Upload modeling_qwen3_vl.py with huggingface_hub
Browse files- modeling_qwen3_vl.py +2021 -0
modeling_qwen3_vl.py
ADDED
|
@@ -0,0 +1,2021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/qwen3_vl/modular_qwen3_vl.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_qwen3_vl.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
+
# coding=utf-8
|
| 8 |
+
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
from typing import Any, Callable, Optional, Union, Dict
|
| 24 |
+
import gc
|
| 25 |
+
import math
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
import torch.nn as nn
|
| 29 |
+
import torch.nn.functional as F
|
| 30 |
+
import torch.distributed as dist
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 34 |
+
from transformers.generation import GenerationMixin
|
| 35 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 36 |
+
from transformers.masking_utils import create_causal_mask
|
| 37 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 38 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 39 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 40 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 41 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 42 |
+
from transformers.processing_utils import Unpack
|
| 43 |
+
from transformers.utils import TransformersKwargs, auto_docstring, is_torchdynamo_compiling
|
| 44 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 45 |
+
from transformers.utils.generic import check_model_inputs
|
| 46 |
+
from qwenvl.model.configuration_qwen3_vl import Qwen3VLConfig, Qwen3VLTextConfig, Qwen3VLVisionConfig
|
| 47 |
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
| 48 |
+
from qwenvl.model.modeling_whisper import WhisperEncoder
|
| 49 |
+
from qwenvl.model.ttt.ttt_layer import TTTWrapper, SSMGating
|
| 50 |
+
from qwenvl.model.ttt.configs import ModelConfig as TTTModelConfig
|
| 51 |
+
|
| 52 |
+
class Qwen3VLVisionMLP(nn.Module):
|
| 53 |
+
def __init__(self, config):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.hidden_size = config.hidden_size
|
| 56 |
+
self.intermediate_size = config.intermediate_size
|
| 57 |
+
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
| 58 |
+
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
|
| 59 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 60 |
+
|
| 61 |
+
def forward(self, hidden_state):
|
| 62 |
+
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state)))
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Qwen3VLVisionPatchEmbed(nn.Module):
|
| 66 |
+
def __init__(self, config) -> None:
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.patch_size = config.patch_size
|
| 69 |
+
self.temporal_patch_size = config.temporal_patch_size
|
| 70 |
+
self.in_channels = config.in_channels
|
| 71 |
+
self.embed_dim = config.hidden_size
|
| 72 |
+
|
| 73 |
+
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
|
| 74 |
+
self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True)
|
| 75 |
+
|
| 76 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 77 |
+
target_dtype = self.proj.weight.dtype
|
| 78 |
+
hidden_states = hidden_states.view(
|
| 79 |
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 80 |
+
)
|
| 81 |
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
| 82 |
+
return hidden_states
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class Qwen3VLVisionRotaryEmbedding(nn.Module):
|
| 86 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 87 |
+
|
| 88 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 89 |
+
super().__init__()
|
| 90 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 91 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 92 |
+
|
| 93 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 94 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 95 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 96 |
+
return freqs
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class Qwen3VLVisionPatchMerger(nn.Module):
|
| 100 |
+
def __init__(self, config: Qwen3VLVisionConfig, use_postshuffle_norm=False) -> None:
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2)
|
| 103 |
+
self.use_postshuffle_norm = use_postshuffle_norm
|
| 104 |
+
self.norm = nn.LayerNorm(self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6)
|
| 105 |
+
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 106 |
+
self.act_fn = nn.GELU()
|
| 107 |
+
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size)
|
| 108 |
+
|
| 109 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 110 |
+
x = self.norm(x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x).view(-1, self.hidden_size)
|
| 111 |
+
x = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def rotate_half(x):
|
| 116 |
+
"""Rotates half the hidden dims of the input."""
|
| 117 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 118 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 119 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def apply_rotary_pos_emb_vision(
|
| 123 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
| 124 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 125 |
+
orig_q_dtype = q.dtype
|
| 126 |
+
orig_k_dtype = k.dtype
|
| 127 |
+
q, k = q.float(), k.float()
|
| 128 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
| 129 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 130 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 131 |
+
q_embed = q_embed.to(orig_q_dtype)
|
| 132 |
+
k_embed = k_embed.to(orig_k_dtype)
|
| 133 |
+
return q_embed, k_embed
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 137 |
+
"""
|
| 138 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 139 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 140 |
+
"""
|
| 141 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 142 |
+
if n_rep == 1:
|
| 143 |
+
return hidden_states
|
| 144 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 145 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def eager_attention_forward(
|
| 149 |
+
module: nn.Module,
|
| 150 |
+
query: torch.Tensor,
|
| 151 |
+
key: torch.Tensor,
|
| 152 |
+
value: torch.Tensor,
|
| 153 |
+
attention_mask: Optional[torch.Tensor],
|
| 154 |
+
scaling: float,
|
| 155 |
+
dropout: float = 0.0,
|
| 156 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 157 |
+
):
|
| 158 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 159 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 160 |
+
|
| 161 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 162 |
+
if attention_mask is not None:
|
| 163 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 164 |
+
attn_weights = attn_weights + causal_mask
|
| 165 |
+
|
| 166 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 167 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 168 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 169 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 170 |
+
|
| 171 |
+
return attn_output, attn_weights
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
class Qwen3VLVisionAttention(nn.Module):
|
| 175 |
+
def __init__(self, config: Qwen3VLVisionConfig) -> None:
|
| 176 |
+
super().__init__()
|
| 177 |
+
self.dim = config.hidden_size
|
| 178 |
+
self.num_heads = config.num_heads
|
| 179 |
+
self.head_dim = self.dim // self.num_heads
|
| 180 |
+
self.num_key_value_groups = 1 # needed for eager attention
|
| 181 |
+
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
|
| 182 |
+
self.proj = nn.Linear(self.dim, self.dim)
|
| 183 |
+
self.scaling = self.head_dim**-0.5
|
| 184 |
+
self.config = config
|
| 185 |
+
self.attention_dropout = 0.0
|
| 186 |
+
self.is_causal = False
|
| 187 |
+
|
| 188 |
+
def forward(
|
| 189 |
+
self,
|
| 190 |
+
hidden_states: torch.Tensor,
|
| 191 |
+
cu_seqlens: torch.Tensor,
|
| 192 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 193 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 194 |
+
**kwargs,
|
| 195 |
+
) -> torch.Tensor:
|
| 196 |
+
seq_length = hidden_states.shape[0]
|
| 197 |
+
query_states, key_states, value_states = (
|
| 198 |
+
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 199 |
+
)
|
| 200 |
+
cos, sin = position_embeddings
|
| 201 |
+
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
|
| 202 |
+
|
| 203 |
+
query_states = query_states.transpose(0, 1).unsqueeze(0)
|
| 204 |
+
key_states = key_states.transpose(0, 1).unsqueeze(0)
|
| 205 |
+
value_states = value_states.transpose(0, 1).unsqueeze(0)
|
| 206 |
+
|
| 207 |
+
attention_interface: Callable = eager_attention_forward
|
| 208 |
+
if self.config._attn_implementation != "eager":
|
| 209 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 210 |
+
|
| 211 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 212 |
+
# Flash Attention 2: Use cu_seqlens for variable length attention
|
| 213 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
| 214 |
+
attn_output, _ = attention_interface(
|
| 215 |
+
self,
|
| 216 |
+
query_states,
|
| 217 |
+
key_states,
|
| 218 |
+
value_states,
|
| 219 |
+
attention_mask=None,
|
| 220 |
+
scaling=self.scaling,
|
| 221 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 222 |
+
cu_seq_lens_q=cu_seqlens,
|
| 223 |
+
cu_seq_lens_k=cu_seqlens,
|
| 224 |
+
max_length_q=max_seqlen,
|
| 225 |
+
max_length_k=max_seqlen,
|
| 226 |
+
is_causal=False,
|
| 227 |
+
**kwargs,
|
| 228 |
+
)
|
| 229 |
+
else:
|
| 230 |
+
# Other implementations: Process each chunk separately
|
| 231 |
+
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
|
| 232 |
+
splits = [
|
| 233 |
+
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
|
| 234 |
+
]
|
| 235 |
+
|
| 236 |
+
attn_outputs = [
|
| 237 |
+
attention_interface(
|
| 238 |
+
self,
|
| 239 |
+
q,
|
| 240 |
+
k,
|
| 241 |
+
v,
|
| 242 |
+
attention_mask=None,
|
| 243 |
+
scaling=self.scaling,
|
| 244 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 245 |
+
is_causal=False,
|
| 246 |
+
**kwargs,
|
| 247 |
+
)[0]
|
| 248 |
+
for q, k, v in zip(*splits)
|
| 249 |
+
]
|
| 250 |
+
attn_output = torch.cat(attn_outputs, dim=1)
|
| 251 |
+
|
| 252 |
+
attn_output = attn_output.reshape(seq_length, -1).contiguous()
|
| 253 |
+
attn_output = self.proj(attn_output)
|
| 254 |
+
return attn_output
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class Qwen3VLVisionBlock(GradientCheckpointingLayer):
|
| 258 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6)
|
| 261 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6)
|
| 262 |
+
self.attn = Qwen3VLVisionAttention(config=config)
|
| 263 |
+
self.mlp = Qwen3VLVisionMLP(config=config)
|
| 264 |
+
|
| 265 |
+
def forward(
|
| 266 |
+
self,
|
| 267 |
+
hidden_states: torch.Tensor,
|
| 268 |
+
cu_seqlens: torch.Tensor,
|
| 269 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 270 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 271 |
+
**kwargs,
|
| 272 |
+
) -> torch.Tensor:
|
| 273 |
+
hidden_states = hidden_states + self.attn(
|
| 274 |
+
self.norm1(hidden_states),
|
| 275 |
+
cu_seqlens=cu_seqlens,
|
| 276 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 277 |
+
position_embeddings=position_embeddings,
|
| 278 |
+
**kwargs,
|
| 279 |
+
)
|
| 280 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
| 281 |
+
return hidden_states
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class Qwen3VLTextRotaryEmbedding(nn.Module):
|
| 285 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 286 |
+
|
| 287 |
+
def __init__(self, config: Qwen3VLTextConfig, device=None):
|
| 288 |
+
super().__init__()
|
| 289 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 290 |
+
self.rope_type = config.rope_scaling.get("rope_type", "default")
|
| 291 |
+
else:
|
| 292 |
+
self.rope_type = "default"
|
| 293 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 294 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 295 |
+
|
| 296 |
+
self.config = config
|
| 297 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 298 |
+
|
| 299 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 300 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 301 |
+
self.original_inv_freq = self.inv_freq
|
| 302 |
+
|
| 303 |
+
self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20])
|
| 304 |
+
|
| 305 |
+
def apply_interleaved_mrope(self, freqs, mrope_section):
|
| 306 |
+
"""Apply interleaved MRoPE to 3D rotary embeddings.
