# handler.py —— 放在模型仓库根目录 from typing import Dict, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import init_empty_weights, load_checkpoint_and_dispatch class EndpointHandler: """ Hugging Face Inference Endpoints 约定的自定义入口: • __init__(model_dir, **kwargs) —— 加载模型 • __call__(inputs: Dict) -> Dict —— 处理一次请求 """ def __init__(self, model_dir: str, **kwargs): # 1️⃣ Tokenizer self.tokenizer = AutoTokenizer.from_pretrained( model_dir, trust_remote_code=True ) # 2️⃣ 构建“空壳”模型(不占显存) with init_empty_weights(): base_model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.float16, trust_remote_code=True, ) # 3️⃣ 把权重切片加载到两张 GPU self.model = load_checkpoint_and_dispatch( base_model, checkpoint=model_dir, device_map="auto", # 自动分层到 cuda:0 / cuda:1 dtype=torch.float16, ) # 4️⃣ 生成时常用的生成参数 self.generation_kwargs = dict( max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.9, ) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ data 格式: { "inputs": "your prompt here" } """ prompt = data["inputs"] # ➡️ 只把输入张量放到 cuda:0(与模型第一层同卡) inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda:0") # 生成 with torch.inference_mode(): output_ids = self.model.generate(**inputs, **self.generation_kwargs) generated_text = self.tokenizer.decode( output_ids[0], skip_special_tokens=True ) return {"generated_text": generated_text}