--- datasets: - lerobot/pusht library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - lerobot - robotics - diffusion - pusht - imitation-learning - benchmark --- # 🦾 Diffusion Policy for Push-T (200k Steps) [![LeRobot](https://img.shields.io/badge/Library-LeRobot-yellow)](https://github.com/huggingface/lerobot) [![Task](https://img.shields.io/badge/Task-Push--T-blue)](https://huggingface.co/datasets/lerobot/pusht) [![UESTC](https://img.shields.io/badge/Author-UESTC_Graduate-red)](https://www.uestc.edu.cn/) [![License](https://img.shields.io/badge/License-Apache_2.0-green)](https://www.apache.org/licenses/LICENSE-2.0) > **Summary:** This model demonstrates the capabilities of **Diffusion Policy** on the precision-demanding **Push-T** task. It was trained using the [LeRobot](https://github.com/huggingface/lerobot) framework as part of a thesis research project benchmarking Imitation Learning algorithms. - **🧩 Task**: Push-T (Simulated) - **🧠 Algorithm**: [Diffusion Policy](https://huggingface.co/papers/2303.04137) (DDPM) - **🔄 Training Steps**: 200,000 (Fine-tuned via Resume) - **🎓 Author**: Graduate Student, **UESTC** (University of Electronic Science and Technology of China) --- ## 🔬 Benchmark Results (vs ACT) Compared to the ACT baseline (which achieved **0%** success rate in our controlled experiments), this Diffusion Policy model demonstrates significantly better control precision and trajectory stability. ### 📊 Evaluation Metrics (50 Episodes) | Metric | Value | Comparison to ACT Baseline | Status | | :--- | :---: | :--- | :---: | | **Success Rate** | **14.0%** | **Significant Improvement** (ACT: 0%) | 🏆 | | **Avg Max Reward** | **0.81** | **+58% Higher Precision** (ACT: ~0.51) | 📈 | | **Avg Sum Reward** | **130.46** | **+147% More Stable** (ACT: ~52.7) | ✅ | > **Note:** The Push-T environment requires **>95% target coverage** for success. An average max reward of `0.81` indicates the policy consistently moves the block very close to the target position, proving strong manipulation capabilities despite the strict success threshold. --- ## ⚙️ Model Details | Parameter | Description | | :--- | :--- | | **Architecture** | ResNet18 (Vision Backbone) + U-Net (Diffusion Head) | | **Prediction Horizon** | 16 steps | | **Observation History** | 2 steps | | **Action Steps** | 8 steps | - **Training Strategy**: - Phase 1: Initial training (100,000 steps) -> Model: `Lemon-03/DP_PushT_test` - Phase 2: Resume/Fine-tuning (+100,000 steps) -> Model: `Lemon-03/DP_PushT_test_Resume` - **Total**: 200,000 steps --- ## 🔧 Training Configuration (Reference) For reproducibility, here are the key parameters used during the training session: - **Batch Size**: 64 - **Optimizer**: AdamW (`lr=1e-4`) - **Scheduler**: Cosine with warmup - **Vision**: ResNet18 with random crop (84x84) - **Precision**: Mixed Precision (AMP) enabled #### Original Training Command (My Resume Mode) ```bash python -m lerobot.scripts.lerobot_train \ --policy.type diffusion \ --env.type pusht \ --dataset.repo_id lerobot/pusht \ --wandb.enable true \ --eval.batch_size 8 \ --job_name DP_PushT_Resume \ --policy.repo_id Lemon-03/DP_PushT_test_Resume \ --policy.pretrained_path outputs/train/2025-12-02/14-33-35_DP_PushT/checkpoints/last/pretrained_model \ --steps 100000 ``` --- ## 🚀 Evaluate (My Evaluation Mode) Run the following command in your terminal to evaluate the model for 50 episodes and save the visualization videos: ```bash python -m lerobot.scripts.lerobot_eval \ --policy.type diffusion \ --policy.pretrained_path outputs/train/2025-12-04/14-47-37_DP_PushT_Resume/checkpoints/last/pretrained_model \ --eval.n_episodes 50 \ --eval.batch_size 10 \ --env.type pusht \ --env.task PushT-v0 ``` To evaluate this model locally, run the following command: ```bash python -m lerobot.scripts.lerobot_eval \ --policy.type diffusion \ --policy.pretrained_path Lemon-03/DP_PushT_test_Resume \ --eval.n_episodes 50 \ --eval.batch_size 10 \ --env.type pusht \ --env.task PushT-v0 ``` -----