|
| 307 |
+
Reorganizes frequency layout from chunked [TTT...HHH...WWW] to
|
| 308 |
+
interleaved [THTHWHTHW...TT], preserving frequency continuity.
|
| 309 |
+
args:
|
| 310 |
+
x: (3, bs, seq_len, head_dim // 2)
|
| 311 |
+
mrope_section: (3,)
|
| 312 |
+
returns:
|
| 313 |
+
x_t: (bs, seq_len, head_dim // 2)
|
| 314 |
+
"""
|
| 315 |
+
freqs_t = freqs[0] # just overwrite the first dimension T
|
| 316 |
+
for dim, offset in enumerate((1, 2), start=1): # H, W
|
| 317 |
+
length = mrope_section[dim] * 3
|
| 318 |
+
idx = slice(offset, length, 3)
|
| 319 |
+
freqs_t[..., idx] = freqs[dim, ..., idx]
|
| 320 |
+
return freqs_t
|
| 321 |
+
|
| 322 |
+
@torch.no_grad()
|
| 323 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 324 |
+
def forward(self, x, position_ids):
|
| 325 |
+
# In contrast to other models, Qwen3VL has different position ids for the grids
|
| 326 |
+
# So we expand the inv_freq to shape (3, ...)
|
| 327 |
+
if position_ids.ndim == 2:
|
| 328 |
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
| 329 |
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
| 330 |
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
| 331 |
+
|
| 332 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 333 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 334 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
| 335 |
+
freqs = self.apply_interleaved_mrope(freqs, self.mrope_section)
|
| 336 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 337 |
+
cos = emb.cos() * self.attention_scaling
|
| 338 |
+
sin = emb.sin() * self.attention_scaling
|
| 339 |
+
|
| 340 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 344 |
+
class Qwen3VLTextRMSNorm(nn.Module):
|
| 345 |
+
def __init__(self, hidden_size, eps: float = 1e-6) -> None:
|
| 346 |
+
"""
|
| 347 |
+
Qwen3VLTextRMSNorm is equivalent to T5LayerNorm
|
| 348 |
+
"""
|
| 349 |
+
super().__init__()
|
| 350 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 351 |
+
self.variance_epsilon = eps
|
| 352 |
+
|
| 353 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 354 |
+
input_dtype = hidden_states.dtype
|
| 355 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 356 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 357 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 358 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 359 |
+
|
| 360 |
+
def extra_repr(self):
|
| 361 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 365 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
q (`torch.Tensor`): The query tensor.
|
| 369 |
+
k (`torch.Tensor`): The key tensor.
|
| 370 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 371 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 372 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 373 |
+
Deprecated and unused.
|
| 374 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 375 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 376 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 377 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 378 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 379 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 380 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 381 |
+
Returns:
|
| 382 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 383 |
+
"""
|
| 384 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 385 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 386 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 387 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 388 |
+
return q_embed, k_embed
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class Qwen3VLTextAttention(nn.Module):
|
| 392 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 393 |
+
|
| 394 |
+
def __init__(self, config: Qwen3VLTextConfig, layer_idx: int):
|
| 395 |
+
super().__init__()
|
| 396 |
+
self.config = config
|
| 397 |
+
self.layer_idx = layer_idx
|
| 398 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 399 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 400 |
+
self.scaling = self.head_dim**-0.5
|
| 401 |
+
self.attention_dropout = config.attention_dropout
|
| 402 |
+
self.is_causal = True
|
| 403 |
+
|
| 404 |
+
self.q_proj = nn.Linear(
|
| 405 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 406 |
+
)
|
| 407 |
+
self.k_proj = nn.Linear(
|
| 408 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 409 |
+
)
|
| 410 |
+
self.v_proj = nn.Linear(
|
| 411 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 412 |
+
)
|
| 413 |
+
self.o_proj = nn.Linear(
|
| 414 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 415 |
+
)
|
| 416 |
+
self.q_norm = Qwen3VLTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
| 417 |
+
self.k_norm = Qwen3VLTextRMSNorm(
|
| 418 |
+
self.head_dim, eps=config.rms_norm_eps
|
| 419 |
+
) # thus post q_norm does not need reshape
|
| 420 |
+
|
| 421 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
hidden_states: torch.Tensor,
|
| 425 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 426 |
+
attention_mask: Optional[torch.Tensor],
|
| 427 |
+
past_key_values: Optional[Cache] = None,
|
| 428 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 429 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 430 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 431 |
+
input_shape = hidden_states.shape[:-1]
|
| 432 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 433 |
+
|
| 434 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 435 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 436 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 437 |
+
|
| 438 |
+
cos, sin = position_embeddings
|
| 439 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 440 |
+
|
| 441 |
+
if past_key_values is not None:
|
| 442 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 443 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 444 |
+
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 445 |
+
|
| 446 |
+
attention_interface: Callable = eager_attention_forward
|
| 447 |
+
if self.config._attn_implementation != "eager":
|
| 448 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 449 |
+
|
| 450 |
+
attn_output, attn_weights = attention_interface(
|
| 451 |
+
self,
|
| 452 |
+
query_states,
|
| 453 |
+
key_states,
|
| 454 |
+
value_states,
|
| 455 |
+
attention_mask,
|
| 456 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 457 |
+
scaling=self.scaling,
|
| 458 |
+
**kwargs,
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 462 |
+
attn_output = self.o_proj(attn_output)
|
| 463 |
+
return attn_output, attn_weights
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
class Qwen3VLTextMLP(nn.Module):
|
| 467 |
+
def __init__(self, config):
|
| 468 |
+
super().__init__()
|
| 469 |
+
self.config = config
|
| 470 |
+
self.hidden_size = config.hidden_size
|
| 471 |
+
self.intermediate_size = config.intermediate_size
|
| 472 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 473 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 474 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 475 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 476 |
+
|
| 477 |
+
def forward(self, x):
|
| 478 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 479 |
+
return down_proj
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
class Qwen3VLTextDecoderLayer(GradientCheckpointingLayer):
|
| 483 |
+
def __init__(self, config: Qwen3VLTextConfig, layer_idx: int):
|
| 484 |
+
super().__init__()
|
| 485 |
+
self.hidden_size = config.hidden_size
|
| 486 |
+
|
| 487 |
+
self.self_attn = Qwen3VLTextAttention(config=config, layer_idx=layer_idx)
|
| 488 |
+
|
| 489 |
+
self.mlp = Qwen3VLTextMLP(config)
|
| 490 |
+
self.input_layernorm = Qwen3VLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 491 |
+
self.post_attention_layernorm = Qwen3VLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 492 |
+
|
| 493 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 494 |
+
def forward(
|
| 495 |
+
self,
|
| 496 |
+
hidden_states: torch.Tensor,
|
| 497 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 498 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 499 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 500 |
+
past_key_values: Optional[Cache] = None,
|
| 501 |
+
use_cache: Optional[bool] = False,
|
| 502 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 503 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 504 |
+
) -> torch.Tensor:
|
| 505 |
+
residual = hidden_states
|
| 506 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 507 |
+
# Self Attention
|
| 508 |
+
hidden_states, _ = self.self_attn(
|
| 509 |
+
hidden_states=hidden_states,
|
| 510 |
+
attention_mask=attention_mask,
|
| 511 |
+
position_ids=position_ids,
|
| 512 |
+
past_key_values=past_key_values,
|
| 513 |
+
use_cache=use_cache,
|
| 514 |
+
cache_position=cache_position,
|
| 515 |
+
position_embeddings=position_embeddings,
|
| 516 |
+
**kwargs,
|
| 517 |
+
)
|
| 518 |
+
hidden_states = residual + hidden_states
|
| 519 |
+
|
| 520 |
+
# Fully Connected
|
| 521 |
+
residual = hidden_states
|
| 522 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 523 |
+
hidden_states = self.mlp(hidden_states)
|
| 524 |
+
hidden_states = residual + hidden_states
|
| 525 |
+
return hidden_states
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
@dataclass
|
| 529 |
+
@auto_docstring(
|
| 530 |
+
custom_intro="""
|
| 531 |
+
Base class for Llava outputs, with hidden states and attentions.
