bartowski Crystalcareai commited on
Commit
b69da5b
·
verified ·
0 Parent(s):

Super-squash branch 'main' using huggingface_hub

Browse files

Co-authored-by: Crystalcareai <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - es
6
+ - fr
7
+ - de
8
+ - it
9
+ - pt
10
+ - ru
11
+ - ar
12
+ - hi
13
+ - ko
14
+ - zh
15
+ library_name: transformers
16
+ base_model:
17
+ - arcee-ai/Trinity-Mini-Base
18
+ ---
19
+ <div align="center">
20
+ <picture>
21
+ <img
22
+ src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/i-v1KyAMOW_mgVGeic9WJ.png"
23
+ alt="Arcee Trinity Mini"
24
+ style="max-width: 100%; height: auto;"
25
+ >
26
+ </picture>
27
+ </div>
28
+
29
+ # Trinity Mini
30
+
31
+ Trinity Mini is an Arcee AI 26B MoE model with 3B active parameters. It is the medium-sized model in our new Trinity family, a series of open-weight models for enterprise and tinkerers alike.
32
+
33
+ This model is tuned for reasoning, but in testing, it uses a similar total token count to competitive instruction-tuned models.
34
+
35
+ ***
36
+
37
+ Trinity Mini is trained on 10T tokens gathered and curated through a key partnership with [Datology](https://www.datologyai.com/), building upon the excellent dataset we used on [AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B) with additional math and code.
38
+
39
+ Training was performed on a cluster of 512 H200 GPUs powered by [Prime Intellect](https://www.primeintellect.ai/) using HSDP parallelism.
40
+
41
+ More details, including key architecture decisions, can be found on our blog [here](https://www.arcee.ai/blog)
42
+
43
+ Try it out now at [chat.arcee.ai](http://chat.arcee.ai/)
44
+
45
+ ***
46
+
47
+ ## Model Details
48
+
49
+ * **Model Architecture:** AfmoeForCausalLM
50
+ * **Parameters:** 26B, 3B active
51
+ * **Experts:** 128 total, 8 active, 1 shared
52
+ * **Context length:** 128k
53
+ * **Training Tokens:** 10T
54
+ * **License:** [Apache 2.0](https://huggingface.co/arcee-ai/Trinity-Mini#license)
55
+ * **Recommended settings:**
56
+ * temperature: 0.15
57
+ * top_k: 50
58
+ * top_p: 0.75
59
+ * min_p: 0.06
60
+
61
+ ***
62
+
63
+ ## Benchmarks
64
+
65
+ ![](https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/UMV0OZh_H1JfvgzBTXh6u.png)
66
+
67
+ <div align="center">
68
+ <picture>
69
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/sSVjGNHfrJKmQ6w8I18ek.png" style="background-color:ghostwhite;padding:5px;" width="17%" alt="Powered by Datology">
70
+ </picture>
71
+ </div>
72
+
73
+ ### Running our model
74
+
75
+ - [Transformers](https://huggingface.co/arcee-ai/Trinity-Mini#transformers)
76
+ - [VLLM](https://huggingface.co/arcee-ai/Trinity-Mini#vllm)
77
+ - [llama.cpp](https://huggingface.co/arcee-ai/Trinity-Mini#llamacpp)
78
+ - [LM Studio](https://huggingface.co/arcee-ai/Trinity-Mini#lm-studio)
79
+ - [API](https://huggingface.co/arcee-ai/Trinity-Mini#api)
80
+
81
+ ## Transformers
82
+
83
+ Use the `main` transformers branch
84
+
85
+ ```
86
+ git clone https://github.com/huggingface/transformers.git
87
+ cd transformers
88
+
89
+ # pip
90
+ pip install '.[torch]'
91
+
92
+ # uv
93
+ uv pip install '.[torch]'
94
+ ```
95
+
96
+ ```python
97
+ from transformers import AutoTokenizer, AutoModelForCausalLM
98
+ import torch
99
+
100
+ model_id = "arcee-ai/Trinity-Mini"
101
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
102
+ model = AutoModelForCausalLM.from_pretrained(
103
+ model_id,
104
+ torch_dtype=torch.bfloat16,
105
+ device_map="auto"
106
+ )
107
+
108
+ messages = [
109
+ {"role": "user", "content": "Who are you?"},
110
+ ]
111
+
112
+ input_ids = tokenizer.apply_chat_template(
113
+ messages,
114
+ add_generation_prompt=True,
115
+ return_tensors="pt"
116
+ ).to(model.device)
117
+
118
+ outputs = model.generate(
119
+ input_ids,
120
+ max_new_tokens=256,
121
+ do_sample=True,
122
+ temperature=0.5,
123
+ top_k=50,
124
+ top_p=0.95
125
+ )
126
+
127
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
128
+ print(response)
129
+ ```
130
+
131
+ If using a released transformers, simply pass "trust_remote_code=True":
132
+
133
+ ```python
134
+ model_id = "arcee-ai/Trinity-Mini"
135
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
136
+ model = AutoModelForCausalLM.from_pretrained(
137
+ model_id,
138
+ torch_dtype=torch.bfloat16,
139
+ device_map="auto",
140
+ trust_remote_code=True
141
+ )
142
+ ```
143
+
144
+ ## VLLM
145
+
146
+ Supported in VLLM release 0.11.1
147
+
148
+ ```
149
+ # pip
150
+ pip install "vllm>=0.11.1"
151
+ ```
152
+
153
+ Serving the model with suggested settings:
154
+
155
+ ```
156
+ vllm serve arcee-train/Trinity-Mini \
157
+ --dtype bfloat16 \
158
+ --enable-auto-tool-choice \
159
+ --reasoning-parser deepseek_r1 \
160
+ --tool-call-parser hermes
161
+ ```
162
+
163
+ ## llama.cpp
164
+
165
+ Supported in llama.cpp release b7061
166
+
167
+ Download the latest [llama.cpp release](https://github.com/ggml-org/llama.cpp/releases)
168
+
169
+ ```
170
+ llama-server -hf arcee-ai/Trinity-Mini-GGUF:q4_k_m \
171
+ --temp 0.15 \
172
+ --top-k 50 \
173
+ --top-p 0.75
174
+ --min-p 0.06
175
+ ```
176
+
177
