File size: 68,253 Bytes
303c2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 |
import itertools
import math
from dataclasses import dataclass
import hydra.utils
import lightning as L
import numpy as np
import torch
import torch.nn.functional as F
import torchmetrics
from torch import Tensor
import dataloader_gosai
import models
import noise_schedule
import utils
import oracle
from scipy.stats import wasserstein_distance, pearsonr
from finetune_utils import to_one_hot
LOG2 = math.log(2)
LOGGER = utils.get_logger(__name__)
def _sample_categorical(categorical_probs):
gumbel_norm = (
1e-10
- (torch.rand_like(categorical_probs) + 1e-10).log())
return (categorical_probs / gumbel_norm).argmax(dim=-1).to(dtype=torch.long)
def _sample_categorical_gradient(categorical_probs, temp = 1.0):
gumbel_norm = (
1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
output = torch.nn.functional.softmax((torch.log(categorical_probs)-torch.log(gumbel_norm))/temp, 2)
return output
def _unsqueeze(x, reference):
return x.view(
* x.shape,
* ((1,) * (len(reference.shape) - len(x.shape))))
def sample_batched_categorical(categorical_probs, batch_size):
"""
Generates `m` distinct sequences sampled from categorical probabilities
using the Gumbel distribution to ensure randomness while following probabilities
Args:
categorical_probs (torch.Tensor): tensor of shape (sequence_length, vocab_length)
representing categorical probabilities
m (int): number of distinct sequences to sample
Returns:
torch.Tensor: tensor of shape (m, sequence_length), where each row is a
distinct sequence of sampled category indices.
"""
_, sequence_length, vocab_size = categorical_probs.shape
# add Gumbel noise and sample m sequences
gumbel_noise = (-torch.log(-torch.log(torch.rand(batch_size, sequence_length, vocab_size) + 1e-10) + 1e-10)).to(categorical_probs.device)
noisy_scores = torch.log(categorical_probs) + gumbel_noise # add Gumbel noise to log probabilities
# select the highest score (most likely category after Gumbel noise)
sampled_sequences = noisy_scores.argmax(dim=-1).to(dtype=torch.long) # shape: (m, sequence_length)
return sampled_sequences
def sample_batched_top_k(categorical_probs, batch_size, k):
"""
Generates `m` sequences sampled from the top-k probabilities of each token
using Gumbel noise to ensure randomness and reduce bias towards the most likely options.
Args:
categorical_probs (torch.Tensor): A tensor of shape (sequence_length, vocab_length)
representing categorical probabilities.
m (int): Number of sequences to sample.
k (int): Number of top probabilities to consider for sampling.
Returns:
torch.Tensor: A tensor of shape (m, sequence_length), where each row is a
sampled sequence of category indices.
"""
_, sequence_length, vocab_length = categorical_probs.shape
# Add Gumbel noise to the log probabilities
gumbel_noise = -torch.log(-torch.log(torch.rand(batch_size, sequence_length, vocab_length) + 1e-10) + 1e-10).to(categorical_probs.device)
noisy_scores = torch.log(categorical_probs[None, :, :]) + gumbel_noise # Shape: (m, sequence_length, vocab_length)
# Get the top-k categories based on noisy scores
top_k_scores, top_k_indices = torch.topk(noisy_scores, k, dim=-1) # Shape: (m, sequence_length, k)
# Convert top-k scores back to probabilities and normalize
top_k_probs = torch.softmax(top_k_scores, dim=-1).to(categorical_probs.device) # Shape: (m, sequence_length, k)
# Sample randomly from the top-k probabilities
sampled_indices_in_top_k = torch.multinomial(top_k_probs.reshape(-1, k), num_samples=1).squeeze(-1).to(categorical_probs.device)
sampled_indices_in_top_k = sampled_indices_in_top_k.view(batch_size, sequence_length).to(categorical_probs.device) # Shape: (batch_size, sequence_length)
# Map sampled indices back to the original vocabulary indices
sampled_sequences = torch.gather(top_k_indices, -1, sampled_indices_in_top_k.unsqueeze(-1)).squeeze(-1).to(categorical_probs.device).to(dtype=torch.long)
return sampled_sequences
@dataclass
class Loss:
loss: torch.FloatTensor
nlls: torch.FloatTensor
token_mask: torch.FloatTensor
class NLL(torchmetrics.aggregation.MeanMetric):
pass
class BPD(NLL):
def compute(self) -> Tensor:
"""Computes the bits per dimension.
Returns:
bpd
"""
return self.mean_value / self.weight / LOG2
class Perplexity(NLL):
def compute(self) -> Tensor:
"""Computes the Perplexity.
Returns:
Perplexity
"""
return torch.exp(self.mean_value / self.weight)
class Diffusion(L.LightningModule):
def __init__(
self,
config,
eval=False):
super().__init__()
self.save_hyperparameters()
self.config = config
self.vocab_size = 4
self.sampler = self.config.sampling.predictor
self.antithetic_sampling = self.config.training.antithetic_sampling
self.importance_sampling = self.config.training.importance_sampling
self.change_of_variables = self.config.training.change_of_variables
# add mask token
self.mask_index = self.vocab_size
self.vocab_size += 1
self.parameterization = self.config.parameterization
# dna backbone model
if self.config.backbone == 'cnn':
self.backbone = models.dnaconv.CNNModel(
self.config.model, alphabet_size=self.vocab_size, num_cls=3) # num_cls is not used since classifier is always set to False
else:
raise ValueError(f'Unknown backbone: {self.config.backbone}')
self.T = self.config.T
self.subs_masking = self.config.subs_masking
self.softplus = torch.nn.Softplus()
# metrics are automatically reset at end of epoch
metrics = torchmetrics.MetricCollection({
'nll': NLL(),
'bpd': BPD(),
'ppl': Perplexity(),
})
metrics.set_dtype(torch.float64)
self.train_metrics = metrics.clone(prefix='train/')
self.valid_metrics = metrics.clone(prefix='val/')
self.test_metrics = metrics.clone(prefix='test/')
# generative perplexity
self.gen_ppl_metric = Perplexity()
self.noise = noise_schedule.get_noise(self.config,
dtype=self.dtype)
# ema
if self.config.training.ema > 0:
self.ema = models.ema.ExponentialMovingAverage(
itertools.chain(self.backbone.parameters(),
self.noise.parameters()),
decay=self.config.training.ema)
else:
self.ema = None
self.lr = self.config.optim.lr
self.sampling_eps = self.config.training.sampling_eps
self.time_conditioning = self.config.time_conditioning
self.neg_infinity = -1000000.0
self.fast_forward_epochs = None
self.fast_forward_batches = None
self._validate_configuration()
# subset of data for evaluation
if eval:
self.eval_sets_sp = oracle.subset_for_eval(n=config.eval.subset_size)
self.eval_sets_sp_clss = oracle.subset_eval_groundtruth(self.eval_sets_sp)
self.eval_sets_sp_preds = oracle.subset_eval_preds(self.eval_sets_sp)
self.eval_sets_sp_kmers = oracle.subset_eval_kmers(self.eval_sets_sp)
self.emb_pca = oracle.cal_emb_pca(oracle.subset_for_eval(n=40000), n_components=50)
self.eval_sets_sp_embs_pca = oracle.subset_eval_embs_pca(self.eval_sets_sp, self.emb_pca)
def _validate_configuration(self):
assert not (self.change_of_variables and self.importance_sampling)
assert self.parameterization == 'subs'
def on_load_checkpoint(self, checkpoint):
if self.ema:
self.ema.load_state_dict(checkpoint['ema'])
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py#L41
self.fast_forward_epochs = checkpoint['loops']['fit_loop']['epoch_progress']['current']['completed']
self.fast_forward_batches = checkpoint['loops'][
'fit_loop']['epoch_loop.batch_progress'][
'current']['completed']
def on_save_checkpoint(self, checkpoint):
if self.ema:
checkpoint['ema'] = self.ema.state_dict()