|
| 532 |
+
"""
|
| 533 |
+
)
|
| 534 |
+
class Qwen3VLModelOutputWithPast(ModelOutput):
|
| 535 |
+
r"""
|
| 536 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 537 |
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
| 538 |
+
|
| 539 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 540 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 541 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 542 |
+
The rope index difference between sequence length and multimodal rope.
|
| 543 |
+
"""
|
| 544 |
+
|
| 545 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
| 546 |
+
past_key_values: Optional[Cache] = None
|
| 547 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 548 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 549 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 550 |
+
labels: Optional[torch.LongTensor] = None
|
| 551 |
+
memory_triplets: Optional[dict] = None
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
@auto_docstring
|
| 555 |
+
class Qwen3VLPreTrainedModel(PreTrainedModel):
|
| 556 |
+
config: Qwen3VLConfig
|
| 557 |
+
base_model_prefix = "model"
|
| 558 |
+
supports_gradient_checkpointing = True
|
| 559 |
+
_no_split_modules = ["Qwen3VLTextDecoderLayer", "Qwen3VLVisionBlock"]
|
| 560 |
+
_skip_keys_device_placement = "past_key_values"
|
| 561 |
+
_supports_flash_attn = True
|
| 562 |
+
_supports_sdpa = True
|
| 563 |
+
|
| 564 |
+
_can_compile_fullgraph = True
|
| 565 |
+
_supports_attention_backend = True
|
| 566 |
+
_can_record_outputs = {
|
| 567 |
+
"hidden_states": Qwen3VLTextDecoderLayer,
|
| 568 |
+
"attentions": Qwen3VLTextAttention,
|
| 569 |
+
}
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
class Qwen3VLVisionModel(Qwen3VLPreTrainedModel):
|
| 573 |
+
config: Qwen3VLVisionConfig
|
| 574 |
+
_no_split_modules = ["Qwen3VLVisionBlock"]
|
| 575 |
+
|
| 576 |
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
| 577 |
+
super().__init__(config, *inputs, **kwargs)
|
| 578 |
+
self.spatial_merge_size = config.spatial_merge_size
|
| 579 |
+
self.patch_size = config.patch_size
|
| 580 |
+
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
|
| 581 |
+
|
| 582 |
+
self.patch_embed = Qwen3VLVisionPatchEmbed(
|
| 583 |
+
config=config,
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size)
|
| 587 |
+
self.num_grid_per_side = int(config.num_position_embeddings**0.5)
|
| 588 |
+
|
| 589 |
+
head_dim = config.hidden_size // config.num_heads
|
| 590 |
+
self.rotary_pos_emb = Qwen3VLVisionRotaryEmbedding(head_dim // 2)
|
| 591 |
+
|
| 592 |
+
self.blocks = nn.ModuleList([Qwen3VLVisionBlock(config) for _ in range(config.depth)])
|
| 593 |
+
self.merger = Qwen3VLVisionPatchMerger(
|
| 594 |
+
config=config,
|
| 595 |
+
use_postshuffle_norm=False,
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
self.deepstack_visual_indexes = config.deepstack_visual_indexes
|
| 599 |
+
self.deepstack_merger_list = nn.ModuleList(
|
| 600 |
+
[
|
| 601 |
+
Qwen3VLVisionPatchMerger(
|
| 602 |
+
config=config,
|
| 603 |
+
use_postshuffle_norm=True,
|
| 604 |
+
)
|
| 605 |
+
for _ in range(len(config.deepstack_visual_indexes))
|
| 606 |
+
]
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
self.gradient_checkpointing = False
|
| 610 |
+
|
| 611 |
+
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
| 612 |
+
merge_size = self.spatial_merge_size
|
| 613 |
+
|
| 614 |
+
max_hw = int(grid_thw[:, 1:].max().item())
|
| 615 |
+
freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
|
| 616 |
+
device = freq_table.device
|
| 617 |
+
|
| 618 |
+
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
|
| 619 |
+
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)
|
| 620 |
+
|
| 621 |
+
offset = 0
|
| 622 |
+
for num_frames, height, width in grid_thw:
|
| 623 |
+
merged_h, merged_w = height // merge_size, width // merge_size
|
| 624 |
+
|
| 625 |
+
block_rows = torch.arange(merged_h, device=device) # block row indices
|
| 626 |
+
block_cols = torch.arange(merged_w, device=device) # block col indices
|
| 627 |
+
intra_row = torch.arange(merge_size, device=device) # intra-block row offsets
|
| 628 |
+
intra_col = torch.arange(merge_size, device=device) # intra-block col offsets
|
| 629 |
+
|
| 630 |
+
# Compute full-resolution positions
|
| 631 |
+
row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None]
|
| 632 |
+
col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :]
|
| 633 |
+
|
| 634 |
+
row_idx = row_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1)
|
| 635 |
+
col_idx = col_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1)
|
| 636 |
+
|
| 637 |
+
coords = torch.stack((row_idx, col_idx), dim=-1)
|
| 638 |
+
|
| 639 |
+
if num_frames > 1:
|
| 640 |
+
coords = coords.repeat(num_frames, 1)
|
| 641 |
+
|
| 642 |
+
num_tokens = coords.shape[0]
|
| 643 |
+
pos_ids[offset : offset + num_tokens] = coords
|
| 644 |
+
offset += num_tokens
|
| 645 |
+
|
| 646 |
+
embeddings = freq_table[pos_ids] # lookup rotary embeddings
|
| 647 |
+
embeddings = embeddings.flatten(1)
|
| 648 |
+
return embeddings
|
| 649 |
+
|
| 650 |
+
def fast_pos_embed_interpolate(self, grid_thw):
|
| 651 |
+
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2]
|
| 652 |
+
|
| 653 |
+
idx_list = [[] for _ in range(4)]
|
| 654 |
+
weight_list = [[] for _ in range(4)]
|
| 655 |
+
|
| 656 |
+
for t, h, w in zip(grid_ts, grid_hs, grid_ws):
|
| 657 |
+
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h)
|
| 658 |
+
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w)
|
| 659 |
+
|
| 660 |
+
h_idxs_floor = h_idxs.int()
|
| 661 |
+
w_idxs_floor = w_idxs.int()
|
| 662 |
+
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
|
| 663 |
+
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
|
| 664 |
+
|
| 665 |
+
dh = h_idxs - h_idxs_floor
|
| 666 |
+
dw = w_idxs - w_idxs_floor
|
| 667 |
+
|
| 668 |
+
base_h = h_idxs_floor * self.num_grid_per_side
|
| 669 |
+
base_h_ceil = h_idxs_ceil * self.num_grid_per_side
|
| 670 |
+
|
| 671 |
+
indices = [
|
| 672 |
+
(base_h[None].T + w_idxs_floor[None]).flatten(),
|
| 673 |
+
(base_h[None].T + w_idxs_ceil[None]).flatten(),
|
| 674 |
+
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(),
|
| 675 |
+
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(),
|
| 676 |
+
]
|
| 677 |
+
|
| 678 |
+
weights = [
|
| 679 |
+
((1 - dh)[None].T * (1 - dw)[None]).flatten(),
|
| 680 |
+
((1 - dh)[None].T * dw[None]).flatten(),
|
| 681 |
+
(dh[None].T * (1 - dw)[None]).flatten(),
|
| 682 |
+
(dh[None].T * dw[None]).flatten(),
|
| 683 |
+
]
|
| 684 |
+
|
| 685 |
+
for i in range(4):
|
| 686 |
+
idx_list[i].extend(indices[i].tolist())
|
| 687 |
+
weight_list[i].extend(weights[i].tolist())
|
| 688 |
+
|
| 689 |
+
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device)
|
| 690 |
+
weight_tensor = torch.tensor(
|
| 691 |
+
weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device
|
| 692 |
+
)
|
| 693 |
+
pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
|
| 694 |
+
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3]
|
| 695 |
+
|
| 696 |
+
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)])
|
| 697 |
+
|
| 698 |
+
patch_pos_embeds_permute = []
|
| 699 |
+
merge_size = self.config.spatial_merge_size
|
| 700 |
+
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws):
|
| 701 |
+
pos_embed = pos_embed.repeat(t, 1)
|
| 702 |
+
pos_embed = (
|
| 703 |
+
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1)
|
| 704 |
+
.permute(0, 1, 3, 2, 4, 5)
|
| 705 |
+
.flatten(0, 4)
|
| 706 |
+
)
|
| 707 |
+
patch_pos_embeds_permute.append(pos_embed)
|
| 708 |
+
patch_pos_embeds = torch.cat(patch_pos_embeds_permute)
|
| 709 |
+
return patch_pos_embeds
|
| 710 |
+
|
| 711 |
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 712 |
+
"""
|
| 713 |
+
Args:
|
| 714 |
+
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
|
| 715 |
+
The final hidden states of the model.