+ ## LM Studio
178
+
179
+ Supported in latest LM Studio runtime
180
+
181
+ Update to latest available, then verify your runtime by:
182
+
183
+ 1. Click "Power User" at the bottom left
184
+ 2. Click the green "Developer" icon at the top left
185
+ 3. Select "LM Runtimes" at the top
186
+ 4. Refresh the list of runtimes and verify that the latest is installed
187
+
188
+ Then, go to Model Search and search for `arcee-ai/Trinity-Mini-GGUF`, download your prefered size, and load it up in the chat
189
+
190
+ ## API
191
+
192
+ Trinity Mini is available today on openrouter:
193
+
194
+ https://openrouter.ai/arcee-ai/trinity-mini
195
+
196
+ ```
197
+ curl -X POST "https://openrouter.ai/v1/chat/completions" \
198
+ -H "Authorization: Bearer $OPENROUTER_API_KEY" \
199
+ -H "Content-Type: application/json" \
200
+ -d '{
201
+ "model": "arcee-ai/trinity-mini",
202
+ "messages": [
203
+ {
204
+ "role": "user",
205
+ "content": "What are some fun things to do in New York?"
206
+ }
207
+ ]
208
+ }'
209
+ ```
210
+
211
+ ## License
212
+
213
+ Trinity-Mini is released under the Apache-2.0 license.
chat_template.jinja ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- for message in messages %}
18
+ {%- if message.content is string %}
19
+ {%- set content = message.content %}
20
+ {%- else %}
21
+ {%- set content = '' %}
22
+ {%- endif %}
23
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
24
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
25
+ {%- elif message.role == "assistant" %}
26
+ {%- if '</think>' in content %}
27
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
28
+ {%- endif %}
29
+ {{- '<|im_start|>' + message.role + '\n' }}
30
+ {% generation %}
31
+ {{- content }}
32
+ {%- if message.tool_calls %}
33
+ {%- for tool_call in message.tool_calls %}
34
+ {%- if (loop.first and content) or (not loop.first) %}
35
+ {{- '\n' }}
36
+ {%- endif %}
37
+ {%- if tool_call.function %}
38
+ {%- set tool_call = tool_call.function %}
39
+ {%- endif %}
40
+ {{- '<tool_call>\n{"name": "' }}
41
+ {{- tool_call.name }}
42
+ {{- '", "arguments": ' }}
43
+ {%- if tool_call.arguments is string %}
44
+ {{- tool_call.arguments }}
45
+ {%- else %}
46
+ {{- tool_call.arguments | tojson }}
47
+ {%- endif %}
48
+ {{- '}\n</tool_call>' }}
49
+ {%- endfor %}
50
+ {%- endif %}
51
+ {{- '<|im_end|>' }}
52
+ {% endgeneration %}
53
+ {{- '\n' }}
54
+ {%- elif message.role == "tool" %}
55
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
56
+ {{- '<|im_start|>user' }}
57
+ {%- endif %}
58
+ {{- '\n<tool_response>\n' }}
59
+ {{- content }}
60
+ {{- '\n</tool_response>' }}
61
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
62
+ {{- '<|im_end|>\n' }}
63
+ {%- endif %}
64
+ {%- endif %}
65
+ {%- endfor %}
66
+ {%- if add_generation_prompt %}
67
+ {{- '<|im_start|>assistant\n<think>\n' }}
68
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AfmoeForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_afmoe.AfmoeConfig",
8
+ "AutoModel": "modeling_afmoe.AfmoeModel",
9
+ "AutoModelForCausalLM": "modeling_afmoe.AfmoeForCausalLM"
10
+ },
11
+ "dtype": "bfloat16",
12
+ "global_attn_every_n_layers": 4,
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 6144,
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "full_attention",
23
+ "sliding_attention",
24
+ "sliding_attention",
25
+ "sliding_attention",
26
+ "full_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "full_attention",
35
+ "sliding_attention",
36
+ "sliding_attention",
37
+ "sliding_attention",
38
+ "full_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "full_attention",
43
+ "sliding_attention",
44
+ "sliding_attention",
45
+ "sliding_attention",
46
+ "full_attention",
47
+ "sliding_attention",
48
+ "sliding_attention",
49
+ "sliding_attention",
50
+ "full_attention"
51
+ ],
52
+ "load_balance_coeff": 0.001,
53
+ "max_position_embeddings": 131072,
54
+ "model_type": "afmoe",
55
+ "moe_intermediate_size": 1024,
56
+ "mup_enabled": true,
57
+ "n_group": 1,
58
+ "num_attention_heads": 32,
59
+ "num_dense_layers": 2,
60
+ "num_expert_groups": 1,
61
+ "num_experts": 128,
62
+ "num_experts_per_tok": 8,
63
+ "num_hidden_layers": 32,
64
+ "num_key_value_heads": 4,
65
+ "num_limited_groups": 1,
66
+ "num_shared_experts": 1,
67
+ "rms_norm_eps": 1e-05,
68
+ "rope_scaling": null,
69
+ "rope_theta": 10000,
70
+ "route_norm": true,
71
+ "route_scale": 2.826,
72
+ "score_func": "sigmoid",
73
+ "sliding_window": 2048,
74
+ "tie_word_embeddings": false,
75
+ "topk_group": 1,
76
+ "transformers_version": "4.57.3",
77
+ "use_cache": true,
78
+ "use_grouped_mm": true,
79
+ "vocab_size": 200192
80
+ }
configuration_afmoe.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from transformers.configuration_utils import PretrainedConfig
16
+ from transformers.modeling_rope_utils import rope_config_validation
17
+ from transformers.configuration_utils import layer_type_validation
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ class AfmoeConfig(PretrainedConfig):
23
+ """
24
+ n_group (`int`, *optional*, defaults to 1):
25
+ Number of groups for routed experts.