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/tasks/seq.py
# ['epoch_loop.batch_progress']['total']['completed'] is 1 iteration
# behind, so we're using the optimizer's progress.
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['total'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total'][
'completed'] * self.trainer.accumulate_grad_batches
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['current'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['current'][
'completed'] * self.trainer.accumulate_grad_batches
# _batches_that_stepped tracks the number of global steps, not the number
# of local steps, so we don't multiply with self.trainer.accumulate_grad_batches here.
checkpoint['loops']['fit_loop'][
'epoch_loop.state_dict'][
'_batches_that_stepped'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total']['completed']
if 'sampler' not in checkpoint.keys():
checkpoint['sampler'] = {}
if hasattr(self.trainer.train_dataloader.sampler, 'state_dict'):
sampler_state_dict = self.trainer.train_dataloader.sampler.state_dict()
checkpoint['sampler']['random_state'] = sampler_state_dict.get('random_state', None)
else:
checkpoint['sampler']['random_state'] = None
def on_train_start(self):
if self.ema:
self.ema.move_shadow_params_to_device(self.device)
distributed = (
self.trainer._accelerator_connector.use_distributed_sampler
and self.trainer._accelerator_connector.is_distributed)
print('distributed:', distributed)
if distributed:
sampler_cls = dataloader_gosai.FaultTolerantDistributedSampler
else:
sampler_cls = dataloader_gosai.RandomFaultTolerantSampler
updated_dls = []
for dl in self.trainer.fit_loop._combined_loader.flattened:
if hasattr(dl.sampler, 'shuffle'):
dl_sampler = sampler_cls(dl.dataset, shuffle=dl.sampler.shuffle)
else:
dl_sampler = sampler_cls(dl.dataset)
if (distributed and self.fast_forward_epochs is not None
and self.fast_forward_batches is not None):
dl_sampler.load_state_dict({
'epoch': self.fast_forward_epochs,
'counter': (self.fast_forward_batches
* self.config.loader.batch_size)})
updated_dls.append(
torch.utils.data.DataLoader(
dl.dataset,
batch_size=self.config.loader.batch_size,
num_workers=self.config.loader.num_workers,
pin_memory=self.config.loader.pin_memory,
sampler=dl_sampler,
shuffle=False,
persistent_workers=True))
self.trainer.fit_loop._combined_loader.flattened = updated_dls
def optimizer_step(self, *args, **kwargs):
super().optimizer_step(*args, **kwargs)
if self.ema:
self.ema.update(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
# subs parameterization from MDLM
def _subs_parameterization(self, logits, xt):
logits[:, :, self.mask_index] += self.neg_infinity
logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
if xt.ndim > 2 and xt.shape[-1] == self.vocab_size:
# this is for finetuning setting when the input is one-hot encoded or probs
xt = xt.argmax(dim=-1)
unmasked_indices = (xt != self.mask_index)
logits[unmasked_indices] = self.neg_infinity
logits[unmasked_indices, xt[unmasked_indices]] = 0
return logits
def _process_sigma(self, sigma):
if sigma is None:
assert self.parameterization == 'ar'
return sigma
if sigma.ndim > 1:
sigma = sigma.squeeze(-1)
if not self.time_conditioning:
sigma = torch.zeros_like(sigma)
assert sigma.ndim == 1, sigma.shape
return sigma
def forward(self, x, sigma):
"""Returns log score."""