|
| 716 |
+
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
|
| 717 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 718 |
+
|
| 719 |
+
Returns:
|
| 720 |
+
`torch.Tensor`: hidden_states.
|
| 721 |
+
"""
|
| 722 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 723 |
+
|
| 724 |
+
pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
|
| 725 |
+
hidden_states = hidden_states + pos_embeds
|
| 726 |
+
|
| 727 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 728 |
+
|
| 729 |
+
seq_len, _ = hidden_states.size()
|
| 730 |
+
hidden_states = hidden_states.reshape(seq_len, -1)
|
| 731 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
| 732 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 733 |
+
position_embeddings = (emb.cos(), emb.sin())
|
| 734 |
+
|
| 735 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
| 736 |
+
dim=0,
|
| 737 |
+
# Select dtype based on the following factors:
|
| 738 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
| 739 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
| 740 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
| 741 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 742 |
+
)
|
| 743 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 744 |
+
|
| 745 |
+
deepstack_feature_lists = []
|
| 746 |
+
for layer_num, blk in enumerate(self.blocks):
|
| 747 |
+
hidden_states = blk(
|
| 748 |
+
hidden_states,
|
| 749 |
+
cu_seqlens=cu_seqlens,
|
| 750 |
+
position_embeddings=position_embeddings,
|
| 751 |
+
**kwargs,
|
| 752 |
+
)
|
| 753 |
+
if layer_num in self.deepstack_visual_indexes:
|
| 754 |
+
deepstack_feature = self.deepstack_merger_list[self.deepstack_visual_indexes.index(layer_num)](
|
| 755 |
+
hidden_states
|
| 756 |
+
)
|
| 757 |
+
deepstack_feature_lists.append(deepstack_feature)
|
| 758 |
+
|
| 759 |
+
hidden_states = self.merger(hidden_states)
|
| 760 |
+
|
| 761 |
+
return hidden_states, deepstack_feature_lists
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
@auto_docstring(
|
| 765 |
+
custom_intro=(
|
| 766 |
+
"Text part of Qwen3VL, "
|
| 767 |
+
"not a pure text-only model, as DeepStack integrates visual features into the early hidden states."
|
| 768 |
+
)
|
| 769 |
+
)
|
| 770 |
+
class Qwen3VLTextModel(Qwen3VLPreTrainedModel):
|
| 771 |
+
config: Qwen3VLTextConfig
|
| 772 |
+
_no_split_modules = ["Qwen3VLTextDecoderLayer"]
|
| 773 |
+
|
| 774 |
+
def __init__(self, config: Qwen3VLTextConfig):
|
| 775 |
+
super().__init__(config)
|
| 776 |
+
self.padding_idx = config.pad_token_id
|
| 777 |
+
self.vocab_size = config.vocab_size
|
| 778 |
+
|
| 779 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 780 |
+
self.layers = nn.ModuleList(
|
| 781 |
+
[Qwen3VLTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 782 |
+
)
|
| 783 |
+
self.norm = Qwen3VLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 784 |
+
self.rotary_emb = Qwen3VLTextRotaryEmbedding(config=config)
|
| 785 |
+
self.gradient_checkpointing = False
|
| 786 |
+
self.search_type = "none"
|
| 787 |
+
self.workingmemsize = 0
|
| 788 |
+
|
| 789 |
+
# Initialize weights and apply final processing
|
| 790 |
+
self.post_init()
|
| 791 |
+
|
| 792 |
+
@check_model_inputs
|
| 793 |
+
@auto_docstring
|
| 794 |
+
def forward(
|
| 795 |
+
self,
|
| 796 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 797 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 798 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 799 |
+
past_key_values: Optional[Cache] = None,
|
| 800 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 801 |
+
use_cache: Optional[bool] = None,
|
| 802 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 803 |
+
# args for deepstack
|
| 804 |
+
visual_pos_masks: Optional[torch.Tensor] = None,
|
| 805 |
+
deepstack_visual_embeds: Optional[list[torch.Tensor]] = None,
|
| 806 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 807 |
+
) -> Union[tuple, BaseModelOutputWithPast]:
|
| 808 |
+
r"""
|
| 809 |
+
visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*):
|
| 810 |
+
The mask of the visual positions.
|
| 811 |
+
deepstack_visual_embeds (`list[torch.Tensor]`, *optional*):
|
| 812 |
+
The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim).
|
| 813 |
+
The feature is extracted from the different visual encoder layers, and fed to the decoder
|
| 814 |
+
hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334).
|
| 815 |
+
"""
|
| 816 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 817 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 818 |
+
|
| 819 |
+
# torch.jit.trace() doesn't support cache objects in the output
|
| 820 |
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
| 821 |
+
past_key_values = DynamicCache(config=self.config)
|
| 822 |
+
|
| 823 |
+
if inputs_embeds is None:
|
| 824 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 825 |
+
|
| 826 |
+
if cache_position is None:
|
| 827 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 828 |
+
cache_position = torch.arange(
|
| 829 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
# the hard coded `3` is for temporal, height and width.
|
| 833 |
+
if position_ids is None:
|
| 834 |
+
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
| 835 |
+
elif position_ids.ndim == 2:
|
| 836 |
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
| 837 |
+
|
| 838 |
+
if position_ids.ndim == 3 and position_ids.shape[0] == 4:
|
| 839 |
+
text_position_ids = position_ids[0]
|
| 840 |
+
position_ids = position_ids[1:]
|
| 841 |
+
else:
|
| 842 |
+
text_position_ids = position_ids[0]
|
| 843 |
+
|
| 844 |
+
attention_mask = create_causal_mask(
|
| 845 |
+
config=self.config,
|
| 846 |
+
input_embeds=inputs_embeds,
|
| 847 |
+
attention_mask=attention_mask,
|
| 848 |
+
cache_position=cache_position,
|
| 849 |
+
past_key_values=past_key_values,
|
| 850 |
+
position_ids=text_position_ids,
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
hidden_states = inputs_embeds
|
| 854 |
+
|
| 855 |
+
# create position embeddings to be shared across the decoder layers
|
| 856 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 857 |
+
|
| 858 |
+
# decoder layers
|
| 859 |
+
for layer_idx, decoder_layer in enumerate(self.layers):
|
| 860 |
+
layer_outputs = decoder_layer(
|
| 861 |
+
hidden_states,
|
| 862 |
+
attention_mask=attention_mask,
|
| 863 |
+
position_ids=text_position_ids,
|
| 864 |
+
past_key_values=past_key_values,
|
| 865 |
+
cache_position=cache_position,
|
| 866 |
+
position_embeddings=position_embeddings,
|
| 867 |
+
**kwargs,
|
| 868 |
+
)
|
| 869 |
+
hidden_states = layer_outputs
|
| 870 |
+
|
| 871 |
+
# add visual features to the hidden states of first several layers
|
| 872 |
+
if deepstack_visual_embeds is not None and layer_idx in range(len(deepstack_visual_embeds)):
|
| 873 |
+
hidden_states = self._deepstack_process(
|
| 874 |
+
hidden_states,
|
| 875 |
+
visual_pos_masks,
|
| 876 |
+
deepstack_visual_embeds[layer_idx],
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
hidden_states = self.norm(hidden_states)
|
| 880 |
+
|
| 881 |
+
return BaseModelOutputWithPast(
|
| 882 |
+
last_hidden_state=hidden_states,
|
| 883 |
+
past_key_values=past_key_values,
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
def _deepstack_process(
|
| 887 |
+
self, hidden_states: torch.Tensor, visual_pos_masks: torch.Tensor, visual_embeds: torch.Tensor
|
| 888 |
+
):
|
| 889 |
+
visual_pos_masks = visual_pos_masks.to(hidden_states.device)
|
| 890 |
+
visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype)
|
| 891 |
+
local_this = hidden_states[visual_pos_masks, :].clone() + visual_embeds
|
| 892 |
+
hidden_states[visual_pos_masks, :] = local_this
|
| 893 |
+
return hidden_states
|
| 894 |
+
|
| 895 |
+
|
| 896 |
+
@auto_docstring
|
| 897 |
+
class Qwen3VLModel(Qwen3VLPreTrainedModel):
|
| 898 |
+
base_model_prefix = ""
|
| 899 |
+
_checkpoint_conversion_mapping = {}
|
| 900 |
+
# Reference: fix gemma3 grad acc #37208
|
| 901 |
+
accepts_loss_kwargs = False
|
| 902 |
+
config: Qwen3VLConfig
|
| 903 |
+
_no_split_modules = ["Qwen3VLTextDecoderLayer", "Qwen3VLVisionBlock"]
|
| 904 |
+
|
| 905 |
+
def __init__(self, config):
|
| 906 |
+
super().__init__(config)
|
| 907 |
+
self.visual = Qwen3VLVisionModel._from_config(config.vision_config)
|
| 908 |
+
self.config = config
|
| 909 |
+
self.audio = WhisperEncoder._from_config(
|
| 910 |
+
config.audio_config, attn_implementation=config._attn_implementation
|
| 911 |
+
)
|
| 912 |
+
self.language_model = Qwen3VLTextModel._from_config(config.text_config)
|
| 913 |
+
self.rope_deltas = None # cache rope_deltas here
|
| 914 |
+
self.fixed_memory_size = 0
|
| 915 |
+
self.fixed_memory_size_audio = 0
|
| 916 |
+
self.stepsize = 0
|
| 917 |
+
self.ttt_type = "simsample"
|
| 918 |
+
self.search_type = "none"
|
| 919 |
+
|
| 920 |
+
# Initialize weights and apply final processing
|
| 921 |
+
self.post_init()
|
| 922 |
+
|
| 923 |
+
def init_ttt_layers(
|
| 924 |
+
self,
|
| 925 |
+
num_heads=8,
|
| 926 |
+
ttt_gating=True,
|
| 927 |
+
ttt_minibatch_size=1024,
|
| 928 |
+
ttt_cg_type="ttt_mlp_cg",
|
| 929 |
+
CG_max_iter=0,
|
| 930 |
+
ttt_hidden_size=4,
|
| 931 |
+
ttt_base_lr=0.1,
|
| 932 |
+
freeze_ttt=False,
|
| 933 |
+
memgroupsize=0,
|
| 934 |
+
workingmemsize=0,
|
| 935 |
+
):
|
| 936 |
+
hidden_size = self.config.text_config.hidden_size
|
| 937 |
+
total_embed_num = len(self.config.vision_config.deepstack_visual_indexes) + 1
|
| 938 |
+
# model_dim = hidden_size * total_embed_num
|
| 939 |
+
self.ttt_configs = TTTModelConfig(
|
| 940 |
+
model_dim=hidden_size,
|
| 941 |
+
num_heads=num_heads,
|
| 942 |
+
num_layers=1,
|
| 943 |
+
ttt_base_lr=ttt_base_lr,
|
| 944 |
+
mini_batch_size=ttt_minibatch_size,
|
| 945 |
+
ssm_layer=ttt_cg_type,
|
| 946 |
+
ttt_hidden_size=ttt_hidden_size,
|
| 947 |
+
)
|
| 948 |
+
self.ttt_minibatch_size = ttt_minibatch_size
|
| 949 |
+
self.ttt_layers = TTTWrapper(self.ttt_configs, CG_max_iter=CG_max_iter)
|
| 950 |
+
self.ttt_use_gating = ttt_gating
|
| 951 |
+
if ttt_gating:
|
| 952 |
+
self.ttt_gating = SSMGating(hidden_size)
|
| 953 |
+
self.use_ttt = True
|
| 954 |
+
self.freeze_ttt = freeze_ttt
|
| 955 |
+
self.memgroupsize = memgroupsize
|
| 956 |
+
|
| 957 |
+
def init_mem_search(self, search_type, workingmemsize=0):
|
| 958 |
+
self.hidden_size = self.config.text_config.hidden_size
|
| 959 |
+
if "attn" in search_type:
|
| 960 |
+
self.search_query = nn.Parameter(torch.randn(self.hidden_size))
|
| 961 |
+
self.search_alpha = nn.Parameter(torch.zeros(1))
|
| 962 |
+
self.search_type = search_type
|
| 963 |
+
self.workingmemsize = workingmemsize
|
| 964 |
+
if "kvcache" in self.search_type:
|
| 965 |
+
self.language_model.search_type = self.search_type
|
| 966 |
+
self.language_model.workingmemsize = self.workingmemsize
|
| 967 |
+
|
| 968 |
+
def get_input_embeddings(self):
|
| 969 |
+
return self.language_model.get_input_embeddings()
|
| 970 |
+
|
| 971 |
+
def set_input_embeddings(self, value):
|
| 972 |
+
self.language_model.set_input_embeddings(value)
|
| 973 |
+
|
| 974 |
+
def set_decoder(self, decoder):
|
| 975 |
+
self.language_model = decoder
|
| 976 |
+
|
| 977 |
+
def get_decoder(self):
|
| 978 |
+
return self.language_model
|
| 979 |
+
|
| 980 |
+
def get_rope_index(
|
| 981 |
+
self,
|
| 982 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 983 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 984 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 985 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 986 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 987 |
+
"""Different from the original implementation, Qwen3VL use timestamps rather than absolute time position ids."""
|
| 988 |
+
|
| 989 |
+
# Since we use timestamps to seperate videos, like <t1> <vision_start> <frame1> <vision_end> <t2> <vision_start> <frame2> <vision_end>, the video_grid_thw should also be split
|
| 990 |
+
if video_grid_thw is not None:
|
| 991 |
+
video_grid_thw = torch.repeat_interleave(video_grid_thw, video_grid_thw[:, 0], dim=0)
|
| 992 |
+
video_grid_thw[:, 0] = 1
|
| 993 |
+
|
| 994 |
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
| 995 |
+
image_token_id = self.config.image_token_id
|
| 996 |
+
video_token_id = self.config.video_token_id
|
| 997 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 998 |
+
mrope_position_deltas = []
|
| 999 |
+
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
| 1000 |
+
total_input_ids = input_ids
|
| 1001 |
+
if attention_mask is None:
|
| 1002 |
+
attention_mask = torch.ones_like(total_input_ids)
