--- license: mit tags: - code-quality - tensorflow - machine-learning - code-review - agentic-ai --- # AutoReview Agent - Code Quality Scorer A TensorFlow neural network trained to predict code quality scores (0-10). ## Model Details - **Framework**: TensorFlow/Keras - **Input**: 10 code features - **Output**: Quality score (0-1) - **Validation Loss**: 0.0006 - **Precision**: 100% ## Training - Dataset: 1000 code samples - Training samples: 800 - Validation samples: 200 - Hardware: GPU (Tesla T4) on Kaggle ## Usage ```python import tensorflow as tf import numpy as np # Load model model = tf.keras.models.load_model('code_quality_model.keras') # Extract features from code features = np.array([[200, 15, 1, 1, 5, 2, 0, 1, 3, 1]]) # Predict prediction = model.predict(features) quality_score = prediction[0][0] * 10 print(f"Code Quality: {quality_score:.1f}/10") ``` ## Project Part of AutoReview Agent - Autonomous Code Reviewer Technologies: - TensorFlow: Quality detection - Hugging Face: Model hosting - LangChain: Agentic reasoning - OpenRouter 70B: Complex analysis GitHub: https://github.com/aviral199/autoreview-agent --- Trained on Kaggle with GPU acceleration.