sigma = self._process_sigma(sigma)
x = x.to(dtype=torch.long)
with torch.cuda.amp.autocast(dtype=torch.float32):
logits = self.backbone(x, sigma)
if self.parameterization == 'subs':
return self._subs_parameterization(logits=logits, xt=x)
return logits
# might need changing to match wdce loss
def _compute_loss(self, batch, prefix):
if 'attention_mask' in batch:
attention_mask = batch['attention_mask']
else:
attention_mask = None
losses = self._loss(batch['seqs'], attention_mask)
loss = losses.loss
if prefix == 'train':
self.train_metrics.update(losses.nlls, losses.token_mask)
metrics = self.train_metrics
elif prefix == 'val':
self.valid_metrics.update(losses.nlls, losses.token_mask)
metrics = self.valid_metrics
elif prefix == 'test':
self.test_metrics.update(losses.nlls, losses.token_mask)
metrics = self.test_metrics
else:
raise ValueError(f'Invalid prefix: {prefix}')
self.log_dict(metrics, on_step=False, on_epoch=True, sync_dist=True)
return loss
def on_train_epoch_start(self):
self.backbone.train()
self.noise.train()
def training_step(self, batch, batch_idx):
loss = self._compute_loss(batch, prefix='train')
self.log(name='trainer/loss',
value=loss.item(),
on_step=True,
on_epoch=False,
sync_dist=True)
return loss
def on_validation_epoch_start(self):
if self.ema:
self.ema.store(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
self.ema.copy_to(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
self.backbone.eval()
self.noise.eval()
assert self.valid_metrics.nll.mean_value == 0
assert self.valid_metrics.nll.weight == 0
def validation_step(self, batch, batch_idx):
return self._compute_loss(batch, prefix='val')
def on_validation_epoch_end(self):
if ((self.config.eval.compute_perplexity_on_sanity
or not self.trainer.sanity_checking)
and self.config.eval.generate_samples
and not self.parameterization == 'ar'):
all_samples, all_detoeknized_samples = [], []
for _ in range(self.config.sampling.num_sample_batches):
samples = self._sample().detach().cpu().numpy()
detokenized_samples = dataloader_gosai.batch_dna_detokenize(samples)
all_samples.append(samples)
all_detoeknized_samples.extend(detokenized_samples)
all_samples = np.concatenate(all_samples, axis=0)
ws_distance_dict = self.cal_wasserstein_distance(all_detoeknized_samples)
pearsonr_list = self.cal_kmer_pearsonr(all_detoeknized_samples)
ws_embpca_list = self.cal_ws_distance_embpca(all_detoeknized_samples)
current_step = self.trainer.global_step
LOGGER.info(f'Current step: {current_step}')
LOGGER.info(f'Wasserstein distance: {ws_distance_dict}')
LOGGER.info(f'3mer Pearsonr: {pearsonr_list}')
LOGGER.info(f'Wasserstein distance embpca: {ws_embpca_list}')
self.log('val/3mer_pearsonr', pearsonr_list, on_step=False, on_epoch=True, sync_dist=True)
self.log('val/ws_embpca', ws_embpca_list, on_step=False, on_epoch=True, sync_dist=True)
for key in ws_distance_dict:
for cell_type in ws_distance_dict[key]:
metric_values = ws_distance_dict[key][cell_type]
if metric_values: # Check if the list is not empty
# Assuming metric_values contains [train_metric, valid_metric, test_metric]
self.log(f'val/{key}_{cell_type}', metric_values[0], on_step=False, on_epoch=True, sync_dist=True)
if self.ema:
self.ema.restore(itertools.chain(self.backbone.parameters(),
self.noise.parameters()))
### VALIDATION METRICS ###
def cal_wasserstein_distance(self, seqs):
generated_preds = oracle.cal_gosai_pred_new(seqs)
ws_distance_dict = {'truth': {'hepg2': [], 'k562': [], 'sknsh': []},
'preds': {'hepg2': [], 'k562': [], 'sknsh': []}}
ws_distance_dict['truth']['hepg2'].append(wasserstein_distance(generated_preds[:, 0], self.eval_sets_sp_clss[:, 0]))
ws_distance_dict['truth']['k562'].append(wasserstein_distance(generated_preds[:, 1], self.eval_sets_sp_clss[:, 1]))
ws_distance_dict['truth']['sknsh'].append(wasserstein_distance(generated_preds[:, 2], self.eval_sets_sp_clss[:, 2]))
ws_distance_dict['preds']['hepg2'].append(wasserstein_distance(generated_preds[:, 0], self.eval_sets_sp_preds[:, 0]))
ws_distance_dict['preds']['k562'].append(wasserstein_distance(generated_preds[:, 1], self.eval_sets_sp_preds[:, 1]))
ws_distance_dict['preds']['sknsh'].append(wasserstein_distance(generated_preds[:, 2], self.eval_sets_sp_preds[:, 2]))
return ws_distance_dict
def cal_ws_distance_embpca(self, seqs):
generated_embs = oracle.cal_gosai_emb(seqs)
generated_embs_pca = self.emb_pca.transform(generated_embs.reshape(generated_embs.shape[0], -1))
return oracle.get_wasserstein_dist(generated_embs_pca, self.eval_sets_sp_embs_pca)
def compare_kmer(self, kmer1, kmer2, n_sp1, n_sp2):
kmer_set = set(kmer1.keys()) | set(kmer2.keys())
counts = np.zeros((len(kmer_set), 2))
for i, kmer in enumerate(kmer_set):
if kmer in kmer1:
counts[i][1] = kmer1[kmer] * n_sp2 / n_sp1
if kmer in kmer2:
counts[i][0] = kmer2[kmer]
return pearsonr(counts[:, 0], counts[:, 1])[0]
def cal_kmer_pearsonr(self, seqs):
generated_kmer = oracle.count_kmers(seqs)
return self.compare_kmer(self.eval_sets_sp_kmers, generated_kmer, self.config.eval.subset_size, len(seqs))
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
itertools.chain(self.backbone.parameters(),
self.noise.parameters()),
lr=self.config.optim.lr,
betas=(self.config.optim.beta1, self.config.optim.beta2),
eps=self.config.optim.eps,
weight_decay=self.config.optim.weight_decay)
scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=optimizer)
scheduler_dict = {
'scheduler': scheduler,
'interval': 'step',
'monitor': 'val/loss',
'name': 'trainer/lr',
}
return [optimizer], [scheduler_dict]
def q_xt(self, x, move_chance):
"""Computes the noisy sample xt.
Args:
x: int torch.Tensor with shape (batch_size,
diffusion_model_input_length), input.
move_chance: float torch.Tensor with shape (batch_size, 1).
"""
move_indices = torch.rand(* x.shape, device=x.device) < move_chance
xt = torch.where(move_indices, self.mask_index, x)
return xt
def _sample_prior(self, *batch_dims):
"""
Returns array of fully masked sequences with same shape as input
"""
return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
def _ddpm_caching_update(self, x, t, dt, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
move_chance_t = t[:, None, None]
move_chance_s = (t - dt)[:, None, None]
assert move_chance_t.ndim == 3, move_chance_t.shape
if p_x0 is None:
p_x0 = self.forward(x, sigma_t).exp()
assert move_chance_t.ndim == p_x0.ndim
q_xs = p_x0 * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
_x = _sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
return p_x0, copy_flag * x + (1 - copy_flag) * _x
def _ddpm_update(self, x, t, dt, return_process=False):
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t) # t
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
unet_conditioning = sigma_t
log_p_x0 = self.forward(x, unet_conditioning)
assert move_chance_t.ndim == log_p_x0.ndim
q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
_x = _sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
if return_process:
return copy_flag * x + (1 - copy_flag) * _x, x, unet_conditioning, move_chance_t, copy_flag
else:
return copy_flag * x + (1 - copy_flag) * _x
def _ar_sampler(self, bsz):
# precompute token buffer
num_pred_tokens = self.config.model.length - 1
x = torch.zeros(
(bsz, num_pred_tokens + 1),
dtype=torch.long,
device=self.device)
x[:, 0] = self.tokenizer.bos_token_id
# precompute noise
noise = (torch.distributions.Gumbel(0, 1)
.sample((bsz, num_pred_tokens, self.vocab_size))
.to(self.device))
for i in range(num_pred_tokens):
next_logits = self.forward(x[:, :i + 1], None)[:, -1]
y = (next_logits + noise[:, i]).argmax(-1)
x[:, i + 1] = y
return x
@torch.no_grad()
def _sample(self, num_steps=None, eps=1e-5, eval_sp_size=None):
"""Generate samples from the model."""