|
| 1003 |
+
position_ids = torch.ones(
|
| 1004 |
+
3,
|
| 1005 |
+
input_ids.shape[0],
|
| 1006 |
+
input_ids.shape[1],
|
| 1007 |
+
dtype=input_ids.dtype,
|
| 1008 |
+
device=input_ids.device,
|
| 1009 |
+
)
|
| 1010 |
+
image_index, video_index = 0, 0
|
| 1011 |
+
attention_mask = attention_mask.to(total_input_ids.device)
|
| 1012 |
+
for i, input_ids in enumerate(total_input_ids):
|
| 1013 |
+
input_ids = input_ids[attention_mask[i] == 1]
|
| 1014 |
+
image_nums, video_nums = 0, 0
|
| 1015 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
| 1016 |
+
vision_tokens = input_ids[vision_start_indices + 1]
|
| 1017 |
+
image_nums = (vision_tokens == image_token_id).sum()
|
| 1018 |
+
video_nums = (vision_tokens == video_token_id).sum()
|
| 1019 |
+
input_tokens = input_ids.tolist()
|
| 1020 |
+
llm_pos_ids_list: list = []
|
| 1021 |
+
st = 0
|
| 1022 |
+
remain_images, remain_videos = image_nums, video_nums
|
| 1023 |
+
for _ in range(image_nums + video_nums):
|
| 1024 |
+
if image_token_id in input_tokens and remain_images > 0:
|
| 1025 |
+
ed_image = input_tokens.index(image_token_id, st)
|
| 1026 |
+
else:
|
| 1027 |
+
ed_image = len(input_tokens) + 1
|
| 1028 |
+
if video_token_id in input_tokens and remain_videos > 0:
|
| 1029 |
+
ed_video = input_tokens.index(video_token_id, st)
|
| 1030 |
+
else:
|
| 1031 |
+
ed_video = len(input_tokens) + 1
|
| 1032 |
+
if ed_image < ed_video:
|
| 1033 |
+
t, h, w = (
|
| 1034 |
+
image_grid_thw[image_index][0],
|
| 1035 |
+
image_grid_thw[image_index][1],
|
| 1036 |
+
image_grid_thw[image_index][2],
|
| 1037 |
+
)
|
| 1038 |
+
image_index += 1
|
| 1039 |
+
remain_images -= 1
|
| 1040 |
+
ed = ed_image
|
| 1041 |
+
|
| 1042 |
+
else:
|
| 1043 |
+
t, h, w = (
|
| 1044 |
+
video_grid_thw[video_index][0],
|
| 1045 |
+
video_grid_thw[video_index][1],
|
| 1046 |
+
video_grid_thw[video_index][2],
|
| 1047 |
+
)
|
| 1048 |
+
video_index += 1
|
| 1049 |
+
remain_videos -= 1
|
| 1050 |
+
ed = ed_video
|
| 1051 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
| 1052 |
+
t.item(),
|
| 1053 |
+
h.item() // spatial_merge_size,
|
| 1054 |
+
w.item() // spatial_merge_size,
|
| 1055 |
+
)
|
| 1056 |
+
text_len = ed - st
|
| 1057 |
+
|
| 1058 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1059 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1060 |
+
|
| 1061 |
+
# t_index is always 0 because llm_grid_t is always 1 (we use timestamps to encode the temporal information for videos)
|
| 1062 |
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
| 1063 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
| 1064 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
| 1065 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
| 1066 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
| 1067 |
+
|
| 1068 |
+
if st < len(input_tokens):
|
| 1069 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1070 |
+
text_len = len(input_tokens) - st
|
| 1071 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1072 |
+
|
| 1073 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
| 1074 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
| 1075 |
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
| 1076 |
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
| 1077 |
+
return position_ids, mrope_position_deltas
|
| 1078 |
+
else:
|
| 1079 |
+
if attention_mask is not None:
|
| 1080 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1081 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1082 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
| 1083 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 1084 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 1085 |
+
else:
|
| 1086 |
+
position_ids = (
|
| 1087 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 1088 |
+
.view(1, 1, -1)
|
| 1089 |
+
.expand(3, input_ids.shape[0], -1)
|
| 1090 |
+
)
|
| 1091 |
+
mrope_position_deltas = torch.zeros(
|
| 1092 |
+
[input_ids.shape[0], 1],
|
| 1093 |
+
device=input_ids.device,
|
| 1094 |
+
dtype=input_ids.dtype,
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
return position_ids, mrope_position_deltas
|
| 1098 |
+
|
| 1099 |
+
def get_audio_features(
|
| 1100 |
+
self, audio_features: torch.FloatTensor
|
| 1101 |
+
):
|
| 1102 |
+
audio_features = audio_features.type(self.audio.dtype)
|
| 1103 |
+
audio_embeds = self.audio(audio_features)
|
| 1104 |
+
return audio_embeds
|
| 1105 |
+
|
| 1106 |
+
def get_video_features(
|
| 1107 |
+
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
|
| 1108 |
+
):
|
| 1109 |
+
"""
|
| 1110 |
+
Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned.
|
| 1111 |
+
|
| 1112 |
+
Args:
|
| 1113 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 1114 |
+
The tensors corresponding to the input videos.
|
| 1115 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1116 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1117 |
+
"""
|
| 1118 |
+
# Same implementation as for images
|
| 1119 |
+
return self.get_image_features(pixel_values_videos, video_grid_thw)
|
| 1120 |
+
|
| 1121 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
|
| 1122 |
+
"""
|
| 1123 |
+
Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned.
|
| 1124 |
+
|
| 1125 |
+
Args:
|
| 1126 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 1127 |
+
The tensors corresponding to the input images.
|
| 1128 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1129 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1130 |
+
"""
|
| 1131 |
+
pixel_values = pixel_values.type(self.visual.dtype)
|
| 1132 |
+
image_embeds, deepstack_image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
| 1133 |
+
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
| 1134 |
+
image_embeds = torch.split(image_embeds, split_sizes)
|
| 1135 |
+
return image_embeds, deepstack_image_embeds
|
| 1136 |
+
|
| 1137 |
+
def get_placeholder_mask(
|
| 1138 |
+
self,
|
| 1139 |
+
input_ids: torch.LongTensor,
|
| 1140 |
+
inputs_embeds: torch.FloatTensor,
|
| 1141 |
+
image_features: Optional[torch.FloatTensor] = None,
|
| 1142 |
+
video_features: Optional[torch.FloatTensor] = None,
|
| 1143 |
+
audio_features: Optional[torch.FloatTensor] = None,
|
| 1144 |
+
):
|
| 1145 |
+
"""
|
| 1146 |
+
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
| 1147 |
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
| 1148 |
+
"""
|
| 1149 |
+
if input_ids is None:
|
| 1150 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
| 1151 |
+
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1152 |
+
)
|
| 1153 |
+
special_image_mask = special_image_mask.all(-1)
|
| 1154 |
+
special_video_mask = inputs_embeds == self.get_input_embeddings()(
|
| 1155 |
+
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1156 |
+
)
|
| 1157 |
+
special_video_mask = special_video_mask.all(-1)
|
| 1158 |
+
special_audio_mask = inputs_embeds == self.get_input_embeddings()(
|
| 1159 |
+
torch.tensor(self.config.audio_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1160 |
+
)
|
| 1161 |
+
special_audio_mask = special_audio_mask.all(-1)
|
| 1162 |
+
else:
|
| 1163 |
+
special_image_mask = input_ids == self.config.image_token_id
|
| 1164 |
+
special_video_mask = input_ids == self.config.video_token_id
|
| 1165 |
+
special_audio_mask = input_ids == self.config.audio_token_id
|
| 1166 |
+
|
| 1167 |
+
n_image_tokens = special_image_mask.sum()
|
| 1168 |
+
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1169 |
+
if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 1170 |
+
raise ValueError(
|
| 1171 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}"
|
| 1172 |
+
