Update README.md
Browse files
README.md
CHANGED
|
@@ -10,7 +10,8 @@ language:
|
|
| 10 |
|
| 11 |
### Instructions
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.
|
| 16 |
|
|
@@ -24,7 +25,7 @@ huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckp
|
|
| 24 |
huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model
|
| 25 |
|
| 26 |
# Quick start
|
| 27 |
-
|
| 28 |
```
|
| 29 |
|
| 30 |
Examples of condition input and ControlNet results are as follows:
|
|
@@ -86,33 +87,29 @@ We provide three types of weights for ControlNet training, `ema`, `module` and `
|
|
| 86 |
|
| 87 |
Here is an example, we load the `distill` weights into the main model and conduct ControlNet training.
|
| 88 |
|
| 89 |
-
If you want to load the `module` weights into the main model, just remove the `--ema-to-module` parameter.
|
| 90 |
-
|
| 91 |
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
|
| 92 |
|
| 93 |
```bash
|
| 94 |
-
task_flag="canny_controlnet"
|
| 95 |
control_type=canny
|
| 96 |
-
|
| 97 |
-
index_file
|
| 98 |
-
results_dir=./log_EXP
|
| 99 |
-
batch_size=1
|
| 100 |
-
image_size=1024
|
| 101 |
-
grad_accu_steps=2
|
| 102 |
-
warmup_num_steps=0
|
| 103 |
-
lr=0.0001
|
| 104 |
-
ckpt_every=10000
|
| 105 |
-
ckpt_latest_every=5000
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
sh $(dirname "$0")/run_g_controlnet.sh \
|
| 109 |
--task-flag ${task_flag} \
|
| 110 |
--control-type ${control_type} \
|
| 111 |
-
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.
|
| 112 |
--predict-type v_prediction \
|
| 113 |
-
--multireso \
|
| 114 |
-
--reso-step 64 \
|
| 115 |
-
--ema-to-module \
|
| 116 |
--uncond-p 0.44 \
|
| 117 |
--uncond-p-t5 0.44 \
|
| 118 |
--index-file ${index_file} \
|
|
@@ -125,18 +122,19 @@ sh $(dirname "$0")/run_g_controlnet.sh \
|
|
| 125 |
--warmup-num-steps ${warmup_num_steps} \
|
| 126 |
--use-flash-attn \
|
| 127 |
--use-fp16 \
|
| 128 |
-
--use-ema \
|
| 129 |
-
--ema-dtype fp32 \
|
| 130 |
--results-dir ${results_dir} \
|
| 131 |
-
--resume
|
| 132 |
-
--resume ${
|
|
|
|
| 133 |
--ckpt-every ${ckpt_every} \
|
| 134 |
--ckpt-latest-every ${ckpt_latest_every} \
|
| 135 |
--log-every 10 \
|
| 136 |
--deepspeed \
|
| 137 |
--deepspeed-optimizer \
|
| 138 |
--use-zero-stage 2 \
|
|
|
|
| 139 |
"$@"
|
|
|
|
| 140 |
```
|
| 141 |
|
| 142 |
Recommended parameter settings
|
|
@@ -154,26 +152,26 @@ You can use the following command line for inference.
|
|
| 154 |
|
| 155 |
a. You can use a float to specify the weight for all layers, **or use a list to separately specify the weight for each layer**, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]'
|
| 156 |
```bash
|
| 157 |
-
|
| 158 |
```
|
| 159 |
|
| 160 |
b. Using canny ControlNet during inference
|
| 161 |
|
| 162 |
```bash
|
| 163 |
-
|
| 164 |
```
|
| 165 |
|
| 166 |
c. Using depth ControlNet during inference
|
| 167 |
|
| 168 |
```bash
|
| 169 |
-
|
| 170 |
```
|
| 171 |
|
| 172 |
d. Using pose ControlNet during inference
|
| 173 |
|
| 174 |
|
| 175 |
```bash
|
| 176 |
-
python3 sample_controlnet.py
|
| 177 |
```
|
| 178 |
|
| 179 |
## HunyuanDiT Controlnet v1.1
|
|
@@ -193,7 +191,7 @@ huggingface-cli download Tencent-Hunyuan/Distillation-v1.1 ./pytorch_model_disti
|
|
| 193 |
```bash
|
| 194 |
task_flag="canny_controlnet" # the task flag is used to identify folders.
|
| 195 |
control_type=canny
|
| 196 |
-
|
| 197 |
index_file=/path/to/your/indexfile # index file for dataloader
|
| 198 |
results_dir=./log_EXP # save root for results
|
| 199 |
batch_size=1 # training batch size
|
|
@@ -213,7 +211,6 @@ sh $(dirname "$0")/run_g_controlnet.sh \
|
|
| 213 |
--predict-type v_prediction \
|
| 214 |
--multireso \
|
| 215 |
--reso-step 64 \
|
| 216 |
-
--ema-to-module \
|
| 217 |
--uncond-p 0.44 \
|
| 218 |
--uncond-p-t5 0.44 \
|
| 219 |
--index-file ${index_file} \
|
|
@@ -227,8 +224,8 @@ sh $(dirname "$0")/run_g_controlnet.sh \
|
|
| 227 |
--use-flash-attn \
|
| 228 |
--use-fp16 \
|
| 229 |
--results-dir ${results_dir} \
|
| 230 |
-
--resume
|
| 231 |
-
--resume ${
|
| 232 |
--epochs ${epochs} \
|
| 233 |
--ckpt-every ${ckpt_every} \
|
| 234 |
--ckpt-latest-every ${ckpt_latest_every} \
|
|
@@ -261,3 +258,4 @@ c. Using pose ControlNet during inference
|
|
| 261 |
```bash
|
| 262 |
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
|
| 263 |
```
|
|
|
|
|
|
| 10 |
|
| 11 |
### Instructions
|
| 12 |
|
| 13 |
+
|
| 14 |
+
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2).