if eval_sp_size is None:
batch_size_per_gpu = self.config.loader.eval_batch_size
else:
batch_size_per_gpu = eval_sp_size
if self.parameterization == 'ar':
return self._ar_sampler(batch_size_per_gpu)
# Lightning auto-casting is not working in this method for some reason
if num_steps is None:
num_steps = self.config.sampling.steps
x = self._sample_prior(
batch_size_per_gpu,
self.config.model.length).to(self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
for i in range(num_steps):
t = timesteps[i] * torch.ones(x.shape[0], 1, device=self.device)
if self.sampler == 'ddpm':
x = self._ddpm_update(x, t, dt)
elif self.sampler == 'ddpm_cache':
p_x0_cache, x_next = self._ddpm_caching_update(x, t, dt, p_x0=p_x0_cache)
if (not torch.allclose(x_next, x) or self.time_conditioning):
p_x0_cache = None
x = x_next
else:
x = self._analytic_update(x, t, dt)
if self.config.sampling.noise_removal:
t = timesteps[-1] * torch.ones(x.shape[0], 1,
device=self.device)
if self.sampler == 'analytic':
x = self._denoiser_update(x, t)
else:
unet_conditioning = self.noise(t)[0]
logits = self.forward(x, unet_conditioning)
x = logits[:, :, :-1].argmax(dim=-1)
return x
### FOR THE EXPANSION AND ROLLOUT STEP ###
def sample_finetuned_with_rnd(self, args, reward_model,pretrained, eps=1e-5):
num_steps = args.total_num_steps
x_rollout = self._sample_prior(
args.batch_size,
args.seq_length).to(self.device)
log_rnd = torch.zeros(args.batch_size, device=self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
for i in range(num_steps):
t = timesteps[i] * torch.ones(x_rollout.shape[0], 1, device=self.device)
log_p, x_next, log_policy_step, log_pretrained_step = self.mcts_reverse_step(x_rollout, t=t, dt=dt, pretrained=pretrained)
log_rnd += log_pretrained_step - log_policy_step
x_rollout = x_next
# if mask token remains, fully unmask
mask_positions = (x_rollout == self.mask_index) # (B, L) bool
# does **any** mask remain in any sequence
any_mask_global = mask_positions.any().item() # true if mask remains
if any_mask_global:
log_p, x_next = self.single_noise_removal(x_rollout, t=t, dt=dt)
x_rollout = x_next
x_final = x_rollout
x_one_hot = to_one_hot(x_final)
x_one_hot_reward = torch.transpose(x_one_hot, 1, 2)
reward_preds = reward_model(x_one_hot_reward).squeeze(-1) # (num_children, 4)
rewards = reward_preds[:, 0] # (num_children, 1)
log_rnd = log_rnd + rewards / args.alpha
mean_reward = rewards.mean()
return x_final, log_rnd, rewards
def sample_finetuned(self, args, reward_model, eps=1e-5):
num_steps = args.total_num_steps
x_rollout = self._sample_prior(
args.batch_size,
args.seq_length).to(self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
for i in range(num_steps):
t = timesteps[i] * torch.ones(x_rollout.shape[0], 1, device=self.device)
log_p, x_next = self.single_reverse_step(x_rollout, t=t, dt=dt)
x_rollout = x_next
# if mask token remains, fully unmask
mask_positions = (x_rollout == self.mask_index) # (B, L) bool
# does **any** mask remain in any sequence
any_mask_global = mask_positions.any().item() # true if mask remains
if any_mask_global:
log_p, x_next = self.single_noise_removal(x_rollout, t=t, dt=dt)
x_rollout = x_next
x_final = x_rollout
x_one_hot = to_one_hot(x_final)
x_one_hot_reward = torch.transpose(x_one_hot, 1, 2)
reward_preds = reward_model(x_one_hot_reward).squeeze(-1) # (num_children, 4)
rewards = reward_preds[:, 0] # (num_children, 1)
mean_reward = rewards.mean()
return x_final, mean_reward
def compute_log_policy(self, token_array, x_next, t, dt):
sigma_t, _ = self.noise(t)
if token_array.ndim == 1:
token_array = token_array.unsqueeze(0)
if x_next.ndim == 1:
x_next = x_next.unsqueeze(0)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
q_xs = p_x0 * (change_prob_t - change_prob_s)
# zero-masking probability
q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
copy_flag = (token_array != self.mask_index)
assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
changed_mask = (~copy_flag)
# compute the per-sequence log-probability under the pretrained model
log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1)
unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_policy_token.dtype)
log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1)
# returns:
# log_policy_step (B, ) log probability x_next tokens under policy
if log_policy_step.ndim == 1:
log_policy_step = log_policy_step.squeeze(0)
return log_policy_step
def single_reverse_step(self, token_array, t, dt, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
if p_x0 is None:
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
q_xs = p_x0 * (change_prob_t - change_prob_s)
# zero-masking probability
q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
x_changed = _sample_categorical(q_xs)
copy_flag = (token_array != self.mask_index)
int_copy_flag = copy_flag.to(token_array.dtype)
x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed
# returns:
# log_p (B, L, D) log probabilties of each token under the policy model
# x_next (B, L) next sequences
return log_p, x_next
def single_noise_removal(self, token_array, t, dt, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
if p_x0 is None:
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
# changed for noise removal
p_x0 = p_x0.clone()
p_x0[:, :, self.mask_index] = 0.0 # prevent remaining a mask
p_x0 = p_x0 / p_x0.sum(dim=-1, keepdim=True).clamp_min(1e-12) # renorm over non-MASK
q_xs = p_x0 * (change_prob_t - change_prob_s)
x_changed = _sample_categorical(q_xs)
copy_flag = (token_array != self.mask_index)
int_copy_flag = copy_flag.to(token_array.dtype)
x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed
# returns:
# log_p (B, L, D) log probabilties of each token under the policy model
# x_next (B, L) next sequences
return log_p, x_next
def mcts_reverse_step(self, token_array, t, dt, pretrained, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
if p_x0 is None:
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
q_xs = p_x0 * (change_prob_t - change_prob_s)
# zero-masking probability
q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
x_changed = _sample_categorical(q_xs)
copy_flag = (token_array != self.mask_index)
int_copy_flag = copy_flag.to(token_array.dtype)
x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed
# compute the log-probability under pretrained model at each step
with torch.no_grad():
# pretrained should output log-probs over vocab at each position given the *parent* (masked) input
log_pre = pretrained.forward(token_array, sigma=sigma_t)
# log-prob of the *sampled token* at each position
log_pre_token = log_pre.gather(-1, x_next.unsqueeze(-1)).squeeze(-1) # [B*batch,L]