)
|
| 1173 |
+
|
| 1174 |
+
n_video_tokens = special_video_mask.sum()
|
| 1175 |
+
special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1176 |
+
# if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel():
|
| 1177 |
+
# if (special_video_mask != 0).sum().item() != video_features.numel():
|
| 1178 |
+
# raise ValueError(
|
| 1179 |
+
# f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}"
|
| 1180 |
+
# )
|
| 1181 |
+
|
| 1182 |
+
n_audio_tokens = special_audio_mask.sum()
|
| 1183 |
+
special_audio_mask = special_audio_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1184 |
+
if audio_features is not None and inputs_embeds[special_audio_mask].numel() != audio_features.numel():
|
| 1185 |
+
raise ValueError(
|
| 1186 |
+
f"Audio features and audio tokens do not match: tokens: {n_audio_tokens}, features {audio_features.shape[0]}"
|
| 1187 |
+
)
|
| 1188 |
+
|
| 1189 |
+
return special_image_mask, special_video_mask, special_audio_mask
|
| 1190 |
+
|
| 1191 |
+
def recursive_attention(
|
| 1192 |
+
self,
|
| 1193 |
+
video_embeds,
|
| 1194 |
+
deepstack_video_embeds=None,
|
| 1195 |
+
downsample_ids=None,
|
| 1196 |
+
memory_size=None,
|
| 1197 |
+
stepsize=None,
|
| 1198 |
+
mergemode="",
|
| 1199 |
+
):
|
| 1200 |
+
if deepstack_video_embeds is not None:
|
| 1201 |
+
embed_size = video_embeds.size(-1)
|
| 1202 |
+
video_embeds = torch.cat([video_embeds] + deepstack_video_embeds, dim=-1)
|
| 1203 |
+
if downsample_ids is None:
|
| 1204 |
+
downsample_ids = torch.tensor([n for n in range(0, video_embeds.size(0))]).to(video_embeds.device)
|
| 1205 |
+
memory_size = self.fixed_memory_size if memory_size is None else memory_size
|
| 1206 |
+
stepsize = self.stepsize if stepsize is None else stepsize
|
| 1207 |
+
running_embeds = video_embeds[:memory_size]
|
| 1208 |
+
running_downsample_ids = downsample_ids[:memory_size]
|
| 1209 |
+
for step_id in range(memory_size, video_embeds.size(0), stepsize):
|
| 1210 |
+
incoming_data = video_embeds[step_id:step_id+stepsize]
|
| 1211 |
+
incoming_downids = downsample_ids[step_id:step_id+stepsize]
|
| 1212 |
+
running_embeds = torch.cat([running_embeds, incoming_data], dim=0)
|
| 1213 |
+
fullsize = running_embeds.size(0)
|
| 1214 |
+
running_downsample_ids = torch.cat([running_downsample_ids, incoming_downids], dim=0)
|
| 1215 |
+
emb_norms = F.normalize(running_embeds, dim=-1)
|
| 1216 |
+
similarities = (emb_norms[:-1] * emb_norms[1:]).sum(dim=-1)
|
| 1217 |
+
top_sim_ids = (-similarities.squeeze(0)).topk(memory_size)[1] + 1
|
| 1218 |
+
top_sim_ids = torch.sort(top_sim_ids).values
|
| 1219 |
+
if "simsample" in self.ttt_type and mergemode != "sim":
|
| 1220 |
+
running_embeds = running_embeds[top_sim_ids]
|
| 1221 |
+
else:
|
| 1222 |
+
starts = torch.cat([top_sim_ids.new_zeros(1), top_sim_ids[:-1]], dim=0)
|
| 1223 |
+
lengths = top_sim_ids - starts
|
| 1224 |
+
row_idx = torch.arange(fullsize).unsqueeze(1).to(top_sim_ids.device) # [N, 1]
|
| 1225 |
+
group_range = (row_idx >= starts) & (row_idx < top_sim_ids) # [N, M]
|
| 1226 |
+
P_matrix = group_range.to(running_embeds.dtype) / lengths.to(running_embeds.dtype)
|
| 1227 |
+
running_embeds = torch.einsum("nm,nd->md", P_matrix, running_embeds)
|
| 1228 |
+
running_downsample_ids = running_downsample_ids[top_sim_ids.to(running_downsample_ids.device)]
|
| 1229 |
+
running_embeds_deepstack = None
|
| 1230 |
+
if deepstack_video_embeds is not None:
|
| 1231 |
+
running_embeds = running_embeds.view(running_embeds.size(0), -1, embed_size)
|
| 1232 |
+
running_embeds_deepstack = [running_embeds[:, i+1, :] for i in range(running_embeds.size(1) - 1)]
|
| 1233 |
+
running_embeds = running_embeds[:, 0, :]
|
| 1234 |
+
return running_embeds, running_embeds_deepstack, running_downsample_ids
|
| 1235 |
+
|
| 1236 |
+
def ttt_padding(self, video_embeds):
|
| 1237 |
+
padding_length = 0
|
| 1238 |
+
minibatchsize = self.ttt_minibatch_size
|
| 1239 |
+
if video_embeds.size(1) % minibatchsize != 0:
|
| 1240 |
+
padding_length = minibatchsize - video_embeds.size(1) % minibatchsize
|
| 1241 |
+
padding = video_embeds.new_zeros(video_embeds.size(0), padding_length, video_embeds.size(-1))
|
| 1242 |
+
video_embeds = torch.cat([video_embeds, padding], dim=1)
|
| 1243 |
+
return video_embeds, padding_length
|
| 1244 |
+
|
| 1245 |
+
def forward_ttt_layers(self, pixel_values_videos, video_grid_thw, input_embeds):
|
| 1246 |
+
if "ttt" in self.ttt_type:
|
| 1247 |
+
freqs_cis = self.ttt_layers._precompute_freqs_cis_3d(
|
| 1248 |
+
video_grid_thw[0, 1]//2, video_grid_thw[0, 2]//2, max(video_grid_thw[0, 0]*2, 128)).to(pixel_values_videos.device)
|
| 1249 |
+
|
| 1250 |
+
if self.fixed_memory_size > 0:
|
| 1251 |
+
state_track = None
|
| 1252 |
+
running_downsample_ids, running_embeddings, running_deepstack_embeds = None, None, None
|
| 1253 |
+
stepsize = video_grid_thw[0, 1] * video_grid_thw[0, 2]
|
| 1254 |
+
step = 0
|
| 1255 |
+
num_frame_per_chunk = 256
|
| 1256 |
+
# with torch.no_grad():
|
| 1257 |
+
for i in range(0, video_grid_thw[0, 0], num_frame_per_chunk):
|
| 1258 |
+
current_thw = video_grid_thw.clone()
|
| 1259 |
+
current_thw[0, 0] = min(num_frame_per_chunk, video_grid_thw[0, 0] - i)
|
| 1260 |
+
video_embeds, incoming_deepstack_embeds = self.get_video_features(pixel_values_videos[i*stepsize:(i+num_frame_per_chunk)*stepsize], current_thw)
|
| 1261 |
+
video_embeds = torch.cat(video_embeds, dim=0).to(input_embeds.device, input_embeds.dtype)
|
| 1262 |
+
if "ttt" in self.ttt_type:
|
| 1263 |
+
embed_dim = video_embeds.size(-1)
|
| 1264 |
+
if "concat" in self.ttt_type:
|
| 1265 |
+
video_embeds = torch.stack([video_embeds] + incoming_deepstack_embeds, dim=0)
|
| 1266 |
+
else:
|
| 1267 |
+
video_embeds = video_embeds.unsqueeze(0)
|
| 1268 |
+
# residual_video_emb = video_embeds
|
| 1269 |
+
incoming_embeddings, padding_length = self.ttt_padding(video_embeds)
|
| 1270 |
+
incoming_embeddings, state_track = self.ttt_layers(
|
| 1271 |
+
incoming_embeddings,
|
| 1272 |
+
freqs_cis=freqs_cis[step:step+incoming_embeddings.size(1)] if freqs_cis is not None else None,
|
| 1273 |
+
state_track=state_track,
|
| 1274 |
+
)
|
| 1275 |
+
if padding_length > 0:
|
| 1276 |
+
incoming_embeddings = incoming_embeddings[:, :-padding_length]
|
| 1277 |
+
if self.ttt_use_gating:
|
| 1278 |
+
incoming_embeddings = self.ttt_gating(incoming_embeddings) + video_embeds
|
| 1279 |
+
incoming_embeddings = incoming_embeddings.transpose(0, 1).reshape(incoming_embeddings.size(1), -1)
|
| 1280 |
+
else:
|
| 1281 |
+
incoming_embeddings = video_embeds
|
| 1282 |
+
incoming_downsample_ids = torch.tensor([n for n in range(0, incoming_embeddings.size(0))]).to(video_embeds.device) + step
|
| 1283 |
+
step += incoming_downsample_ids.size(0)
|
| 1284 |
+
# print(step)
|
| 1285 |
+
|
| 1286 |
+
if not self.training:
|
| 1287 |
+
torch.cuda.empty_cache()
|
| 1288 |
+
|
| 1289 |
+
if running_embeddings is not None:
|
| 1290 |
+
running_embeddings = torch.cat([running_embeddings, incoming_embeddings], dim=0)
|
| 1291 |
+
running_downsample_ids = torch.cat([running_downsample_ids, incoming_downsample_ids], dim=0)
|
| 1292 |
+
if "concat" not in self.ttt_type:
|
| 1293 |
+
running_deepstack_embeds = [torch.cat(
|
| 1294 |
+
[r_emb, i_emb], dim=0) for r_emb, i_emb in zip(running_deepstack_embeds, incoming_deepstack_embeds)]
|
| 1295 |
+
running_embeddings, running_deepstack_embeds, running_downsample_ids = self.recursive_attention(
|
| 1296 |
+
running_embeddings, deepstack_video_embeds=running_deepstack_embeds, downsample_ids=running_downsample_ids)
|
| 1297 |
+
else:
|
| 1298 |
+
running_embeddings, _, running_downsample_ids = self.recursive_attention(
