Update README.md
Browse files
README.md
CHANGED
|
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 35 |
-
It achieves
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
@@ -130,8 +130,9 @@ model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
|
|
| 130 |
|
| 131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 133 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
### Accuracy
|
| 137 |
|
|
@@ -144,27 +145,27 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 144 |
</td>
|
| 145 |
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
| 146 |
</td>
|
| 147 |
-
<td><strong>Recovery
|
| 148 |
</td>
|
| 149 |
</tr>
|
| 150 |
<tr>
|
| 151 |
<td>MMLU (5-shot)
|
| 152 |
</td>
|
| 153 |
-
<td>
|
| 154 |
</td>
|
| 155 |
-
<td>
|
| 156 |
</td>
|
| 157 |
-
<td>99.
|
| 158 |
</td>
|
| 159 |
</tr>
|
| 160 |
<tr>
|
| 161 |
<td>ARC Challenge (0-shot)
|
| 162 |
</td>
|
| 163 |
-
<td>
|
| 164 |
</td>
|
| 165 |
-
<td>95.
|
| 166 |
</td>
|
| 167 |
-
<td>
|
| 168 |
</td>
|
| 169 |
</tr>
|
| 170 |
<tr>
|
|
@@ -172,9 +173,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 172 |
</td>
|
| 173 |
<td>96.44
|
| 174 |
</td>
|
| 175 |
-
<td>96.
|
| 176 |
</td>
|
| 177 |
-
<td>99.
|
| 178 |
</td>
|
| 179 |
</tr>
|
| 180 |
<tr>
|
|
@@ -184,7 +185,7 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 184 |
</td>
|
| 185 |
<td>88.27
|
| 186 |
</td>
|
| 187 |
-
<td>99.
|
| 188 |
</td>
|
| 189 |
</tr>
|
| 190 |
<tr>
|
|
@@ -192,9 +193,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 192 |
</td>
|
| 193 |
<td>87.21
|
| 194 |
</td>
|
| 195 |
-
|
| 196 |
</td>
|
| 197 |
-
<td>100.
|
| 198 |
</td>
|
| 199 |
</tr>
|
| 200 |
<tr>
|
|
@@ -202,19 +203,19 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 202 |
</td>
|
| 203 |
<td>64.64
|
| 204 |
</td>
|
| 205 |
-
<td>65.
|
| 206 |
</td>
|
| 207 |
-
<td>
|
| 208 |
</td>
|
| 209 |
</tr>
|
| 210 |
<tr>
|
| 211 |
<td><strong>Average</strong>
|
| 212 |
</td>
|
| 213 |
-
<td><strong>86.
|
| 214 |
</td>
|
| 215 |
-
<td><strong>86.
|
| 216 |
</td>
|
| 217 |
-
<td><strong>
|
| 218 |
</td>
|
| 219 |
</tr>
|
| 220 |
</table>
|
|
@@ -227,7 +228,7 @@ The results were obtained using the following commands:
|
|
| 227 |
```
|
| 228 |
lm_eval \
|
| 229 |
--model vllm \
|
| 230 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
| 231 |
--tasks mmlu_llama_3.1_instruct \
|
| 232 |
--apply_chat_template \
|
| 233 |
--fewshot_as_multiturn \
|
|
@@ -239,7 +240,7 @@ lm_eval \
|
|
| 239 |
```
|
| 240 |
lm_eval \
|
| 241 |
--model vllm \
|
| 242 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
| 243 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 244 |
--apply_chat_template \
|
| 245 |
--num_fewshot 0 \
|
|
@@ -250,7 +251,7 @@ lm_eval \
|
|
| 250 |
```
|
| 251 |
lm_eval \
|
| 252 |
--model vllm \
|
| 253 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
| 254 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 255 |
--apply_chat_template \
|
| 256 |
--fewshot_as_multiturn \
|
|
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 35 |
+
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande, and TruthfulQA.
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
|
|
| 130 |
|
| 131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 133 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
| 134 |
|
| 135 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
| 136 |
|
| 137 |
### Accuracy
|
| 138 |
|
|
|
|
| 145 |
</td>
|
| 146 |
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
| 147 |
</td>
|
| 148 |
+
<td><strong>Recovery</strong>
|
| 149 |
</td>
|
| 150 |
</tr>
|
| 151 |
<tr>
|
| 152 |
<td>MMLU (5-shot)
|
| 153 |
</td>
|
| 154 |
+
<td>87.38
|
| 155 |
</td>
|
| 156 |
+
<td>87.22
|
| 157 |
</td>
|
| 158 |
+
<td>99.8%
|
| 159 |
</td>
|
| 160 |
</tr>
|
| 161 |
<tr>
|
| 162 |
<td>ARC Challenge (0-shot)
|
| 163 |
</td>
|
| 164 |
+
<td>94.97
|
| 165 |
</td>
|
| 166 |
+
<td>95.31
|
| 167 |
</td>
|
| 168 |
+
<td>100.4%
|
| 169 |
</td>
|
| 170 |
</tr>
|
| 171 |
<tr>
|
|
|
|
| 173 |
</td>
|
| 174 |
<td>96.44
|
| 175 |
</td>
|
| 176 |
+
<td>96.29
|
| 177 |
</td>
|
| 178 |
+
<td>99.8%
|
| 179 |
</td>
|
| 180 |
</tr>
|
| 181 |
<tr>
|
|
|
|
| 185 |
</td>
|
| 186 |
<td>88.27
|
| 187 |
</td>
|
| 188 |
+
<td>99.9%
|
| 189 |
</td>
|
| 190 |
</tr>
|
| 191 |
<tr>
|
|
|
|
| 193 |
</td>
|
| 194 |
<td>87.21
|
| 195 |
</td>
|
| 196 |
+
<td>87.37
|
| 197 |
</td>
|
| 198 |
+
<td>100.2%
|
| 199 |
</td>
|
| 200 |
</tr>
|
| 201 |
<tr>
|
|
|
|
| 203 |
</td>
|
| 204 |
<td>64.64
|
| 205 |
</td>
|
| 206 |
+
<td>65.26
|
| 207 |
</td>
|
| 208 |
+
<td>101.0%
|
| 209 |
</td>
|
| 210 |
</tr>
|
| 211 |
<tr>
|
| 212 |
<td><strong>Average</strong>
|
| 213 |
</td>
|
| 214 |
+
<td><strong>86.75</strong>
|
| 215 |
</td>
|
| 216 |
+
<td><strong>86.76</strong>
|
| 217 |
</td>
|
| 218 |
+
<td><strong>100.0%</strong>
|
| 219 |
</td>
|
| 220 |
</tr>
|
| 221 |
</table>
|
|
|
|
| 228 |
```
|
| 229 |
lm_eval \
|
| 230 |
--model vllm \
|
| 231 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
|
| 232 |
--tasks mmlu_llama_3.1_instruct \
|
| 233 |
--apply_chat_template \
|
| 234 |
--fewshot_as_multiturn \
|
|
|
|
| 240 |
```
|
| 241 |
lm_eval \
|
| 242 |
--model vllm \
|
| 243 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
|
| 244 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 245 |
--apply_chat_template \
|
| 246 |
--num_fewshot 0 \
|
|
|
|
| 251 |
```
|
| 252 |
lm_eval \
|
| 253 |
--model vllm \
|
| 254 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
|
| 255 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 256 |
--apply_chat_template \
|
| 257 |
--fewshot_as_multiturn \
|