# sum only over the sites actually sampled this step (i.e., where parent was mask)
assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
changed_mask = (~copy_flag)
# mask of tokens that were unmasked in this step
unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_pre_token.dtype)
log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
# compute the per-sequence log-probability under the pretrained model
log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1) # [B*batch,L]
log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1)
# returns:
# log_p (B, L, D) log probabilties of each token under the policy model
# x_next (B, L) next sequences
# log_policy_step (B, ) log probability of all unmasked tokens under policy
# log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
return log_p, x_next, log_policy_step, log_pretrained_step
def mcts_noise_removal(self, token_array, t, dt, pretrained, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
if p_x0 is None:
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
# changed for noise removal
p_x0 = p_x0.clone()
p_x0[:, :, self.mask_index] = 0.0 # prevent remaining a mask
p_x0 = p_x0 / p_x0.sum(dim=-1, keepdim=True).clamp_min(1e-12) # renorm over non-MASK
q_xs = p_x0 * (change_prob_t - change_prob_s)
x_changed = _sample_categorical(q_xs)
copy_flag = (token_array != self.mask_index)
int_copy_flag = copy_flag.to(token_array.dtype)
x_next = int_copy_flag * token_array + (1 - int_copy_flag) * x_changed
# compute the log-probability under pretrained model at each step
with torch.no_grad():
# pretrained should output log-probs over vocab at each position given the *parent* (masked) input
log_pre = pretrained.forward(token_array, sigma=sigma_t)
# log-prob of the *sampled token* at each position
log_pre_token = log_pre.gather(-1, x_next.unsqueeze(-1)).squeeze(-1) # [B*batch,L]
# sum only over the sites actually sampled this step (i.e., where parent was mask)
assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
changed_mask = (~copy_flag)
# mask of tokens that were unmasked in this step
unmasked_this_step = (changed_mask & (x_next != self.mask_index)).to(log_pre_token.dtype)
log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
# compute the per-sequence log-probability under the pretrained model
log_policy_token = log_p.gather(-1, x_next.unsqueeze(-1)).squeeze(-1) # [B*batch,L]
log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1)
# returns:
# log_p (B, L, D) log probabilties of each token under the policy model
# x_next (B, L) next sequences
# log_policy_step (B, ) log probability of all unmasked tokens under policy
# log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
return log_p, x_next, log_policy_step, log_pretrained_step
# first step in expansion
def batch_mcts_reverse_step(self, token_array, t, dt, batch_size, pretrained, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
change_prob_t = t[:, None, None]
change_prob_s = (t - dt)[:, None, None]
assert change_prob_t.ndim == 3, change_prob_t.shape
if token_array.dim() == 1:
token_array = token_array.unsqueeze(0)
# expand to match (num_children, L)
if p_x0 is None:
log_p = self.forward(token_array, sigma=sigma_t)
p_x0 = log_p.exp()
assert change_prob_t.ndim == p_x0.ndim
q_xs = p_x0 * (change_prob_t - change_prob_s)
# zero-masking probability
q_xs[:, :, self.mask_index] = change_prob_s[:, :, 0]
# repeat the parent token along the first dimension which will be unmasked into distinct sequences
token_array_expanded = token_array.repeat(batch_size, 1)
if self.config.mcts.sampling == 0:
x_changed = sample_batched_categorical(q_xs.to(self.device), batch_size)
else:
x_changed = sample_batched_top_k(q_xs.to(self.device), batch_size, self.config.mcts.sampling)
copy_flag = (token_array_expanded != self.mask_index)
int_copy_flag = copy_flag.to(token_array.dtype)
x_children = int_copy_flag * token_array_expanded + (1 - int_copy_flag) * x_changed
# compute the log-probability under pretrained model at each step
with torch.no_grad():
# pretrained should output log-probs over vocab at each position given the *parent* (masked) input
log_pre = pretrained.forward(token_array, sigma=sigma_t)
# expand to match the shape of x_children
log_pre = log_pre.repeat(batch_size, 1, 1)
# log-prob of the *sampled token* at each position
log_pre_token = log_pre.gather(-1, x_children.unsqueeze(-1)).squeeze(-1) # [B*batch,L]
# sum only over the sites actually sampled this step (i.e., where parent was mask)
assert copy_flag.dtype == torch.bool, "copy_flag must be bool"
changed_mask = (~copy_flag)
# mask of tokens that were unmasked in this step
unmasked_this_step = (changed_mask & (x_children != self.mask_index)).to(log_pre_token.dtype)
log_pretrained_step = (log_pre_token * unmasked_this_step).sum(dim=-1)
# compute the per-child log-probability under the pretrained model
log_p = log_p.repeat(batch_size, 1, 1)
log_policy_token = log_p.gather(-1, x_children.unsqueeze(-1)).squeeze(-1) # (B, L) probability of each chosen token
#print(log_policy_token)
log_policy_step = (log_policy_token * unmasked_this_step).sum(dim=-1)
# returns:
# log_p (B, L, D) log probabilties of each token under the policy model
# x_children (B, L) child sequences
# log_policy_step (B, ) log probability of all unmasked tokens under policy
# log_pretrained_step (B, ) log probabiltiy of all unmasked tokens under pretrained model
return log_p, x_children, log_policy_step, log_pretrained_step
### SPECIFIC TO DRAKES? ###
def _ddpm_update_finetune_gradient(self, x, t, dt, copy_flag_temp, return_process=False):
if x.ndim == 2 or x.shape[-1] != self.vocab_size:
x = F.one_hot(x, num_classes=self.vocab_size).to(torch.float32)
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t) # (1-eps)*t
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
unet_conditioning = sigma_t
log_p_x0 = self.forward(x, unet_conditioning)
assert move_chance_t.ndim == log_p_x0.ndim
q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
_x = _sample_categorical_gradient(q_xs, temp=self.config.finetuning.gumbel_softmax_temp)
if copy_flag_temp is not None:
copy_flag_prob = 1 - x[:, :, self.mask_index].unsqueeze(-1)
soft_copy_flag = torch.nn.functional.sigmoid(copy_flag_prob/copy_flag_temp)
else:
soft_copy_flag = 1 - x[:, :, self.mask_index].unsqueeze(-1)
if return_process:
return soft_copy_flag * x + (1 - soft_copy_flag) * _x, x, unet_conditioning, move_chance_t, soft_copy_flag
else:
return soft_copy_flag * x + (1 - soft_copy_flag) * _x
def _sample_finetune_gradient(self, num_steps=None, eps=1e-5, eval_sp_size=None, copy_flag_temp=None):
"""Generate samples from the model."""
