File size: 9,859 Bytes
1bdf2b6
 
 
 
 
 
37a0c5d
1bdf2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af6af
1bdf2b6
14af6af
 
1bdf2b6
 
14af6af
 
 
 
1bdf2b6
14af6af
1bdf2b6
14af6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd8467
14af6af
 
 
 
 
fdd8467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af6af
 
 
fdd8467
14af6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdf2b6
 
 
14af6af
 
 
1bdf2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b4403
1bdf2b6
 
 
 
 
f6b4403
1bdf2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
635482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# =======================
# engine.py в одной ячейке
# =======================
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn

PIECE_SYMBOLS = {0: '.', 1: 'w', 2: 'W', 3: 'b', 4: 'B'}

def _dark(sq):        return (sq // 8 + sq % 8) % 2 == 1
def _promotes(sq, c): return (c==1 and sq//8==0) or (c==-1 and sq//8==7)

class Move:
    __slots__ = ('from_sq', 'to_sq', 'captures', 'is_king_move')
    def __init__(self, f, t, cap=None, king=False):
        self.from_sq, self.to_sq, self.captures, self.is_king_move = f, t, cap or [], king
    def __repr__(self): return f'Move({self.from_sq}{self.to_sq}, cap={self.captures})'

class Board:
    def __init__(self):
        self.pieces = np.zeros(64, dtype=np.int8)
        self.turn = 1          # 1 белые, -1 черные
        self.reset()

    # ---------------------------------
    def reset(self):
        self.pieces[:] = 0
        for sq in [1, 3, 5, 7, 8, 10, 12, 14, 17, 19, 21, 23]:
            self.pieces[sq] = 3           # черные простые
        for sq in [40, 42, 44, 46, 49, 51, 53, 55, 56, 58, 60, 62]:
            self.pieces[sq] = 1           # белые простые
        self.turn = 1

    def copy(self):
        b = Board()
        b.pieces = self.pieces.copy()
        b.turn = self.turn
        return b

    # ---------------------------------
    def _dark(self, sq): return (sq // 8 + sq % 8) % 2 == 1

    # ---------------------------------
    def _man_captures(self, sq, color, captured=None):
        captured = captured or set()
        dirs = (-9, -7, 7, 9)
        res = []
        for d in dirs:
            mid = sq + d
            dst = mid + d
            if 0 <= dst < 64 and self._dark(dst) and 0 <= mid < 64 and self._dark(mid):
                if mid not in captured and self.pieces[mid] in (3+color, 4+color):
                    if self.pieces[dst] == 0:
                        new_cap = captured | {mid}
                        res.append((dst, new_cap))
                        res.extend(self._man_captures(dst, color, new_cap))
        return res

    def _king_captures(self, sq, color, captured=None):
        captured = captured or set()
        res = []
        for d in (-9, -7, 7, 9):
            first = None
            step = 1
            while True:
                mid = sq + d * step
                if not (0 <= mid < 64 and self._dark(mid)):
                    break
                piece_mid = self.pieces[mid]
                if piece_mid != 0:
                    # первая встреченная фигура
                    if first is None:
                        # должна быть чужой и ещё не захвачена
                        if mid not in captured and piece_mid in (3+color, 4+color):
                            first = mid
                        else:
                            break   # своя или уже взятая
                    elif mid == first:
                        pass   # та же фигура
                    else:
                        break   # вторая фигура — не дамка
                else:
                    if first is not None and mid not in captured:
                        dst = mid
                        new_cap = captured | {first}
                        res.append((dst, new_cap))
                        res.extend(self._king_captures(dst, color, new_cap))
                step += 1
        return res


    def _captures(self):
        color = self.turn
        moves = []
        for sq in range(64):
            p = self.pieces[sq]
            if p == 0 or (p in (1,2) and color == -1) or (p in (3,4) and color == 1):
                continue
            if p in (1,3):
                caps = self._man_captures(sq, color)
                for to, cap in caps:
                    moves.append(Move(sq, to, list(cap)))
            else:
                caps = self._king_captures(sq, color)
                for to, cap in caps:
                    moves.append(Move(sq, to, list(cap), is_king_move=True))
        return moves

    def _quiet(self):
        color = self.turn
        moves = []
        for sq in range(64):
            p = self.pieces[sq]
            if p == 0 or (p in (1,2) and color == -1) or (p in (3,4) and color == 1):
                continue
            if p in (1,3):   # man
                dirs = (-9, -7) if color == 1 else (9, 7)
                for d in dirs:
                    dst = sq + d
                    if 0 <= dst < 64 and self._dark(dst) and self.pieces[dst] == 0:
                        moves.append(Move(sq, dst))
            else:            # king
                for d in (-9, -7, 7, 9):
                    step = 1
                    while True:
                        dst = sq + d * step
                        if not (0 <= dst < 64 and self._dark(dst)):
                            break
                        if self.pieces[dst] == 0:
                            moves.append(Move(sq, dst, is_king_move=True))
                        else:
                            break
                        step += 1
        return moves