26
+ topk_group (`int`, *optional*, defaults to 1):
27
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
28
+ """
29
+ model_type = "afmoe"
30
+ base_model_pp_plan = {
31
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
32
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
33
+ "norm": (["hidden_states"], ["hidden_states"]),
34
+ }
35
+
36
+ def __init__(
37
+ self,
38
+ num_hidden_layers: int = 32,
39
+ vocab_size: int = 200192,
40
+ hidden_size: int = 2048,
41
+ intermediate_size: int = 6144,
42
+ moe_intermediate_size=1408,
43
+ num_dense_layers=1,
44
+ num_attention_heads=16,
45
+ num_key_value_heads=None,
46
+ head_dim=128,
47
+ hidden_act="silu",
48
+ max_position_embeddings=16384,
49
+ initializer_range=0.02,
50
+ rms_norm_eps=1e-5,
51
+ use_cache=True,
52
+ tie_word_embeddings=False,
53
+ rope_theta=10000.0,
54
+ rope_scaling=None,
55
+ num_experts=64,
56
+ num_experts_per_tok=6,
57
+ num_shared_experts=2,
58
+ num_expert_groups=1,
59
+ num_limited_groups=1,
60
+ score_func="sigmoid",
61
+ route_norm=True,
62
+ route_scale=1.0,
63
+ global_attn_every_n_layers=4,
64
+ sliding_window=1024,
65
+ mup_enabled=False,
66
+ layer_types=None,
67
+ attention_dropout: float = 0.0,
68
+ n_group: int = 1,
69
+ topk_group: int = 1,
70
+ **kwargs,
71
+ ):
72
+ self.vocab_size = vocab_size
73
+ self.max_position_embeddings = max_position_embeddings
74
+ self.hidden_size = hidden_size
75
+ self.intermediate_size = intermediate_size
76
+ self.num_hidden_layers = num_hidden_layers
77
+ self.num_dense_layers = num_dense_layers
78
+ self.num_attention_heads = num_attention_heads
79
+ self.head_dim = head_dim
80
+ self.hidden_act = hidden_act
81
+ self.initializer_range = initializer_range
82
+ self.rms_norm_eps = rms_norm_eps
83
+ self.use_cache = use_cache
84
+ self.rope_theta = rope_theta
85
+ self.rope_scaling = rope_scaling
86
+
87
+
88
+ # MoE specific
89
+ self.moe_intermediate_size = moe_intermediate_size
90
+ self.num_experts_per_tok = num_experts_per_tok
91
+ self.n_group = n_group
92
+ self.topk_group = topk_group
93
+ self.num_experts = num_experts
94
+ self.num_shared_experts = num_shared_experts
95
+ self.num_expert_groups = num_expert_groups
96
+ self.num_limited_groups = num_limited_groups
97
+ self.score_func = score_func
98
+ self.route_norm = route_norm
99
+ self.route_scale = route_scale
100
+
101
+
102
+ # Attention specific
103
+ self.attention_dropout = attention_dropout
104
+ self.global_attn_every_n_layers = global_attn_every_n_layers
105
+ self.sliding_window = sliding_window
106
+ self.layer_types = layer_types
107
+ if self.layer_types is None:
108
+ self.layer_types = [
109
+ "sliding_attention" if bool((i + 1) % global_attn_every_n_layers) else "full_attention" for i in range(self.num_hidden_layers)
110
+ ]
111
+ layer_type_validation(self.layer_types)
112
+
113
+ # muP specific
114
+ self.mup_enabled = mup_enabled
115
+
116
+ if num_key_value_heads is None:
117
+ num_key_value_heads = num_attention_heads
118
+
119
+ self.num_key_value_heads = num_key_value_heads
120
+
121
+
122
+ # Validate rope configs
123
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
124
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
125
+ rope_config_validation(self)
126
+
127
+ super().__init__(
128
+ tie_word_embeddings=tie_word_embeddings,
129
+ **kwargs,
130
+ )
131
+
132
+
133
+ __all__ = ["AfmoeConfig"]
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.57.1",
4
+ "temperature": 0.15,
5
+ "top_p": 0.75,
6
+ "top_k": 50,
7
+ "min_p": 0.06
8
+ }
model-00001-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df45b288472f42854e08e6ef3b2b7eacf1faf23af7aaf8b092b4efc91d9f043f
3
+ size 4996091800
model-00002-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f72e61346a028661c17193ebf472c12d6284f7c7a63a97443104532f86c4425
3
+ size 4997188968
model-00003-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:022b70c75c7978b268b62c5a0c39727072aee519e46755f2729e191aac0dd615
3
+ size 4997188968
model-00004-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20b01717affcbb789def2287515efb23220181b056d871f579a0e6910c381672
3
+ size 4997188656
model-00005-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b6bcfe7b88fee215844412c963f07ad9e2a65252cb8ae3080ed352059c1784d
3
+ size 4997188880
model-00006-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f5d1e9a0d51af4d7b73e5fde761af493203e8a252685389006c1f189f5de318
3
+ size 4997188968
model-00007-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fea1dd6ad23a292e9ab29ef6f340be546273c6d57765147d7f78145433e8cdc7
3
+ size 4997188968
model-00008-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af429c6736c9825d2ddd2276e1f7b70f9e813a1a5fe227ebc019eacdf95daa1e