assert self.parameterization == 'subs' and self.sampler == 'ddpm'
if eval_sp_size is None:
batch_size_per_gpu = self.config.loader.eval_batch_size
else:
batch_size_per_gpu = eval_sp_size
if num_steps is None:
num_steps = self.config.sampling.steps
x = self._sample_prior(
batch_size_per_gpu,
self.config.model.length).to(self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
last_x_list = []
condt_list = []
move_chance_t_list = []
copy_flag_list = []
for i in range(num_steps):
t = timesteps[i] * torch.ones(x.shape[0], 1, device=self.device)
if self.sampler == 'ddpm':
if i < num_steps - self.config.finetuning.truncate_steps:
x, last_x, condt, move_chance_t, copy_flag = self._ddpm_update(x, t, dt, return_process=True)
x = x.detach()
copy_flag = copy_flag.unsqueeze(-1)
last_x = F.one_hot(last_x, num_classes=self.vocab_size).to(torch.float32).detach()
else:
x, last_x, condt, move_chance_t, copy_flag = self._ddpm_update_finetune_gradient(x, t, dt, copy_flag_temp, return_process=True)
last_x_list.append(last_x)
condt_list.append(condt)
move_chance_t_list.append(move_chance_t)
copy_flag_list.append(copy_flag)
x_argmax = x[:, :, :-1].argmax(dim=-1)
x_argmax = torch.nn.functional.one_hot(x_argmax, num_classes=self.vocab_size-1).to(torch.float32)
return x[:, :, :-1] + (x_argmax - x[:, :, :-1]).detach(), last_x_list, condt_list, move_chance_t_list, copy_flag_list
@torch.no_grad()
def _ddpm_update_finetune_controlled_SMC(self, x, t, dt, reward_model, alpha = 1.0):
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t)
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
unet_conditioning = sigma_t
log_p_x0 = self.forward(x, unet_conditioning)
assert move_chance_t.ndim == log_p_x0.ndim
q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
copy_flag = (x != self.mask_index).to(x.dtype)
sample = copy_flag * x + (1 - copy_flag) * _sample_categorical(q_xs)
'''
Calcualte exp(v_{t-1}(x_{t-1})/alpha)
'''
expected_x0 = self.forward(sample, sigma_s) # Calcualte E[x_0|x_{t-1}]
expected_x0_arg = torch.argmax(expected_x0,dim=2)
expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
reward_num = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
'''
Calcualte exp(v_{t}(x_{t})/alpha)
'''
expected_x0 = self.forward(x, sigma_s) # Calcualte E[x_0|x_t]
expected_x0_arg = torch.argmax(expected_x0,dim=2)
expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
reward_den = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
ratio = torch.exp(1.0/alpha * (reward_num - reward_den)) # Now calculate exp( (v_{t-1}(x_{t-1) -v_{t}(x_{t}) /alpha)
ratio = ratio.detach().cpu().numpy()
final_sample_indices = np.random.choice(reward_num.shape[0], reward_num.shape[0], p = ratio/ratio.sum() )
return sample[final_sample_indices]
def _ddpm_update_finetune_controlled_CG(self, x, t, dt, reward_model, guidance_scale):
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t)
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
unet_conditioning = sigma_t
log_p_x0 = self.forward(x, unet_conditioning)
assert move_chance_t.ndim == log_p_x0.ndim
q_xs = log_p_x0.exp() * (move_chance_t - move_chance_s)
x_onehot = F.one_hot(x, num_classes=5).float()
x_grad = self.compute_gradient_CG(x_onehot, x, reward_model, sigma_s )
guidance = guidance_scale * (x_grad - x_grad[:, :, self.mask_index][:, :, None])
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
q_xs = q_xs * guidance.exp()
_x = _sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
return copy_flag * x + (1 - copy_flag) * _x
def compute_gradient_CG(self, x_onehot, x, reward_model, sigma_s):
x_onehot.requires_grad_(True)
expected_x0 = self.forward(x_onehot, sigma_s) # Calcualte E[x_0|x_t]
scores = reward_model(expected_x0.transpose(1, 2)[:,0:4,:])[:, 0]
scores = scores.mean()
scores.backward()
x_grad = x_onehot.grad.clone()
return x_grad
def _ddpm_update_finetune_controlled_TDS(self, x, t, dt, reward_model, alpha = 1.0, guidance_scale=1000):
# SMC with the twisted proposal
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t)
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
unet_conditioning = sigma_t
log_p_x0 = self.forward(x, unet_conditioning)
assert move_chance_t.ndim == log_p_x0.ndim
q_xs = log_p_x0.exp() * (move_chance_t
- move_chance_s)
x_onehot = F.one_hot(x, num_classes=5).float()
x_grad = self.compute_gradient_CG(x_onehot, x, reward_model, sigma_s )
guidance = guidance_scale * (x_grad - x_grad[:, :, self.mask_index][:, :, None])
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
# print(q_xs.sum(-1))
q_xs = q_xs * guidance.exp()
_x = _sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
sample = copy_flag * x + (1 - copy_flag) * _x
prob_multiplier = (1 - copy_flag) * torch.gather(guidance.exp(), 2, _x.unsqueeze(-1)).squeeze(-1) + copy_flag * torch.ones_like(_x)
'''
Calcualte exp(v_{t-1}(x_{t-1})/alpha)
'''
expected_x0 = self.forward(sample, sigma_s) # Calcualte E[x_0|x_{t-1}]
expected_x0_arg = torch.argmax(expected_x0,dim=2)
expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
reward_num = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
'''
Calcualte exp(v_{t}(x_{t})/alpha)
'''
expected_x0 = self.forward(x, sigma_s) # Calcualte E[x_0|x_t]
expected_x0_arg = torch.argmax(expected_x0,dim=2)
expected_x0_onehot = torch.nn.functional.one_hot(expected_x0_arg)
reward_den = reward_model(expected_x0_onehot.float().transpose(1, 2)).detach()[:, 0][:, 0]
# set the nan values to 1
prob_multiplier[torch.isnan(prob_multiplier)] = 1
ratio = torch.exp(1.0/alpha * (reward_num - reward_den)) / prob_multiplier.prod(dim=-1)
ratio = ratio.detach().cpu().numpy()
final_sample_indices = np.random.choice(reward_num.shape[0], reward_num.shape[0], p = ratio/ratio.sum() )
return sample[final_sample_indices]
@torch.no_grad()
def controlled_sample_SMC(self, reward_model, alpha, num_steps=None, eps=1e-5, eval_sp_size=None):
"""Generate samples from the model."""
