the likelihood of a sequence under the model.
        x0: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length)
        """
        if num_steps is None:
            num_steps = self.config.sampling.steps
        timesteps = torch.linspace(
            1, eps, num_steps + 1, device=self.device) # t=0 is clean data
        dt = (1 - eps) / num_steps
        log_p_sample_list = []
        for _ in range(n_samples):
            log_p_at_time_list = []
            for i in range(num_steps):
                t = timesteps[i] * torch.ones(
                x0.shape[0], 1, device=self.device)
                sigma_t, _ = self.noise(t)
                sigma_s, _ = self.noise(t - dt)
                if sigma_t.ndim > 1:
                    sigma_t = sigma_t.squeeze(-1)
                if sigma_s.ndim > 1:
                    sigma_s = sigma_s.squeeze(-1)
                assert sigma_t.ndim == 1, sigma_t.shape
                assert sigma_s.ndim == 1, sigma_s.shape
                move_chance_t = 1 - torch.exp(-sigma_t) # (1-eps)*t
                move_chance_s = 1 - torch.exp(-sigma_s)
                move_chance_t = move_chance_t[:, None] # [bsz, 1]
                move_chance_s = move_chance_s[:, None]
                unet_conditioning = sigma_t # [bsz]
                multiplier = (move_chance_t - move_chance_s)/move_chance_t # [bsz, 1]
                xt = self.q_xt(x0, move_chance_t) # [bsz, seq_len]
                # log prob, already apply subs parametrization (unmasked token remains unchanged)
                model_output = self.forward(xt, unet_conditioning) # [bsz, seq_len, vocab_size]
                # take the log prob of the token that corresponds to x0
                log_p_x0 = model_output.gather(-1, x0[..., None]).squeeze(-1) # [bsz, seq_len]
                log_p_x0 = log_p_x0 * multiplier
                log_p_at_time_list.append(log_p_x0)
            log_p_x0 = torch.stack(log_p_at_time_list, dim=0).sum(dim=0) # [bsz, seq_len]
            log_p_sample_list.append(log_p_x0.sum(dim=-1))
        log_p_sample = torch.stack(log_p_sample_list, dim=0).mean(dim=0)
        return log_p_sample

    def get_score(self, x, sigma):
        model_output = self.forward(x, sigma)
        if self.parameterization == 'subs':
            # score(x, t) = p_t(y) / p_t(x)
            # => log score(x, t) = log p_t(y) - log p_t(x)
            
            # case 1: x = masked
            #   (i) y = unmasked
            #     log score(x, t) = log p_\theta(x)|_y + log k
            #     where k = exp(- sigma) / (1 - exp(- sigma))
            #   (ii) y = masked
            #     log score(x, t) = 0

            # case 2: x = unmasked
            #   (i) y != masked, y != x
            #     log score(x_i, t) = - inf
            #   (ii) y = x 
            #     log score(x_i, t) = 0
            #   (iii) y = masked token
            #     log score(x_i, t) = - log k
            #     where k = exp(- sigma) / (1 - exp(- sigma))
            
            log_k = - torch.log(torch.expm1(sigma)).squeeze(-1)
            assert log_k.ndim == 1
        
            masked_score = model_output + log_k[:, None, None]
            masked_score[:, :, self.mask_index] = 0

            unmasked_score = self.neg_infinity * torch.ones_like(
                model_output)
            unmasked_score = torch.scatter(
                unmasked_score,
                -1,
                x[..., None],
                torch.zeros_like(unmasked_score[..., :1]))
            unmasked_score[:, :, self.mask_index] = - (
                log_k[:, None] * torch.ones_like(x))
        
            masked_indices = (x == self.mask_index).to(
                model_output.dtype)[:, :, None]
            model_output = (
                masked_score * masked_indices
                + unmasked_score * (1 - masked_indices))
        return model_output.exp()

    def _staggered_score(self, score, dsigma):
        score = score.clone()
        extra_const = (1 - dsigma.exp()) * score.sum(dim=-1)
        score *= dsigma.exp()[:, None]
        score[..., self.mask_index] += extra_const
        return score

    def _analytic_update(self, x, t, step_size):
        curr_sigma, _ = self.noise(t)
        next_sigma, _ = self.noise(t - step_size)
        dsigma = curr_sigma - next_sigma
        score = self.get_score(x, curr_sigma)
        stag_score = self._staggered_score(score, dsigma)
        probs = stag_score * self._transp_transition(x, dsigma)
        return _sample_categorical(probs)

    def _denoiser_update(self, x, t):
        sigma, _ = self.noise(t)
        score = self.get_score(x, sigma)
        stag_score = self._staggered_score(score, sigma)
        probs = stag_score * self._transp_transition(x, sigma)
        probs[..., self.mask_index] = 0
        samples = _sample_categorical(probs)
        return samples

    def _transp_transition(self, i, sigma):
        sigma = _unsqueeze(sigma, reference=i[..., None])
        edge = torch.exp(-sigma) * F.one_hot(
            i, num_classes=self.vocab_size)
        edge += torch.where(i == self.mask_index,
                            1 - torch.exp(-sigma).squeeze(-1),
                            0)[..., None]
        return edge