3
+ size 4997188568
model-00009-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eb50cdc3d3e4194697ddc8818ebd6e994f411d7241a16663dbc25d5ad5fc3f5
3
+ size 4997188296
model-00010-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99d28ea83bedb90dfa5f941f4ac0bddf7dbb7bac195188c7d132cfe4176446c5
3
+ size 4997187776
model-00011-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0155072d8c12c630ef9d4168ab312c704ad856174ee012950cb4f9b58c059aa6
3
+ size 2278656400
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_afmoe.py ADDED
@@ -0,0 +1,680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn
6
+
7
+ from transformers.activations import ACT2FN
8
+ from transformers.generation import GenerationMixin
9
+ from transformers.modeling_outputs import (
10
+ MoeCausalLMOutputWithPast,
11
+ MoeModelOutputWithPast,
12
+ )
13
+ from transformers.modeling_utils import PreTrainedModel, ALL_ATTENTION_FUNCTIONS
14
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
15
+ from transformers.masking_utils import (
16
+ create_causal_mask,
17
+ create_sliding_window_causal_mask,
18
+ )
19
+ from transformers.modeling_layers import GradientCheckpointingLayer
20
+ from transformers.processing_utils import Unpack
21
+ from transformers.utils import TransformersKwargs
22
+ from transformers.cache_utils import Cache, DynamicCache
23
+ from transformers.integrations import use_kernel_forward_from_hub
24
+
25
+
26
+ try:
27
+ from .configuration_afmoe import AfmoeConfig
28
+ except:
29
+ from configuration_afmoe import AfmoeConfig
30
+
31
+ class AfmoeRotaryEmbedding(nn.Module):
32
+
33
+ def __init__(self, config: AfmoeConfig, device=None):
34
+ super().__init__()
35
+ # BC: "rope_type" was originally "type"
36
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
37
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
38
+ else:
39
+ self.rope_type = "default"
40
+ self.max_seq_len_cached = config.max_position_embeddings
41
+ self.original_max_seq_len = config.max_position_embeddings
42
+
43
+ self.config = config
44
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
45
+
46
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
47
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
48
+ self.original_inv_freq = self.inv_freq
49
+
50
+ def _dynamic_frequency_update(self, position_ids, device):
51
+ """
52
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
53
+ 1 - growing beyond the cached sequence length (allow scaling)
54
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
55
+ """
56
+ seq_len = torch.max(position_ids) + 1
57
+ if seq_len > self.max_seq_len_cached: # growth
58
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
59
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
60
+ self.max_seq_len_cached = seq_len
61
+
62
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
63
+ # This .to() is needed if the model has been moved to a device after being initialized (because
64
+ # the buffer is automatically moved, but not the original copy)
65
+ self.original_inv_freq = self.original_inv_freq.to(device)
66
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
67
+ self.max_seq_len_cached = self.original_max_seq_len
68
+
69
+ @torch.no_grad()
70
+ def forward(self, x, position_ids):
71
+ if "dynamic" in self.rope_type:
72
+ self._dynamic_frequency_update(position_ids, device=x.device)
73
+
74
+ # Core RoPE block
75
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
76
+ position_ids_expanded = position_ids[:, None, :].float()
77
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
78
+ device_type = x.device.type
79
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
80
+ with torch.autocast(device_type=device_type, enabled=False):
81
+ freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
82
+ emb = torch.cat((freqs, freqs), dim=-1)
83
+ cos = emb.cos()
84
+ sin = emb.sin()
85
+
86
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
87
+ cos = cos * self.attention_scaling
88
+ sin = sin * self.attention_scaling
89
+
90
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
91
+
92
+
93
+ def rotate_half(x):
94
+ """Rotates half the hidden dims of the input."""
95
+ x1 = x[..., : x.shape[-1] // 2]
96
+ x2 = x[..., x.shape[-1] // 2 :]
97
+ return torch.cat((-x2, x1), dim=-1)
98
+
99
+
100
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
101
+ """Applies Rotary Position Embedding to the query and key tensors.
102
+
103
+ Args:
104
+ q (`torch.Tensor`): The query tensor.
105
+ k (`torch.Tensor`): The key tensor.
106
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
107
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
108
+ position_ids (`torch.Tensor`, *optional*):
109
+ Deprecated and unused.