if eval_sp_size is None:
batch_size_per_gpu = self.config.loader.eval_batch_size
else:
batch_size_per_gpu = eval_sp_size
if self.parameterization == 'ar':
return self._ar_sampler(batch_size_per_gpu)
# Lightning auto-casting is not working in this method for some reason
if num_steps is None:
num_steps = self.config.sampling.steps
x = self._sample_prior(
batch_size_per_gpu,
self.config.model.length).to(self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
for i in range(num_steps):
t = timesteps[i] * torch.ones(
x.shape[0], 1, device=self.device)
if self.sampler == 'ddpm':
x = self._ddpm_update_finetune_controlled_SMC(x, t, dt, reward_model, alpha)
else:
x = self._analytic_update(x, t, dt)
if self.config.sampling.noise_removal:
t = timesteps[-1] * torch.ones(x.shape[0], 1, device=self.device)
if self.sampler == 'analytic':
x = self._denoiser_update(x, t)
else:
unet_conditioning = self.noise(t)[0]
logits = self.forward(x, unet_conditioning)
x = logits[:, :, :-1].argmax(dim=-1)
return x
def controlled_sample_CG(self, reward_model, guidance_scale, num_steps=None, eps=1e-5, eval_sp_size=None):
"""Generate samples from the model."""
if eval_sp_size is None:
batch_size_per_gpu = self.config.loader.eval_batch_size
else:
batch_size_per_gpu = eval_sp_size
if self.parameterization == 'ar':
return self._ar_sampler(batch_size_per_gpu)
# Lightning auto-casting is not working in this method for some reason
if num_steps is None:
num_steps = self.config.sampling.steps
x = self._sample_prior(
batch_size_per_gpu,
self.config.model.length).to(self.device)
timesteps = torch.linspace(
1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
for i in range(num_steps):
t = timesteps[i] * torch.ones(
x.shape[0], 1, device=self.device)
if self.sampler == 'ddpm':
x = self._ddpm_update_finetune_controlled_CG(x, t, dt, reward_model, guidance_scale)
else:
x = self._analytic_update(x, t, dt)
if self.config.sampling.noise_removal:
t = timesteps[-1] * torch.ones(x.shape[0], 1,
device=self.device)
if self.sampler == 'analytic':
x = self._denoiser_update(x, t)
else:
unet_conditioning = self.noise(t)[0]
logits = self.forward(x, unet_conditioning)
x = logits[:, :, :-1].argmax(dim=-1)
return x
def controlled_sample_TDS(self, reward_model, alpha, guidance_scale, num_steps=None, eps=1e-5, eval_sp_size=None):
"""Generate samples from the model."""
if eval_sp_size is None:
batch_size_per_gpu = self.config.loader.eval_batch_size
else:
batch_size_per_gpu = eval_sp_size
if self.parameterization == 'ar':
return self._ar_sampler(batch_size_per_gpu)
if num_steps is None:
num_steps = self.config.sampling.steps
x = self._sample_prior(
batch_size_per_gpu,
self.config.model.length).to(self.device)
timesteps = torch.linspace(
1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
for i in range(num_steps):
t = timesteps[i] * torch.ones(
x.shape[0], 1, device=self.device)
if self.sampler == 'ddpm':
x = self._ddpm_update_finetune_controlled_TDS(x, t, dt, reward_model,alpha, guidance_scale)
else:
x = self._analytic_update(x, t, dt)
if self.config.sampling.noise_removal:
t = timesteps[-1] * torch.ones(x.shape[0], 1,
device=self.device)
if self.sampler == 'analytic':
x = self._denoiser_update(x, t)
else:
unet_conditioning = self.noise(t)[0]
logits = self.forward(x, unet_conditioning)
x = logits[:, :, :-1].argmax(dim=-1)
return x
@torch.no_grad()
def get_likelihood(self, x0, num_steps=None, eps=1e-5, n_samples=1):
"""Compute the likelihood of a sequence under the model.
x0: int torch.Tensor with shape (batch_size,
diffusion_model_input_length)
"""
if num_steps is None:
num_steps = self.config.sampling.steps
timesteps = torch.linspace(
1, eps, num_steps + 1, device=self.device) # t=0 is clean data
dt = (1 - eps) / num_steps
log_p_sample_list = []
for _ in range(n_samples):
log_p_at_time_list = []
for i in range(num_steps):
t = timesteps[i] * torch.ones(
x0.shape[0], 1, device=self.device)
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t) # (1-eps)*t
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None] # [bsz, 1]
move_chance_s = move_chance_s[:, None]
unet_conditioning = sigma_t # [bsz]
multiplier = (move_chance_t - move_chance_s)/move_chance_t # [bsz, 1]
xt = self.q_xt(x0, move_chance_t) # [bsz, seq_len]
# log prob, already apply subs parametrization (unmasked token remains unchanged)
model_output = self.forward(xt, unet_conditioning) # [bsz, seq_len, vocab_size]
# take the log prob of the token that corresponds to x0
log_p_x0 = model_output.gather(-1, x0[..., None]).squeeze(-1) # [bsz, seq_len]
log_p_x0 = log_p_x0 * multiplier
log_p_at_time_list.append(log_p_x0)
log_p_x0 = torch.stack(log_p_at_time_list, dim=0).sum(dim=0) # [bsz, seq_len]
log_p_sample_list.append(log_p_x0.sum(dim=-1))
log_p_sample = torch.stack(log_p_sample_list, dim=0).mean(dim=0)
return log_p_sample
def get_score(self, x, sigma):
model_output = self.forward(x, sigma)
if self.parameterization == 'subs':
# score(x, t) = p_t(y) / p_t(x)
# => log score(x, t) = log p_t(y) - log p_t(x)
# case 1: x = masked
# (i) y = unmasked
# log score(x, t) = log p_\theta(x)|_y + log k
# where k = exp(- sigma) / (1 - exp(- sigma))
# (ii) y = masked
# log score(x, t) = 0
# case 2: x = unmasked
# (i) y != masked, y != x
# log score(x_i, t) = - inf
# (ii) y = x
# log score(x_i, t) = 0
# (iii) y = masked token
# log score(x_i, t) = - log k
# where k = exp(- sigma) / (1 - exp(- sigma))
log_k = - torch.log(torch.expm1(sigma)).squeeze(-1)
assert log_k.ndim == 1
masked_score = model_output + log_k[:, None, None]
masked_score[:, :, self.mask_index] = 0
unmasked_score = self.neg_infinity * torch.ones_like(
model_output)
unmasked_score = torch.scatter(
unmasked_score,
-1,
x[..., None],
torch.zeros_like(unmasked_score[..., :1]))
unmasked_score[:, :, self.mask_index] = - (
log_k[:, None] * torch.ones_like(x))
