| from typing import Any, Dict, Optional | |
| from transformers.configuration_utils import PretrainedConfig | |
| __all__ = ["AIMv2VisionConfig", "AIMv2TextConfig", "AIMv2Config"] | |
| class AIMv2VisionConfig(PretrainedConfig): | |
| """This is the configuration class to store the configuration of an [`AIMv2VisionModel`]. | |
| Instantiating a configuration with the defaults will yield a similar configuration | |
| to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit). | |
| Args: | |
| hidden_size: Dimension of the hidden representations. | |
| intermediate_size: Dimension of the SwiGLU representations. | |
| num_hidden_layers: Number of hidden layers in the Transformer. | |
| num_attention_heads: Number of attention heads for each attention layer | |
| in the Transformer. | |
| num_queries: Number of learnable queries for the attention-pooling head. | |
| num_channels: Number of input channels. | |
| image_size: Image size. | |
| patch_size: Patch size. | |
| rms_norm_eps: Epsilon value used for the RMS normalization layer. | |
| attention_dropout: Dropout ratio for attention probabilities. | |
| projection_dropout: Dropout ratio for the projection layer after the attention. | |
| qkv_bias: Whether to add a bias to the queries, keys and values. | |
| use_bias: Whether to add a bias in the feed-forward and projection layers. | |
| kwargs: Keyword arguments for the [`PretrainedConfig`]. | |
| """ | |
| model_type: str = "aimv2" | |
| base_config_key: str = "vision_config" | |
| def __init__( | |
| self, | |
| hidden_size: int = 1024, | |
| intermediate_size: int = 2816, | |
| num_hidden_layers: int = 24, | |
| num_attention_heads: int = 8, | |
| num_queries: int = 1, | |
| num_channels: int = 3, | |
| image_size: int = 224, | |
| patch_size: int = 14, | |
| rms_norm_eps: float = 1e-5, | |
| attention_dropout: float = 0.0, | |
| projection_dropout: float = 0.0, | |
| qkv_bias: bool = False, | |
| use_bias: bool = False, | |
| **kwargs: Any, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_queries = num_queries | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.attention_dropout = attention_dropout | |
| self.rms_norm_eps = rms_norm_eps | |
| self.projection_dropout = projection_dropout | |
| self.qkv_bias = qkv_bias | |
| self.use_bias = use_bias | |
| self.is_causal = False | |
| class AIMv2TextConfig(PretrainedConfig): | |
| """This is the configuration class to store the configuration of an [`AIMv2TextModel`]. | |
| Instantiating a configuration with the defaults will yield a similar configuration | |
| to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit). | |
| Args: | |
| vocab_size: Size of the vocabulary. | |
| hidden_size: Dimension of the hidden representations. | |
| intermediate_size: Dimension of the SwiGLU representations. | |
| num_hidden_layers: Number of hidden layers in the Transformer. | |
| num_attention_heads: Number of attention heads for each attention layer | |
| in the Transformer. | |
| rms_norm_eps: Epsilon value used for the RMS normalization layer. | |
| attention_dropout: Dropout ratio for attention probabilities. | |
| projection_dropout: Dropout ratio for the projection layer after the attention. | |
| qkv_bias: Whether to add a bias to the queries, keys and values. | |
| use_bias: Whether to add a bias in the feed-forward and projection layers. | |
| eos_token_id: End-of-sequence token id. | |
| max_context_length: Maximum number of tokens for the context. | |
| kwargs: Keyword arguments for the [`PretrainedConfig`]. | |
| """ | |
| model_type: str = "aimv2" | |
| base_config_key: str = "text_config" | |
| def __init__( | |
| self, | |
| vocab_size: int = 49408, | |
| hidden_size: int = 768, | |
| intermediate_size: int = 2048, | |
| num_hidden_layers: int = 12, | |
| num_attention_heads: int = 6, | |
| rms_norm_eps: float = 1e-5, | |
| attention_dropout: float = 0.0, | |
| projection_dropout: float = 0.0, | |
| qkv_bias: bool = False, | |
| use_bias: bool = False, | |
| eos_token_id: int = 49407, | |
| max_context_length: int = 77, | |
| **kwargs: Any, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_dropout = attention_dropout | |
| self.rms_norm_eps = rms_norm_eps | |
| self.projection_dropout = projection_dropout | |
| self.qkv_bias = qkv_bias | |
| self.use_bias = use_bias | |
| self.vocab_size = vocab_size | |
| self.max_context_length = max_context_length | |
| self.eos_token_id = eos_token_id | |
| self.is_causal = True | |
| class AIMv2Config(PretrainedConfig): | |
| """This is the configuration class to store the configuration of an [`AIMv2Model`]. | |
| Instantiating a configuration with the defaults will yield a similar configuration | |
| to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit). | |
| Args: | |
| vision_config: Vision config. | |
| text_config: Text config. | |
| projection_dim: Dimension of the image and text projection layers. | |
| kwargs: Keyword arguments for the [`PretrainedConfig`]. | |
| """ | |
| model_type = "aimv2" | |
| is_composition: bool = True | |
| sub_configs: Dict[str, PretrainedConfig] = { | |
| "vision_config": AIMv2VisionConfig, | |
| "text_config": AIMv2TextConfig, | |
| } | |
| def __init__( | |
| self, | |
| vision_config: Optional[AIMv2VisionConfig] = None, | |
| text_config: Optional[AIMv2TextConfig] = None, | |
| projection_dim: int = 768, | |
| init_temperature: float = 0.07, | |
| max_logit_scale: float = 100.0, | |
| **kwargs: Any, | |
| ): | |
| super().__init__(**kwargs) | |
| if vision_config is None: | |
| vision_config = AIMv2VisionConfig() | |
| if text_config is None: | |
| text_config = AIMv2TextConfig() | |
| self.vision_config = vision_config | |
| self.text_config = text_config | |
| self.projection_dim = projection_dim | |
| self.init_temperature = init_temperature | |
| self.max_logit_scale = max_logit_scale | |