110
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
111
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
112
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
113
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
114
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
115
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
116
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
117
+ Returns:
118
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
119
+ """
120
+ cos = cos.unsqueeze(unsqueeze_dim)
121
+ sin = sin.unsqueeze(unsqueeze_dim)
122
+ q_embed = (q * cos) + (rotate_half(q) * sin)
123
+ k_embed = (k * cos) + (rotate_half(k) * sin)
124
+ return q_embed, k_embed
125
+
126
+
127
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
128
+ """
129
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
130
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
131
+ """
132
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
133
+ if n_rep == 1:
134
+ return hidden_states
135
+ hidden_states = hidden_states[:, :, None, :, :].expand(
136
+ batch, num_key_value_heads, n_rep, slen, head_dim
137
+ )
138
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
139
+
140
+ @use_kernel_forward_from_hub("RMSNorm")
141
+ class AfmoeRMSNorm(nn.Module):
142
+ def __init__(self, hidden_size: int, eps: float):
143
+ """
144
+ AfmoeRMSNorm is equivalent to T5LayerNorm
145
+ """
146
+ super().__init__()
147
+ self.weight = nn.Parameter(torch.ones(hidden_size))
148
+ self.variance_epsilon = eps
149
+
150
+ def forward(self, hidden_states):
151
+ input_dtype = hidden_states.dtype
152
+ hidden_states = hidden_states.to(torch.float32)
153
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
154
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
155
+ return self.weight * hidden_states.to(input_dtype)
156
+
157
+ def extra_repr(self):
158
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
159
+
160
+
161
+
162
+ def eager_attention_forward(
163
+ module: nn.Module,
164
+ query: torch.Tensor,
165
+ key: torch.Tensor,
166
+ value: torch.Tensor,
167
+ attention_mask: Optional[torch.Tensor],
168
+ scaling: float,
169
+ dropout: float = 0.0,
170
+ **kwargs,
171
+ ):
172
+ key_states = repeat_kv(key, module.num_key_value_groups)
173
+ value_states = repeat_kv(value, module.num_key_value_groups)
174
+
175
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
176
+ if attention_mask is not None:
177
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
178
+ attn_weights = attn_weights + causal_mask
179
+
180
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
181
+ query.dtype
182
+ )
183
+ attn_weights = nn.functional.dropout(
184
+ attn_weights, p=dropout, training=module.training
185
+ )
186
+ attn_output = torch.matmul(attn_weights, value_states)
187
+ attn_output = attn_output.transpose(1, 2).contiguous()
188
+
189
+ return attn_output, attn_weights
190
+
191
+
192
+ class AfmoeMLP(nn.Module):
193
+ def __init__(self, config, intermediate_size=None):
194
+ super().__init__()
195
+ self.config = config
196
+ self.hidden_size = config.hidden_size
197
+ self.intermediate_size = intermediate_size or config.intermediate_size
198
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
199
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
200
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
201
+ self.act_fn = ACT2FN[config.hidden_act]
202
+
203
+ def forward(self, x):
204
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
205
+
206
+
207
+ class AfmoeTokenChoiceRouter(nn.Module):
208
+ """Token-choice top-K router for MoE routing."""
209
+
210
+ def __init__(self, config):
211
+ super().__init__()
212
+ self.config = config
213
+ self.top_k = config.num_experts_per_tok
214
+ self.num_experts = config.num_experts
215
+ self.score_func = config.score_func
216
+ self.route_norm = config.route_norm
217
+ self.route_scale = config.route_scale
218
+ self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
219
+
220
+ def forward(self, hidden_states, expert_bias: torch.Tensor | None):
221
+ _, _, hidden_dim = hidden_states.shape
222
+ hidden_states = hidden_states.view(-1, hidden_dim)
223
+
224
+ scores = self.gate(hidden_states)
225
+
226
+ # Apply scoring function in float32 for stability
227
+ if self.score_func == "sigmoid":
228
+ scores = torch.sigmoid(scores.to(torch.float32))
229
+ else:
230
+ scores = F.softmax(scores.to(torch.float32), dim=-1)
231
+
232
+ if expert_bias is not None:
233
+ _, selected_experts = torch.topk(scores + expert_bias, k=self.top_k, dim=1)
234
+ top_scores = scores.gather(dim=1, index=selected_experts)
235
+ else:
236
+ top_scores, selected_experts = torch.topk(scores, k=self.top_k, dim=1)
237
+
238
+ # Normalize weights if using sigmoid
239
+ if self.score_func == "sigmoid" and self.route_norm:
240
+ denominator = top_scores.sum(dim=-1, keepdim=True) + 1e-20
241
+ top_scores = top_scores / denominator
242
+
243
+ top_scores = top_scores * self.route_scale
244
+ return top_scores, selected_experts
245
+
246
+ class AfmoeMoE(nn.Module):
247
+ def __init__(self, config):
248
+ super().__init__()
249
+ self.config = config
250
+ self.router = AfmoeTokenChoiceRouter(config)
251
+
252
+ self.shared_experts = None
253
+ if config.num_shared_experts > 0:
254
+ self.shared_experts = AfmoeMLP(
255
+ config, config.moe_intermediate_size * config.num_shared_experts
256
+ )
257
+ self.experts = nn.ModuleList(
258
+ [AfmoeMLP(
259
+ config, intermediate_size=config.moe_intermediate_size
260
+ ) for _ in range(config.num_experts)]
261
+ )
262
+ self.expert_bias = nn.Parameter(torch.zeros(config.num_experts, dtype=torch.float32), requires_grad=False)
263
+
264
+
265
+ def forward(self, hidden_states):
266
+ batch_size, seq_len, hidden_dim = hidden_states.shape
267
+ hidden_states_flat = hidden_states.view(-1, hidden_dim)
268
+
269
+ # Get routing decisions
270
+ top_scores, selected_experts = self.router(hidden_states, self.expert_bias)
271
+
272
+ # Process through shared experts
273
+ if self.shared_experts is not None:
274
+ shared_output = self.shared_experts(hidden_states_flat)
275
+ else:
276
+ shared_output = torch.zeros_like(hidden_states_flat)
277
+
278
+ # Reorder tokens by expert for efficient processing
279
+ token_indices_sorted = torch.argsort(selected_experts.view(-1), stable=True)
280
+ top_scores_sorted = top_scores.view(-1)[token_indices_sorted]
281
+ token_to_expert = selected_experts.view(-1)[token_indices_sorted]
282
+ token_indices_sorted = token_indices_sorted // self.config.num_experts_per_tok
283
+
284
+ # Gather input tokens
285
+ token_indices_expanded = token_indices_sorted.unsqueeze(-1).expand(
286
+ -1, hidden_dim
287
+ )
288
+ routed_input = torch.gather(
289
+ hidden_states_flat, dim=0, index=token_indices_expanded
290
+ )
291
+
292
+ routed_output = torch.zeros_like(routed_input)
293
+ for expert_id in range(self.config.num_experts):
294
+ mask = token_to_expert == expert_id
295
+ if mask.any():
296
+ expert_input = routed_input[mask]
297
+ expert_out = self.experts[expert_id](expert_input)
298
+ routed_output[mask] = expert_out
299
+
300
+ routed_output = (
301
+ routed_output.to(torch.float32) * top_scores_sorted.unsqueeze(-1)
302
+ ).to(hidden_states.dtype)
303
+
304
+ # Scatter back to original positions
305
+ output = shared_output.scatter_add(
306
+ dim=0, index=token_indices_expanded, src=routed_output
307
+ )
308
+
309
+ return output.view(batch_size, seq_len, hidden_dim)
310
+
311
+
312
+ class AfmoeAttention(nn.Module):
313
+ """Multi-headed attention with local/global pattern and gating."""