masked_indices = (x == self.mask_index).to(
model_output.dtype)[:, :, None]
model_output = (
masked_score * masked_indices
+ unmasked_score * (1 - masked_indices))
return model_output.exp()
def _staggered_score(self, score, dsigma):
score = score.clone()
extra_const = (1 - dsigma.exp()) * score.sum(dim=-1)
score *= dsigma.exp()[:, None]
score[..., self.mask_index] += extra_const
return score
def _analytic_update(self, x, t, step_size):
curr_sigma, _ = self.noise(t)
next_sigma, _ = self.noise(t - step_size)
dsigma = curr_sigma - next_sigma
score = self.get_score(x, curr_sigma)
stag_score = self._staggered_score(score, dsigma)
probs = stag_score * self._transp_transition(x, dsigma)
return _sample_categorical(probs)
def _denoiser_update(self, x, t):
sigma, _ = self.noise(t)
score = self.get_score(x, sigma)
stag_score = self._staggered_score(score, sigma)
probs = stag_score * self._transp_transition(x, sigma)
probs[..., self.mask_index] = 0
samples = _sample_categorical(probs)
return samples
def _transp_transition(self, i, sigma):
sigma = _unsqueeze(sigma, reference=i[..., None])
edge = torch.exp(-sigma) * F.one_hot(
i, num_classes=self.vocab_size)
edge += torch.where(i == self.mask_index,
1 - torch.exp(-sigma).squeeze(-1),
0)[..., None]
return edge
def _sample_t(self, n, device):
_eps_t = torch.rand(n, device=device)
if self.antithetic_sampling:
# for variance reduction
offset = torch.arange(n, device=device) / n
_eps_t = (_eps_t / n + offset) % 1
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
if self.importance_sampling:
return self.noise.importance_sampling_transformation(t)
return t
def _maybe_sub_sample(self, x0, attention_mask):
seqlen = x0.shape[1]
if seqlen > self.config.model.length:
raise NotImplementedError('Sub-sampling not implemented')
elif self.parameterization == 'ar':
input_tokens = x0[:, :-1]
output_tokens = x0[:, 1:]
new_attention_mask = attention_mask[:, 1:]
else:
input_tokens = x0
output_tokens = None
new_attention_mask = attention_mask
return input_tokens, output_tokens, new_attention_mask
def _reconstruction_loss(self, x0):
t0 = torch.zeros(x0.shape[0], dtype=self.dtype,
device=self.device)
assert self.config.noise.type == 'loglinear'
# The above assert is for d3pm parameterization
unet_conditioning = self.noise(t0)[0][:, None]
model_output_t0 = self.forward(x0, unet_conditioning)
return - torch.gather(input=model_output_t0,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
def _forward_pass_diffusion(self, x0):
t = self._sample_t(x0.shape[0], x0.device)
if self.T > 0:
# else ts are between 0 and 1
t = (t * self.T).to(torch.int)
t = t / self.T
# t \in {1/T, 2/T, ..., 1}
t += (1 / self.T)
if self.change_of_variables: # False
unet_conditioning = t[:, None]
f_T = torch.log1p(- torch.exp(- self.noise.sigma_max))
f_0 = torch.log1p(- torch.exp(- self.noise.sigma_min))
move_chance = torch.exp(f_0 + t * (f_T - f_0))
move_chance = move_chance[:, None]
else:
sigma, dsigma = self.noise(t) # total noise, rate noise
unet_conditioning = sigma[:, None]
move_chance = 1 - torch.exp(-sigma[:, None])
xt = self.q_xt(x0, move_chance) # q(xt|x0)
model_output = self.forward(xt, unet_conditioning)
utils.print_nans(model_output, 'model_output')
if self.parameterization == 'sedd':
return dsigma[:, None] * self._score_entropy(
model_output, sigma[:, None], xt, x0)
if self.T > 0:
diffusion_loss = self._d3pm_loss(
model_output=model_output, xt=xt, x0=x0, t=t)
if self.parameterization == 'd3pm':
reconstruction_loss = self._reconstruction_loss(x0)
elif self.parameterization == 'subs':
reconstruction_loss = 0
return reconstruction_loss + diffusion_loss
# SUBS parameterization, continuous time.
log_p_theta = torch.gather(
input=model_output,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
if self.change_of_variables or self.importance_sampling:
return log_p_theta * torch.log1p(
- torch.exp(- self.noise.sigma_min))
return - log_p_theta * (
dsigma / torch.expm1(sigma))[:, None]
def _loss(self, x0, attention_mask):
(input_tokens, output_tokens, attention_mask) = self._maybe_sub_sample(
x0, attention_mask)
if self.parameterization == 'ar':
logprobs = self.backbone(input_tokens, None)
loss = - logprobs.gather(
-1, output_tokens[:, :, None])[:, :, 0]
else:
loss = self._forward_pass_diffusion(input_tokens)
nlls = loss * attention_mask
count = attention_mask.sum()
batch_nll = nlls.sum()
token_nll = batch_nll / count
return Loss(loss=token_nll,
nlls=nlls,
token_mask=attention_mask)
def _score_entropy(self, log_score, sigma, xt, x0):
"""Computes the SEDD loss.
Args:
log_score: float torch.Tensor with shape (batch_size,
diffusion_model_input_length, vocab_size),
log score, output of the denoising network.
xt: int torch.Tensor with shape (batch_size,
diffusion_model_input_length), input.
x0: int torch.Tensor with shape (batch_size,
diffusion_model_input_length), input.
sigma: float torch.Tensor with shape (batch_size, 1).
Returns:
loss with shape (batch_size, diffusion_model_input_length)
"""
# seems that it takes y=x0,xt=M case
# what is the const term for, seems to be y=M,xt=x0 case and x0 is known so score estimation is precise
masked_indices = xt == self.mask_index
expsig_minus_1 = torch.expm1(sigma).expand_as(xt)
q_ratio = 1 / expsig_minus_1[masked_indices]
words_that_were_masked = x0[masked_indices]
neg_term = q_ratio * torch.gather(
log_score[masked_indices],
-1,
words_that_were_masked[..., None]).squeeze(-1)
score = log_score[masked_indices].exp()
if self.mask_index == self.vocab_size - 1:
pos_term = score[:, :-1].sum(dim=-1)
else:
pos_term = score[:, : self.mask_index].sum(
dim=-1) + score[:, self.mask_index + 1:].sum(dim=-1)
const = q_ratio * (q_ratio.log() - 1)
entropy = torch.zeros(* xt.shape, device=xt.device)
entropy[masked_indices] += pos_term - neg_term + const
return entropy
|