    def _sample_t(self, n, device):
        _eps_t = torch.rand(n, device=device)
        if self.antithetic_sampling:
            # for variance reduction
            offset = torch.arange(n, device=device) / n
            _eps_t = (_eps_t / n + offset) % 1
        t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
        if self.importance_sampling:
            return self.noise.importance_sampling_transformation(t)
        return t

    def _maybe_sub_sample(self, x0, attention_mask):
        seqlen = x0.shape[1]
        if seqlen > self.config.model.length:
            raise NotImplementedError('Sub-sampling not implemented')
        elif self.parameterization == 'ar':
            input_tokens = x0[:, :-1]
            output_tokens = x0[:, 1:]
            new_attention_mask = attention_mask[:, 1:]
        else:
            input_tokens = x0
            output_tokens = None
            new_attention_mask = attention_mask
        return input_tokens, output_tokens, new_attention_mask

    def _reconstruction_loss(self, x0):
        t0 = torch.zeros(x0.shape[0], dtype=self.dtype,
                        device=self.device)
        assert self.config.noise.type == 'loglinear'
        # The above assert is for d3pm parameterization
        unet_conditioning = self.noise(t0)[0][:, None]
        model_output_t0 = self.forward(x0, unet_conditioning)
        return - torch.gather(input=model_output_t0,
                            dim=-1,
                            index=x0[:, :, None]).squeeze(-1)

    def _forward_pass_diffusion(self, x0):
        t = self._sample_t(x0.shape[0], x0.device)
        if self.T > 0:
            # else ts are between 0 and 1
            t = (t * self.T).to(torch.int)
            t = t / self.T
            # t \in {1/T, 2/T, ..., 1}
            t += (1 / self.T)

        if self.change_of_variables: # False
            unet_conditioning = t[:, None]
            f_T = torch.log1p(- torch.exp(- self.noise.sigma_max))
            f_0 = torch.log1p(- torch.exp(- self.noise.sigma_min))
            move_chance = torch.exp(f_0 + t * (f_T - f_0))
            move_chance = move_chance[:, None]
        else:
            sigma, dsigma = self.noise(t) # total noise, rate noise
            unet_conditioning = sigma[:, None]
            move_chance = 1 - torch.exp(-sigma[:, None])

        xt = self.q_xt(x0, move_chance) # q(xt|x0)
        model_output = self.forward(xt, unet_conditioning)
        utils.print_nans(model_output, 'model_output')

        if self.parameterization == 'sedd':
            return dsigma[:, None] * self._score_entropy(
                model_output, sigma[:, None], xt, x0)
        
        if self.T > 0:
            diffusion_loss = self._d3pm_loss(
                    model_output=model_output, xt=xt, x0=x0, t=t)
            if self.parameterization == 'd3pm':
                    reconstruction_loss = self._reconstruction_loss(x0)
            elif self.parameterization == 'subs':
                    reconstruction_loss = 0
            return reconstruction_loss + diffusion_loss
        
        # SUBS parameterization, continuous time.
        log_p_theta = torch.gather(
            input=model_output,
            dim=-1,
            index=x0[:, :, None]).squeeze(-1)
        
        if self.change_of_variables or self.importance_sampling:
            return log_p_theta * torch.log1p(
                - torch.exp(- self.noise.sigma_min))
        
        return - log_p_theta * (
            dsigma / torch.expm1(sigma))[:, None]

    def _loss(self, x0, attention_mask):
        (input_tokens, output_tokens, attention_mask) = self._maybe_sub_sample(
                x0, attention_mask)

        if self.parameterization == 'ar':
            logprobs = self.backbone(input_tokens, None)
            loss = - logprobs.gather(
                -1, output_tokens[:, :, None])[:, :, 0]
        else:
            loss = self._forward_pass_diffusion(input_tokens)
    
        nlls = loss * attention_mask
        count = attention_mask.sum()

        batch_nll = nlls.sum()
        token_nll = batch_nll / count

        return Loss(loss=token_nll,
                    nlls=nlls,
                    token_mask=attention_mask)

    def _score_entropy(self, log_score, sigma, xt, x0):
        """Computes the SEDD loss.

        Args:
        log_score: float torch.Tensor with shape (batch_size,
            diffusion_model_input_length, vocab_size),
            log score, output of the denoising network.
        xt: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length), input.
        x0: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length), input.
        sigma: float torch.Tensor with shape (batch_size, 1).

        Returns:
        loss with shape (batch_size, diffusion_model_input_length)
        """
        # seems that it takes y=x0,xt=M case
        # what is the const term for, seems to be y=M,xt=x0 case and x0 is known so score estimation is precise
        masked_indices = xt == self.mask_index

        expsig_minus_1 = torch.expm1(sigma).expand_as(xt)
        q_ratio = 1 / expsig_minus_1[masked_indices]

        words_that_were_masked = x0[masked_indices]

        neg_term = q_ratio * torch.gather(
            log_score[masked_indices],
            -1,
            words_that_were_masked[..., None]).squeeze(-1)
        score = log_score[masked_indices].exp()
        if self.mask_index == self.vocab_size - 1:
            pos_term = score[:, :-1].sum(dim=-1)
        else:
            pos_term = score[:, : self.mask_index].sum(
                dim=-1) + score[:, self.mask_index + 1:].sum(dim=-1)
        const = q_ratio * (q_ratio.log() - 1)

        entropy = torch.zeros(* xt.shape, device=xt.device)
        entropy[masked_indices] += pos_term - neg_term + const
        return entropy