314
+
315
+ def __init__(self, config: AfmoeConfig, layer_idx: int):
316
+ super().__init__()
317
+ self.config = config
318
+ self.layer_idx = layer_idx
319
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
320
+ self.num_heads = config.num_attention_heads
321
+ self.num_key_value_heads = config.num_key_value_heads
322
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
323
+
324
+ self.scaling = self.head_dim**-0.5
325
+ self.attention_dropout = config.attention_dropout
326
+ self.is_local_attention = config.layer_types[layer_idx] == "sliding_attention"
327
+ self.sliding_window = config.sliding_window if self.is_local_attention else None
328
+
329
+ self.q_proj = nn.Linear(
330
+ config.hidden_size, self.num_heads * self.head_dim, bias=False
331
+ )
332
+ self.k_proj = nn.Linear(
333
+ config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
334
+ )
335
+ self.v_proj = nn.Linear(
336
+ config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
337
+ )
338
+ self.o_proj = nn.Linear(
339
+ self.num_heads * self.head_dim, config.hidden_size, bias=False
340
+ )
341
+
342
+ self.q_norm = AfmoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
343
+ self.k_norm = AfmoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
344
+
345
+ self.gate_proj = nn.Linear(
346
+ config.hidden_size, self.num_heads * self.head_dim, bias=False
347
+ )
348
+
349
+ def forward(
350
+ self,
351
+ hidden_states: torch.Tensor,
352
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
353
+ attention_mask: Optional[torch.Tensor],
354
+ past_key_value: Optional[Cache] = None,
355
+ cache_position: Optional[torch.LongTensor] = None,
356
+ **kwargs: Unpack[TransformersKwargs],
357
+ ) -> torch.Tensor:
358
+
359
+ input_shape = hidden_states.shape[:-1]
360
+ hidden_shape = (*input_shape, -1, self.head_dim)
361
+
362
+ query_states = self.q_proj(hidden_states).view(hidden_shape)
363
+ key_states = self.k_proj(hidden_states).view(hidden_shape)
364
+ value_states = self.v_proj(hidden_states).view(hidden_shape)
365
+ gate_states = self.gate_proj(hidden_states)
366
+
367
+ query_states = self.q_norm(query_states)
368
+ key_states = self.k_norm(key_states)
369
+
370
+ query_states = query_states.transpose(1, 2)
371
+ key_states = key_states.transpose(1, 2)
372
+ value_states = value_states.transpose(1, 2)
373
+
374
+ if self.is_local_attention:
375
+ cos, sin = position_embeddings
376
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
377
+
378
+ if past_key_value is not None:
379
+ cache_kwargs = {"cache_position": cache_position}
380
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
381
+
382
+ attention_interface: Callable = eager_attention_forward
383
+ if self.config._attn_implementation != "eager":
384
+ attention_interface = ALL_ATTENTION_FUNCTIONS[
385
+ self.config._attn_implementation
386
+ ]
387
+
388
+ output, _ = attention_interface(
389
+ self,
390
+ query_states,
391
+ key_states,
392
+ value_states,
393
+ attention_mask=attention_mask,
394
+ dropout=0.0 if not self.training else self.attention_dropout,
395
+ scaling=self.scaling,
396
+ sliding_window=self.sliding_window,
397
+ **kwargs,
398
+ )
399
+
400
+ output = output.view(*input_shape, -1).contiguous()
401
+ output = output * F.sigmoid(gate_states)
402
+ return self.o_proj(output)
403
+
404
+
405
+ class AfmoeDecoderLayer(GradientCheckpointingLayer):
406
+ def __init__(self, config: AfmoeConfig, layer_idx: int):
407
+ super().__init__()
408
+ self.hidden_size = config.hidden_size
409
+ self.layer_idx = layer_idx
410
+
411
+ self.self_attn = AfmoeAttention(config=config, layer_idx=layer_idx)
412
+ self.attention_type = config.layer_types[layer_idx]
413
+
414
+ # Dual normalization for attention
415
+ self.input_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
416
+ self.post_attention_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
417
+
418
+ # Dual normalization for FFN
419
+ self.pre_mlp_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
420
+ self.post_mlp_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
421
+
422
+ # MoE or dense FFN
423
+ self.moe_enabled = layer_idx >= config.num_dense_layers
424
+ if self.moe_enabled:
425
+ self.mlp = AfmoeMoE(config)
426
+ else:
427
+ self.mlp = AfmoeMLP(config)
428
+
429
+ def forward(
430
+ self,
431
+ hidden_states: torch.Tensor,
432
+ attention_mask: Optional[torch.Tensor] = None,
433
+ position_ids: Optional[torch.LongTensor] = None,
434
+ past_key_value: Optional[Cache] = None,
435
+ use_cache: Optional[bool] = None,
436
+ cache_position: Optional[torch.LongTensor] = None,
437
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
438
+ **kwargs: Unpack[TransformersKwargs],
439
+ ) -> torch.FloatTensor:
440
+ residual = hidden_states
441
+
442
+ # Self Attention with dual normalization
443
+ hidden_states = self.input_layernorm(hidden_states)
444
+ hidden_states = self.self_attn(
445
+ hidden_states=hidden_states,
446
+ attention_mask=attention_mask,
447
+ position_ids=position_ids,
448
+ past_key_value=past_key_value,
449
+ use_cache=use_cache,
450
+ cache_position=cache_position,
451
+ position_embeddings=position_embeddings,
452
+ **kwargs,
453
+ )
454
+ hidden_states = self.post_attention_layernorm(hidden_states)