|
| 15 |
|
| 16 |
We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.
|
| 17 |
|
|
|
|
| 25 |
huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model
|
| 26 |
|
| 27 |
# Quick start
|
| 28 |
+
python sample_controlnet.py --infer-mode fa --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0
|
| 29 |
```
|
| 30 |
|
| 31 |
Examples of condition input and ControlNet results are as follows:
|
|
|
|
| 87 |
|
| 88 |
Here is an example, we load the `distill` weights into the main model and conduct ControlNet training.
|
| 89 |
|
|
|
|
|
|
|
| 90 |
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
|
| 91 |
|
| 92 |
```bash
|
| 93 |
+
task_flag="canny_controlnet" # the task flag is used to identify folders.
|
| 94 |
control_type=canny
|
| 95 |
+
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume
|
| 96 |
+
index_file=/path/to/your/indexfile # index file for dataloader
|
| 97 |
+
results_dir=./log_EXP # save root for results
|
| 98 |
+
batch_size=1 # training batch size
|
| 99 |
+
image_size=1024 # training image resolution
|
| 100 |
+
grad_accu_steps=2 # gradient accumulation
|
| 101 |
+
warmup_num_steps=0 # warm-up steps
|
| 102 |
+
lr=0.0001 # learning rate
|
| 103 |
+
ckpt_every=10000 # create a ckpt every a few steps.
|
| 104 |
+
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps.
|
| 105 |
+
epochs=100 # total training epochs
|
| 106 |
|
| 107 |
|
| 108 |
sh $(dirname "$0")/run_g_controlnet.sh \
|
| 109 |
--task-flag ${task_flag} \
|
| 110 |
--control-type ${control_type} \
|
| 111 |
+
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
|
| 112 |
--predict-type v_prediction \
|
|
|
|
|
|
|
|
|
|
| 113 |
--uncond-p 0.44 \
|
| 114 |
--uncond-p-t5 0.44 \
|
| 115 |
--index-file ${index_file} \
|
|
|
|
| 122 |
--warmup-num-steps ${warmup_num_steps} \
|
| 123 |
--use-flash-attn \
|
| 124 |
--use-fp16 \
|
|
|
|
|
|
|
| 125 |
--results-dir ${results_dir} \
|
| 126 |
+
--resume \
|
| 127 |
+
--resume-module-root ${resume_module_root} \
|
| 128 |
+
--epochs ${epochs} \
|
| 129 |
--ckpt-every ${ckpt_every} \
|
| 130 |
--ckpt-latest-every ${ckpt_latest_every} \
|
| 131 |
--log-every 10 \
|
| 132 |
--deepspeed \
|
| 133 |
--deepspeed-optimizer \
|
| 134 |
--use-zero-stage 2 \
|
| 135 |
+
--gradient-checkpointing \
|
| 136 |
"$@"
|
| 137 |
+
|
| 138 |
```
|
| 139 |
|
| 140 |
Recommended parameter settings
|
|
|
|
| 152 |
|
| 153 |
a. You can use a float to specify the weight for all layers, **or use a list to separately specify the weight for each layer**, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]'
|
| 154 |
```bash
|
| 155 |
+
python sample_controlnet.py --infer-mode fa --control-weight "[1.0 * (0.825 ** float(19 - i)) for i in range(19)]" --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg
|
| 156 |
```
|
| 157 |
|
| 158 |
b. Using canny ControlNet during inference
|
| 159 |
|
| 160 |
```bash
|
| 161 |
+
python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg
|
| 162 |
```
|
| 163 |
|
| 164 |
c. Using depth ControlNet during inference
|
| 165 |
|
| 166 |
```bash
|
| 167 |
+
python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果" --condition-image-path controlnet/asset/input/depth.jpg
|
| 168 |
```
|
| 169 |
|
| 170 |
d. Using pose ControlNet during inference
|
| 171 |
|
| 172 |
|
| 173 |
```bash
|
| 174 |
+
python3 sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围" --condition-image-path controlnet/asset/input/pose.jpg
|
| 175 |
```
|
| 176 |
|
| 177 |
## HunyuanDiT Controlnet v1.1
|
|
|
|
| 191 |
```bash
|
| 192 |
task_flag="canny_controlnet" # the task flag is used to identify folders.
|
| 193 |
control_type=canny
|
| 194 |
+
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume
|
| 195 |
index_file=/path/to/your/indexfile # index file for dataloader
|
| 196 |
results_dir=./log_EXP # save root for results
|
| 197 |
batch_size=1 # training batch size
|
|
|
|
| 211 |
--predict-type v_prediction \
|
| 212 |
--multireso \
|
| 213 |
--reso-step 64 \
|
|
|
|
| 214 |
--uncond-p 0.44 \
|
| 215 |
--uncond-p-t5 0.44 \
|
| 216 |
--index-file ${index_file} \
|
|
|
|
| 224 |
--use-flash-attn \
|
| 225 |
--use-fp16 \
|
| 226 |
--results-dir ${results_dir} \
|
| 227 |
+
--resume \
|
| 228 |
+
--resume-module-root ${resume_module_root} \
|
| 229 |
--epochs ${epochs} \
|
| 230 |
--ckpt-every ${ckpt_every} \
|
| 231 |
--ckpt-latest-every ${ckpt_latest_every} \
|
|
|
|
| 258 |
```bash
|
| 259 |
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
|
| 260 |
```
|
| 261 |
+
|