File size: 8,073 Bytes
818c18e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/usr/bin/env python3
# flake8: noqa
# Copyright      2022-2023  Xiaomi Corp.        (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:

./zipformer/export.py \
  --exp-dir ./zipformer/exp \
  --causal 1 \
  --chunk-size 16 \
  --left-context-frames 128 \
  --tokens data/lang_bpe_500/tokens.txt \
  --epoch 30 \
  --avg 9 \
  --jit 1

Usage of this script:

./zipformer/jit_pretrained_streaming.py \
  --nn-model-filename ./zipformer/exp-causal/jit_script_chunk_16_left_128.pt \
  --tokens ./data/lang_bpe_500/tokens.txt \
  /path/to/foo.wav \
"""

import argparse
import logging
from typing import List, Optional

import k2
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature


def get_parser():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--nn-model-filename",
        type=str,
        required=True,
        help="Path to the torchscript model jit_script.pt",
    )

    parser.add_argument(
        "--tokens",
        type=str,
        help="""Path to tokens.txt.""",
    )

    parser.add_argument(
        "--sample-rate",
        type=int,
        default=16000,
        help="The sample rate of the input sound file",
    )

    parser.add_argument(
        "sound_file",
        type=str,
        help="The input sound file(s) to transcribe. "
        "Supported formats are those supported by torchaudio.load(). "
        "For example, wav and flac are supported. "
        "The sample rate has to be 16kHz.",
    )

    return parser


def read_sound_files(
    filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
    """Read a list of sound files into a list 1-D float32 torch tensors.
    Args:
      filenames:
        A list of sound filenames.
      expected_sample_rate:
        The expected sample rate of the sound files.
    Returns:
      Return a list of 1-D float32 torch tensors.
    """
    ans = []
    for f in filenames:
        wave, sample_rate = torchaudio.load(f)
        assert (
            sample_rate == expected_sample_rate
        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
        # We use only the first channel
        ans.append(wave[0])
    return ans


def greedy_search(
    decoder: torch.jit.ScriptModule,
    joiner: torch.jit.ScriptModule,
    encoder_out: torch.Tensor,
    decoder_out: Optional[torch.Tensor] = None,
    hyp: Optional[List[int]] = None,
    device: torch.device = torch.device("cpu"),
):
    assert encoder_out.ndim == 2
    context_size = decoder.context_size
    blank_id = decoder.blank_id

    if decoder_out is None:
        assert hyp is None, hyp
        hyp = [blank_id] * context_size
        decoder_input = torch.tensor(hyp, dtype=torch.int32, device=device).unsqueeze(0)
        # decoder_input.shape (1,, 1 context_size)
        decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
    else:
        assert decoder_out.ndim == 2
        assert hyp is not None, hyp

    T = encoder_out.size(0)
    for i in range(T):
        cur_encoder_out = encoder_out[i : i + 1]
        joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0)
        y = joiner_out.argmax(dim=0).item()

        if y != blank_id:
            hyp.append(y)
            decoder_input = hyp[-context_size:]

            decoder_input = torch.tensor(
                decoder_input, dtype=torch.int32, device=device
            ).unsqueeze(0)
            decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)

    return hyp, decoder_out


def create_streaming_feature_extractor(sample_rate) -> OnlineFeature:
    """Create a CPU streaming feature extractor.

    At present, we assume it returns a fbank feature extractor with
    fixed options. In the future, we will support passing in the options
    from outside.

    Returns:
      Return a CPU streaming feature extractor.
    """
    opts = FbankOptions()
    opts.device = "cpu"
    opts.frame_opts.dither = 0
    opts.frame_opts.snip_edges = False
    opts.frame_opts.samp_freq = sample_rate
    opts.mel_opts.num_bins = 80
    opts.mel_opts.high_freq = -400
    return OnlineFbank(opts)


@torch.no_grad()
def main():
    parser = get_parser()
    args = parser.parse_args()
    logging.info(vars(args))

    device = torch.device("cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)

    logging.info(f"device: {device}")

    model = torch.jit.load(args.nn_model_filename)
    model.eval()
    model.to(device)

    encoder = model.encoder
    decoder = model.decoder
    joiner = model.joiner

    token_table = k2.SymbolTable.from_file(args.tokens)
    context_size = decoder.context_size

    logging.info("Constructing Fbank computer")
    online_fbank = create_streaming_feature_extractor(args.sample_rate)

    logging.info(f"Reading sound files: {args.sound_file}")
    wave_samples = read_sound_files(
        filenames=[args.sound_file],
        expected_sample_rate=args.sample_rate,
    )[0]
    logging.info(wave_samples.shape)

    logging.info("Decoding started")

    chunk_length = encoder.chunk_size * 2
    T = chunk_length + encoder.pad_length

    logging.info(f"chunk_length: {chunk_length}")
    logging.info(f"T: {T}")

    states = encoder.get_init_states(device=device)

    tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32)

    wave_samples = torch.cat([wave_samples, tail_padding])

    chunk = int(0.25 * args.sample_rate)  # 0.2 second
    num_processed_frames = 0

    hyp = None
    decoder_out = None

    start = 0
    while start < wave_samples.numel():
        logging.info(f"{start}/{wave_samples.numel()}")
        end = min(start + chunk, wave_samples.numel())
        samples = wave_samples[start:end]
        start += chunk
        online_fbank.accept_waveform(
            sampling_rate=args.sample_rate,
            waveform=samples,
        )
        while online_fbank.num_frames_ready - num_processed_frames >= T:
            frames = []
            for i in range(T):
                frames.append(online_fbank.get_frame(num_processed_frames + i))
            frames = torch.cat(frames, dim=0).to(device).unsqueeze(0)
            x_lens = torch.tensor([T], dtype=torch.int32, device=device)
            encoder_out, out_lens, states = encoder(
                features=frames,
                feature_lengths=x_lens,
                states=states,
            )
            num_processed_frames += chunk_length

            hyp, decoder_out = greedy_search(
                decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp, device=device
            )

    text = ""
    for i in hyp[context_size:]:
        text += token_table[i]
    text = text.replace("▁", " ").strip()

    logging.info(args.sound_file)
    logging.info(text)

    logging.info("Decoding Done")


torch.set_num_threads(4)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)
    main()