455
+ hidden_states = residual + hidden_states
456
+
457
+ # FFN with dual normalization
458
+ residual = hidden_states
459
+ hidden_states = self.pre_mlp_layernorm(hidden_states)
460
+
461
+ if self.moe_enabled:
462
+ hidden_states = self.mlp(hidden_states)
463
+ else:
464
+ hidden_states = self.mlp(hidden_states)
465
+
466
+ hidden_states = self.post_mlp_layernorm(hidden_states)
467
+ hidden_states = residual + hidden_states
468
+ return hidden_states
469
+
470
+
471
+ class AfmoePreTrainedModel(PreTrainedModel):
472
+ config_class = AfmoeConfig
473
+ base_model_prefix = "model"
474
+ _no_split_modules = ["AfmoeDecoderLayer"]
475
+ _skip_keys_device_placement = ["past_key_values"]
476
+ _keep_in_fp32_modules = [
477
+ "input_layernorm",
478
+ "post_attention_layernorm",
479
+ "pre_mlp_layernorm",
480
+ "post_mlp_layernorm",
481
+ "q_norm",
482
+ "k_norm",
483
+ "norm",
484
+ ]
485
+ _supports_sdpa = True
486
+ _supports_attention_backend = True
487
+ supports_gradient_checkpointing = True
488
+
489
+
490
+ class AfmoeModel(AfmoePreTrainedModel):
491
+ _no_split_modules = ["AfmoeDecoderLayer"]
492
+
493
+ def __init__(self, config: AfmoeConfig):
494
+ super().__init__(config)
495
+ self.padding_idx = config.pad_token_id
496
+ self.vocab_size = config.vocab_size
497
+
498
+ self.embed_tokens = nn.Embedding(
499
+ config.vocab_size, config.hidden_size, self.padding_idx
500
+ )
501
+ self.layers = nn.ModuleList(
502
+ [
503
+ AfmoeDecoderLayer(config, layer_idx)
504
+ for layer_idx in range(config.num_hidden_layers)
505
+ ]
506
+ )
507
+ self.norm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
508
+ self.rotary_emb = AfmoeRotaryEmbedding(config=config)
509
+ self.gradient_checkpointing = False
510
+
511
+ self.post_init()
512
+
513
+ def get_input_embeddings(self):
514
+ return self.embed_tokens
515
+
516
+ def set_input_embeddings(self, value):
517
+ self.embed_tokens = value
518
+
519
+
520
+ def forward(
521
+ self,
522
+ input_ids: torch.LongTensor,
523
+ attention_mask: Optional[torch.Tensor] = None,
524
+ position_ids: Optional[torch.LongTensor] = None,
525
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
526
+ inputs_embeds: Optional[torch.FloatTensor] = None,
527
+ use_cache: Optional[bool] = None,
528
+ cache_position: Optional[torch.LongTensor] = None,
529
+ **kwargs: Unpack[TransformersKwargs],
530
+ ) -> MoeModelOutputWithPast:
531
+ if (input_ids is None) ^ (inputs_embeds is not None):
532
+ raise ValueError(
533
+ "You must specify exactly one of input_ids or inputs_embeds"
534
+ )
535
+
536
+ if use_cache and past_key_values is None:
537
+ past_key_values = DynamicCache()
538
+
539
+ if inputs_embeds is None:
540
+ inputs_embeds = self.embed_tokens(input_ids)
541
+
542
+ if cache_position is None:
543
+ past_seen_tokens = (
544
+ past_key_values.get_seq_length() if past_key_values is not None else 0
545
+ )
546
+ cache_position = torch.arange(
547
+ past_seen_tokens,
548
+ past_seen_tokens + inputs_embeds.shape[1],
549
+ device=inputs_embeds.device,
550
+ )
551
+ if position_ids is None:
552
+ position_ids = cache_position.unsqueeze(0)
553
+
554
+ # It may already have been prepared by e.g. `generate`
555
+ if not isinstance(causal_mask_mapping := attention_mask, dict):
556
+ mask_kwargs = {
557
+ "config": self.config,
558
+ "input_embeds": inputs_embeds,
559
+ "attention_mask": attention_mask,
560
+ "cache_position": cache_position,
561
+ "past_key_values": past_key_values,
562
+ }
563
+ causal_mask_mapping = {
564
+ "full_attention": create_causal_mask(**mask_kwargs),
565
+ "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
566
+ }
567
+
568
+ hidden_states = inputs_embeds
569
+
570
+ # Apply muP input scaling if enabled
571
+ if self.config.mup_enabled:
572
+ hidden_states = hidden_states * (self.config.hidden_size**0.5)
573
+
574
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
575
+
576
+ for decoder_layer in self.layers:
577
+ hidden_states = decoder_layer(
578
+ hidden_states,
579
+ attention_mask=causal_mask_mapping[decoder_layer.attention_type],
580
+ position_ids=position_ids,
581
+ past_key_value=past_key_values,
582
+ use_cache=use_cache,
583
+ cache_position=cache_position,
584
+ position_embeddings=position_embeddings,
585
+ **kwargs,
586
+ )
587
+
588
+ hidden_states = self.norm(hidden_states)
589
+ return MoeModelOutputWithPast(
590
+ last_hidden_state=hidden_states,
591
+ past_key_values=past_key_values,
592
+ )
593
+
594
+
595
+ class AfmoeForCausalLM(AfmoePreTrainedModel, GenerationMixin):
596
+ _tied_weights_keys = ["lm_head.weight"]
597
+ _tp_plan = {"lm_head": "colwise_rep"}
598
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
599
+
600
+ def __init__(self, config):
601
+ super().__init__(config)
602
+ self.model = AfmoeModel(config)
603
+ self.vocab_size = config.vocab_size
604
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
605
+
606
+ # Initialize weights and apply final processing
607
+ self.post_init()
608
+
609
+ def get_input_embeddings(self):
610
+ return self.model.embed_tokens
611
+
612
+ def set_input_embeddings(self, value):
613
+ self.model.embed_tokens = value
614
+
615
+ def get_output_embeddings(self):
616
+ return self.lm_head
617
+
618