    # ---------------------------------
    def legal_moves(self):
        caps = self._captures()
        return caps if caps else self._quiet()

    # ---------------------------------
    def make_move(self, move):
        p = self.pieces[move.from_sq]
        self.pieces[move.from_sq] = 0
        if not move.is_king_move and (move.to_sq // 8 == 0 and self.turn == 1 or move.to_sq // 8 == 7 and self.turn == -1):
            p += 1  # превращение в дамку
        self.pieces[move.to_sq] = p
        for cap_sq in move.captures:
            self.pieces[cap_sq] = 0
        self.turn = -self.turn

    # ---------------------------------
    def is_terminal(self):
        legal = self.legal_moves()
        if not legal:
            return True, -self.turn   # победа противника
        # можно добавить правило 15 ходов, но пока только пат
        return False, 0

    # ---------------------------------
    def __str__(self):
        rows = []
        for r in range(8):
            row = [PIECE_SYMBOLS[self.pieces[r*8+c]] if self._dark(r*8+c) else ' ' for c in range(8)]
            rows.append(" ".join(row))
        return "\n".join(rows)

# ---------------------------------
# ResNet + кодирование
class ResidualBlock(nn.Module):
    def __init__(self, ch=64):
        super().__init__()
        self.conv1=nn.Conv2d(ch, ch, 3, padding=1, bias=False)
        self.bn1=nn.BatchNorm2d(ch)
        self.conv2=nn.Conv2d(ch, ch, 3, padding=1, bias=False)
        self.bn2=nn.BatchNorm2d(ch)
    def forward(self, x):
        return F.relu(x + self.bn2(self.conv2(F.relu(self.bn1(self.conv1(x))))))

class ChekaNet(nn.Module):
    def __init__(self, blocks=3, channels=64):
        super().__init__()
        self.conv_in=nn.Conv2d(5, channels, 3, padding=1, bias=False)
        self.bn_in=nn.BatchNorm2d(channels)
        self.residuals=nn.Sequential(*[ResidualBlock(channels) for _ in range(blocks)])
        self.policy_conv=nn.Conv2d(channels, 1, 1)
        self.value_conv=nn.Conv2d(channels, 1, 1)
        self.value_fc=nn.Sequential(nn.Flatten(), nn.Linear(64,128), nn.ReLU(), nn.Linear(128,1), nn.Tanh())
    def forward(self, x):
        x=F.relu(self.bn_in(self.conv_in(x)))
        x=self.residuals(x)
        pol=self.policy_conv(x).squeeze(1).view(x.size(0),-1)
        val=self.value_fc(self.value_conv(x).squeeze(1))
        return pol,val

def board_to_tensor(b):
    planes=np.zeros((5,8,8),np.float32)
    for sq in range(64):
        r,c=sq//8,sq%8
        p=b.pieces[sq]
        if p==1: planes[0,r,c]=1
        elif p==2: planes[1,r,c]=1
        elif p==3: planes[2,r,c]=1
        elif p==4: planes[3,r,c]=1
    planes[4]=1.0 if b.turn==1 else 0.0
    return torch.from_numpy(planes)
# ---------- MCTS + выбор хода ----------
import math, random

class MCTSNode:
    def __init__(self, board, parent=None, prior=0):
        self.board = board.copy()
        self.parent, self.P, self.N, self.W, self.children = parent, prior, 0, 0.0, {}
    def Q(self): return self.W / (self.N + 1e-8)
    def U(self, c_puct=1.0): return c_puct * self.P * math.sqrt(self.parent.N) / (1 + self.N)
    def is_leaf(self): return len(self.children) == 0

def expand_leaf(node, net, device):
    board = node.board
    legal = board.legal_moves()
    if not legal:
        return -1 if board.turn == 1 else 1
    tensor = board_to_tensor(board).unsqueeze(0).to(device)
    with torch.no_grad():
        logits, v = net(tensor)
    logits = logits[0].cpu().numpy()
    v = v.item()
    mask = np.full(64, -np.inf)
    for m in legal: mask[m.to_sq] = logits[m.to_sq]
    probs = torch.softmax(torch.tensor(mask), dim=0).numpy()
    for m in legal:
        child = MCTSNode(board.copy(), parent=node, prior=probs[m.to_sq])
        child.board.make_move(m)
        node.children[m] = child
    return v

def backup(node, v):
    while node:
        node.N += 1
        node.W += v
        v = -v
        node = node.parent

def select_move(board, net, device, sims=400, c_puct=1.0, temp=0.0):
    root = MCTSNode(board)
    for _ in range(sims):
        node = root
        while not node.is_leaf(): node = max(node.children.values(), key=lambda n: n.Q() + n.U(c_puct))
        v = expand_leaf(node, net, device)
        backup(node, v)
    visits = [(m, c.N) for m, c in root.children.items()]
    if temp == 0:
        move = max(visits, key=lambda x: x[1])[0]
    else:
        counts = np.array([v[1] for v in visits]) ** (1 / temp)
        counts /= counts.sum()
        move = random.choices([v[0] for v in visits], counts)[0]
    return move, root