Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- es
|
| 5 |
---
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
tags:
|
| 9 |
+
- Temperature
|
| 10 |
+
- Temepratura
|
| 11 |
+
- python
|
| 12 |
+
library_name: yolov5
|
| 13 |
+
library_version: 1.0.0
|
| 14 |
+
inference: false
|
| 15 |
+
|
| 16 |
+
model-index:
|
| 17 |
+
- name: albertomarun/SimpleTemperatureCalculation
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: object-detection
|
| 21 |
+
|
| 22 |
+
dataset:
|
| 23 |
+
type: Mod_Temperatura.h5
|
| 24 |
+
|
| 25 |
+
metrics:
|
| 26 |
+
- type: precision # since [email protected] is not available on hf.co/metrics
|
| 27 |
+
value: 0.9818427788145484 # min: 0.0 - max: 1.0
|
| 28 |
+
name: [email protected]
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
### How to use
|
| 33 |
+
|
| 34 |
+
- Install Python ver 3.11
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
pip install -U tensorflow
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
- Load model and perform prediction:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from tensorflow import keras
|
| 44 |
+
from time import time
|
| 45 |
+
import gc
|
| 46 |
+
import os
|
| 47 |
+
|
| 48 |
+
cronometro_iniciado = time()
|
| 49 |
+
# Para llamar el modelo Guardado debe llamarse con el nombre del archivo
|
| 50 |
+
directorio = os.getcwd()
|
| 51 |
+
archivo_modelo = directorio + '\\IA\\Guardar_Modelo_Temp\\Mod_Temperatura.h5'
|
| 52 |
+
modelo_guardado = keras.models.load_model(archivo_modelo)
|
| 53 |
+
|
| 54 |
+
# Para predecir con el modelo guardado se utilizaria el siguiente
|
| 55 |
+
resultado = modelo_guardado.predict([37.0])
|
| 56 |
+
|
| 57 |
+
tiempo_transcurrido = time() - cronometro_iniciado
|
| 58 |
+
|
| 59 |
+
print("El resultado es " + str(resultado) + " fahrenheit")
|
| 60 |
+
|
| 61 |
+
print('Tiempo transcurrido (En Segundos) para la prediccion-> ', tiempo_transcurrido)
|
| 62 |
+
|
| 63 |
+
gc.collect()
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
**More models available at: [AlbertoMarunIA](https://huggingface.co/albertomarun)**
|