+ def set_output_embeddings(self, new_embeddings):
619
+ self.lm_head = new_embeddings
620
+
621
+ def set_decoder(self, decoder):
622
+ self.model = decoder
623
+
624
+ def get_decoder(self):
625
+ return self.model
626
+
627
+ def forward(
628
+ self,
629
+ input_ids: torch.LongTensor,
630
+ attention_mask: Optional[torch.Tensor] = None,
631
+ position_ids: Optional[torch.LongTensor] = None,
632
+ past_key_values: Optional[Cache] = None,
633
+ inputs_embeds: Optional[torch.FloatTensor] = None,
634
+ labels: Optional[torch.LongTensor] = None,
635
+ use_cache: Optional[bool] = None,
636
+ cache_position: Optional[torch.LongTensor] = None,
637
+ logits_to_keep: Union[int, torch.Tensor] = 0,
638
+ token_type_ids: Optional[torch.Tensor] = None, # will be ignored
639
+ **kwargs: Unpack[TransformersKwargs],
640
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
641
+ outputs: MoeModelOutputWithPast = self.model(
642
+ input_ids=input_ids,
643
+ attention_mask=attention_mask,
644
+ position_ids=position_ids,
645
+ past_key_values=past_key_values,
646
+ inputs_embeds=inputs_embeds,
647
+ use_cache=use_cache,
648
+ cache_position=cache_position,
649
+ **kwargs,
650
+ )
651
+
652
+ hidden_states = outputs.last_hidden_state
653
+ # Only compute necessary logits
654
+ slice_indices = (
655
+ slice(-logits_to_keep, None)
656
+ if isinstance(logits_to_keep, int)
657
+ else logits_to_keep
658
+ )
659
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
660
+
661
+ loss = None
662
+ if labels is not None:
663
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
664
+
665
+
666
+ return MoeCausalLMOutputWithPast(
667
+ loss=loss,
668
+ logits=logits,
669
+ past_key_values=outputs.past_key_values,
670
+ hidden_states=outputs.hidden_states,
671
+ attentions=outputs.attentions,
672
+ router_logits=outputs.router_logits,
673
+ )
674
+
675
+
676
+ __all__ = [
677
+ "AfmoeForCausalLM",
678
+ "AfmoeModel",
679
+ "AfmoePreTrainedModel",
680
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|pad|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0058acf26a6e7228298b0c9fed2a87fcb3f6cb5f84752cfde101b9e68b380918
3
+ size 14614841
tokenizer_config.json ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<|begin_of_text|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|im_start|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<|eot_id|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<|start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<|channel|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<|message|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "8": {
71
+ "content": "<|end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "9": {
79
+ "content": "<|fitm_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "10": {
87
+ "content": "<|fitm_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "11": {
95
+ "content": "<|fitm_hole|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "12": {
103
+ "content": "<|pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "13": {
111
+ "content": "<think>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "14": {
119
+ "content": "</think>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "15": {
127
+ "content": "<|reserved_special_2|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "16": {
135
+ "content": "<|reserved_special_3|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "17": {
143
+ "content": "<|reserved_special_4|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "18": {
151
+ "content": "<|reserved_special_5|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "19": {
159
+ "content": "<|reserved_special_6|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "20": {
167
+ "content": "<|reserved_special_7|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "21": {
175
+ "content": "<|reserved_special_8|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "22": {
183
+ "content": "<|reserved_special_9|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "23": {
191
+ "content": "<|reserved_special_10|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "24": {
199
+ "content": "<|reserved_special_11|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "25": {
207
+ "content": "<|reserved_special_12|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "26": {
215
+ "content": "<|reserved_special_13|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "27": {
223
+ "content": "<|reserved_special_14|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "28": {
231
+ "content": "<|reserved_special_15|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "29": {
239
+ "content": "<|reserved_special_16|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "30": {
247
+ "content": "<|reserved_special_17|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "31": {
255
+ "content": "<|reserved_special_18|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ }
262
+ },
263
+ "bos_token": "<|begin_of_text|>",
264
+ "clean_up_tokenization_spaces": false,
265
+ "eos_token": "<|im_end|>",
266
+ "extra_special_tokens": {},
267
+ "model_max_length": 65536,
268
+ "pad_token": "<|pad|>",
269
+ "tokenizer_class": "PreTrainedTokenizerFast",
270
+ "use_default_system_prompt": false
271
+ }