import os import cv2 import einops import gradio as gr import numpy as np import torch import random from huggingface_hub import hf_hub_download from pytorch_lightning import seed_everything from utils.resize import resize_image, HWC3 from cldm.model import create_model, load_state_dict from cldm.ddim_lle import DDIMSampler as DDIMSampler_LLE from cldm.ddim_hlg import DDIMSampler as DDIMSampler_HLG from automation_pose_mask.openpose import OpenposeDetector from automation_pose_mask.auto_mask import MaskDetector from PIL import Image from rembg import remove from utils.config import ( model_yaml, category_dict, attribute_dict ) ########################################## # Download model files from HF Hub ########################################## MODEL_REPO = "NguyenDinhHieu/EquiFashionModel" openpose_body_model_path = hf_hub_download(MODEL_REPO, filename="body_pose_model.pth") openpose_hand_model_path = hf_hub_download(MODEL_REPO, filename="hand_pose_model.pth") sam_model_path = hf_hub_download(MODEL_REPO, filename="open_clip_pytorch_model.bin") my_model_path = hf_hub_download(MODEL_REPO, filename="eqf_final.ckpt") ########################################## # Initialize model on GPU once ########################################## device = "cuda" if torch.cuda.is_available() else "cpu" apply_openpose = OpenposeDetector( body_model_path=openpose_body_model_path, hand_model_path=openpose_hand_model_path ) apply_mask = MaskDetector(sam_model_path=sam_model_path) model = create_model(model_yaml).to(device) model.load_state_dict(load_state_dict(my_model_path, location=device)) model.eval() hlg_sampler = DDIMSampler_HLG(model) lle_sampler = DDIMSampler_LLE(model) ########################################## # Example images ########################################## example_path = os.path.join(os.path.dirname(__file__), "preselected_images") example_image_list = [os.path.join(example_path, x) for x in os.listdir(example_path)] ########################################## # Utility functions ########################################## def pil_to_binary_mask(pil_image, threshold=0): np_image = np.array(pil_image) grayscale_image = Image.fromarray(np_image).convert("L") binary_mask = (np.array(grayscale_image) > threshold).astype(np.uint8) * 255 return Image.fromarray(binary_mask) def add_white_background(image): image = image.convert("RGBA") white_bg = Image.new("RGBA", image.size, "WHITE") white_bg.paste(image, (0, 0), image) return white_bg.convert("RGB") ########################################## # HLG PROCESS ########################################## def hlg_process(hlg_prompt, input_image, category, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map).float().to(device) / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w') if seed == -1: seed = random.randint(0, 4294967294) seed_everything(seed) cond = { "c_concat": [control], "c_crossattn": [model.get_learned_conditioning([hlg_prompt + ', ' + a_prompt] * num_samples)] } un_cond = { "c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) model.control_scales = ([strength] * 13) samples, _ = hlg_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [Image.fromarray(x_samples[i]) for i in range(num_samples)] return [add_white_background(remove(img)) for img in results] ########################################## # LLE PROCESS ########################################## def lle_process(lle_prompt, dict_img_mask, category, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, attribute, selection_mode): input_image = dict_img_mask["background"].convert("RGB") input_image = HWC3(np.array(input_image)) detected_map, keypoints = apply_openpose(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) if selection_mode == "Automatically recognize": mask = apply_mask(resize_image(input_image, detect_resolution), keypoints, category=category, attribute=attribute, sam_mode=True) else: mask = pil_to_binary_mask(dict_img_mask['layers'][0].convert("RGB")) if mask is not None: mask = torch.from_numpy(np.array(mask.convert("L"))).float().to(device) / 255.0 mask = mask.unsqueeze(0).unsqueeze(0) img = resize_image(input_image, image_resolution) H, W, C = img.shape init_img = torch.from_numpy(img).float().to(device) / 127.0 - 1.0 init_img = einops.rearrange(init_img, 'h w c -> 1 c h w') init_img = torch.stack([init_img] * num_samples) detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map).float().to(device) / 255.0 control = torch.stack([control]*num_samples) control = einops.rearrange(control, 'b h w c -> b c h w') if seed == -1: seed = random.randint(0, 4294967294) seed_everything(seed) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([lle_prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) samples, _ = lle_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond, init_img=init_img, mask=mask, english_attribute=attribute) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) return [Image.fromarray(x_samples[i]) for i in range(num_samples)] ########################################## # Send result to attribute editor ########################################## def result2input(images): return {"background": images[-1], "layers": None, "composite": None} ########################################## # FULL UI ########################################## def create_hfddm(): with gr.Blocks().queue() as app: category = gr.Radio(list(category_dict.values()), value=list(category_dict.values())[0], label="Clothing Category") with gr.Row(): with gr.Column(): with gr.Tab("Draft Design"): hlg_prompt = gr.Textbox(label="High-level design prompt") hlg_input_image = gr.Image(sources=("upload", "webcam"), type="numpy", value=example_image_list[0], label="Reference pose") gr.Examples(inputs=hlg_input_image, examples=example_image_list) hlg_run = gr.Button("Generate") with gr.Tab("Attribute Editing"): lle_prompt = gr.Textbox(label="Attribute prompt") lle_input_image = gr.ImageEditor(sources='upload', type="pil", label="Edit regions", value=example_image_list[0]) gr.Examples(inputs=lle_input_image, examples=example_image_list) selection_mode = gr.Radio(["Automatically recognize", "User interface"], label="Mask Selection", value="Automatically recognize") current_tab = {} lle_run = {} for tab_elem in attribute_dict.values(): with gr.Tab(tab_elem): current_tab[tab_elem] = gr.Label(value=tab_elem, visible=False) lle_run[tab_elem] = gr.Button("Generate") with gr.Column(): result_gallery = gr.Gallery(label="Result", show_label=False, elem_id="gallery", selected_index=0, interactive=False) send2llg = gr.Button("Send to Attribute Editing") with gr.Accordion("Advanced Options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1) image_resolution = gr.Slider(label="Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="Pose Detection Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=10, step=1, visible=False) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=4294967294, value=11, step=1) eta = gr.Number(label="ETA (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, masterpiece, 8k, white background') n_prompt = gr.Textbox(label="Negative Prompt", value='worst quality, low quality, bad anatomy, watermark, signature, blurry') hlg_run.click(fn=hlg_process, inputs=[hlg_prompt, hlg_input_image, category, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta], outputs=[result_gallery]) for tab_elem in attribute_dict.values(): lle_run[tab_elem].click(fn=lle_process, inputs=[lle_prompt, lle_input_image, category, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, current_tab[tab_elem], selection_mode], outputs=[result_gallery]) send2llg.click(fn=result2input, inputs=result_gallery, outputs=lle_input_image) return app hfddm_block = create_hfddm() demo = gr.Blocks(title="AI Fashion Design", theme=gr.themes.Monochrome(secondary_hue="orange", neutral_hue="gray")).queue() with demo: gr.Markdown("# **AI Fashion Design** 👗") with gr.Tab("Fashion Design"): hfddm_block.render() demo.launch()