|
| 1299 |
+
running_embeddings, downsample_ids=running_downsample_ids)
|
| 1300 |
+
else:
|
| 1301 |
+
running_embeddings = incoming_embeddings
|
| 1302 |
+
running_downsample_ids = incoming_downsample_ids
|
| 1303 |
+
running_deepstack_embeds = incoming_deepstack_embeds
|
| 1304 |
+
if incoming_embeddings.size(0) > self.fixed_memory_size:
|
| 1305 |
+
if "concat" not in self.ttt_type:
|
| 1306 |
+
running_embeddings, running_deepstack_embeds, running_downsample_ids = self.recursive_attention(
|
| 1307 |
+
running_embeddings, deepstack_video_embeds=running_deepstack_embeds, downsample_ids=running_downsample_ids)
|
| 1308 |
+
else:
|
| 1309 |
+
running_embeddings, _, running_downsample_ids = self.recursive_attention(
|
| 1310 |
+
running_embeddings, downsample_ids=running_downsample_ids)
|
| 1311 |
+
downsample_ids = running_downsample_ids
|
| 1312 |
+
video_embeds = running_embeddings
|
| 1313 |
+
deepstack_video_embeds = running_deepstack_embeds
|
| 1314 |
+
else:
|
| 1315 |
+
video_embeds, padding_length = self.ttt_padding(video_embeds)
|
| 1316 |
+
video_embeds, state_track = self.ttt_layers(video_embeds, freqs_cis=freqs_cis)
|
| 1317 |
+
|
| 1318 |
+
if padding_length > 0:
|
| 1319 |
+
video_embeds = video_embeds[:, :-padding_length]
|
| 1320 |
+
|
| 1321 |
+
if self.ttt_use_gating:
|
| 1322 |
+
video_embeds = self.ttt_gating(video_embeds) + residual_video_emb
|
| 1323 |
+
|
| 1324 |
+
video_embeds, _, downsample_ids = self.recursive_attention(video_embeds.squeeze(0), downsample_ids=downsample_ids)
|
| 1325 |
+
# Split
|
| 1326 |
+
if "concat" in self.ttt_type:
|
| 1327 |
+
video_embeds = video_embeds.view(video_embeds.size(0), -1, embed_dim)
|
| 1328 |
+
deepstack_video_embeds = [video_embeds[:, i+1, :] for i in range(video_embeds.size(1) - 1)]
|
| 1329 |
+
video_embeds = video_embeds[:, 0, :]
|
| 1330 |
+
return video_embeds, deepstack_video_embeds, downsample_ids
|
| 1331 |
+
|
| 1332 |
+
def compute_segment_logits_with_similarity_minmax(self, X, s, alpha=1.0, eps=1e-8):
|
| 1333 |
+
T, N = X.shape
|
| 1334 |
+
|
| 1335 |
+
X_norm = F.normalize(X, p=2, dim=1, eps=eps) # (T, N)
|
| 1336 |
+
|
| 1337 |
+
# sim_forward[t] ~ cos(x_t, x_{t+1}) for t=0..T-2
|
| 1338 |
+
sim_forward = (X_norm[:-1] * X_norm[1:]).sum(dim=1) # (T-1,)
|
| 1339 |
+
ones = torch.ones(1, device=X.device, dtype=X.dtype)
|
| 1340 |
+
sim_left = torch.cat([ones, sim_forward]) # (T,)
|
| 1341 |
+
sim_right = torch.cat([sim_forward, ones]) # (T,)
|
| 1342 |
+
|
| 1343 |
+
sim_mean = (sim_left + sim_right) / 2.0 # (T,)
|
| 1344 |
+
dissim = (1.0 - sim_mean) / 2.0 # (T,) approx in [0, 2]
|
| 1345 |
+
|
| 1346 |
+
# 2. Min-max normalize scores to [0, 1]
|
| 1347 |
+
s_min = s.min()
|
| 1348 |
+
s_max = s.max()
|
| 1349 |
+
s_norm = (s - s_min) / (s_max - s_min + eps) # [0,1]
|
| 1350 |
+
|
| 1351 |
+
simscaling = torch.sigmoid(self.search_alpha)
|
| 1352 |
+
|
| 1353 |
+
z = (1 - simscaling) * s_norm + simscaling * dissim
|
| 1354 |
+
return z
|
| 1355 |
+
|
| 1356 |
+
def gumbel_top_k(self, scores, K, tau=1.0, eps=1e-8):
|
| 1357 |
+
T = scores.shape[0]
|
| 1358 |
+
# 1) Sample Gumbel noise
|
| 1359 |
+
u = torch.rand_like(scores)
|
| 1360 |
+
gumbel = -torch.log(-torch.log(u + eps) + eps)
|
| 1361 |
+
|
| 1362 |
+
# 2) Gumbel-perturbed scores
|
| 1363 |
+
perturbed = scores + gumbel
|
| 1364 |
+
|
| 1365 |
+
# 3) Take Top-K
|
| 1366 |
+
topk_vals, topk_idx = torch.topk(perturbed, K, dim=0) # (K,), (K,)
|
| 1367 |
+
|
| 1368 |
+
# 4) Turn those K values into a softmax distribution (optional smoothing)
|
| 1369 |
+
topk_weights = F.softmax(topk_vals / tau, dim=0) # (K,)
|
| 1370 |
+
|
| 1371 |
+
# 5) Scatter back into a (T,) vector
|
| 1372 |
+
weights = torch.zeros_like(scores)
|
| 1373 |
+
weights[topk_idx] = topk_weights
|
| 1374 |
+
|
| 1375 |
+
return topk_idx, weights
|
| 1376 |
+
|
| 1377 |
+
def select_representatives_gumbel_top_k_ste(self, X, s, K, tau=1.0):
|
| 1378 |
+
# 1) Gumbel-Top-K selection
|
| 1379 |
+
idx, w = self.gumbel_top_k(s, K, tau=tau) # idx: (K,), w: (T,)
|
| 1380 |
+
|
| 1381 |
+
# 2) Hard representatives: actual selected rows
|
| 1382 |
+
reps_hard = X[idx] # (K, N)
|
| 1383 |
+
soft_vec = torch.matmul(w, X) # (N,)
|
| 1384 |
+
reps_soft = soft_vec.unsqueeze(0).expand(K, -1) # (K, N)
|
| 1385 |
+
|
| 1386 |
+
reps = reps_soft + (reps_hard - reps_soft).detach()
|
| 1387 |
+
|
| 1388 |
+
return reps, idx, w
|
| 1389 |
+
|
| 1390 |
+
def importance_pool(self, video_embed, importance, memory_size):
|
| 1391 |
+
T, N = video_embed.shape
|
| 1392 |
+
if "gumbel" not in self.search_type:
|
| 1393 |
+
if "softmax" in self.search_type:
|
| 1394 |
+
importance = torch.softmax(importance, dim=-1)
|
| 1395 |
+
elif "sigmoid" in self.search_type:
|
| 1396 |
+
importance = torch.sigmoid(importance)
|
| 1397 |
+
importance = self.compute_segment_logits_with_similarity_minmax(video_embed, importance)
|
| 1398 |
+
top_sim_ids = torch.sort(importance.topk(memory_size)[1]).values
|
| 1399 |
+
video_embed = importance.unsqueeze(1) * video_embed
|
| 1400 |
+
starts = torch.cat([top_sim_ids.new_zeros(1) - 1, top_sim_ids[:-1]], dim=0)
|
| 1401 |
+
lengths = top_sim_ids - starts
|
| 1402 |
+
row_idx = torch.arange(T).unsqueeze(1).to(top_sim_ids.device) # [N, 1]
|
| 1403 |
+
group_range = (row_idx > starts) & (row_idx <= top_sim_ids) # [N, M]
|
| 1404 |
+
P_matrix = group_range.to(video_embed.dtype) / lengths.to(video_embed.dtype)
|
| 1405 |
+
video_embed = torch.einsum("nm,nd->md", P_matrix, video_embed)
|
| 1406 |
+
else:
|
| 1407 |
+
importance = self.compute_segment_logits_with_similarity_minmax(video_embed, importance)
|
| 1408 |
+
video_embed, top_sim_ids, weights = self.select_representatives_gumbel_top_k_ste(video_embed, importance, memory_size)
|
| 1409 |
+
return video_embed, top_sim_ids
|
| 1410 |
+
|
| 1411 |
+
def chunk_memory(self, video_embeds, deepstack_video_embeds, downsample_ids, hidden_states):
|
| 1412 |
+
if "attn" in self.search_type:
|
| 1413 |
+
attention_scores = torch.einsum("k,ijk->ij", self.search_query, hidden_states)
|
| 1414 |
+
attention_scores = F.softmax(attention_scores / math.sqrt(self.search_query.size(0)), dim=-1)
|
| 1415 |
+
search_query = torch.einsum("ij,ijk->ik", attention_scores, hidden_states).unsqueeze(1)
|
| 1416 |
+
else:
|
| 1417 |
+
search_query = hidden_states.sum(dim=1, keepdim=True)
|
| 1418 |
+
scores = torch.einsum("ij,j->i", video_embeds, search_query.squeeze(0).squeeze(0)) / math.sqrt(self.hidden_size)
|
| 1419 |
+
memsize = min(video_embeds.size(0), self.workingmemsize)
|
| 1420 |
+
video_embeds, local_downsample_ids = self.importance_pool(video_embeds, scores, memsize)
|
| 1421 |
+
deepstack_video_embeds = [emb[local_downsample_ids] for emb in deepstack_video_embeds]
|
| 1422 |
+
downsample_ids = downsample_ids[local_downsample_ids]
|
| 1423 |
+
return video_embeds, deepstack_video_embeds, downsample_ids
|
| 1424 |
+
|
| 1425 |
+
@auto_docstring
|
| 1426 |
+
@check_model_inputs
|
| 1427 |
+
def forward(
|
| 1428 |
+
self,
|
| 1429 |
+
input_ids: torch.LongTensor = None,
|
| 1430 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1431 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1432 |
+
past_key_values: Optional[Cache] = None,
|
| 1433 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1434 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1435 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 1436 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1437 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1438 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1439 |
+
audio_feature: Optional[torch.Tensor] = None,
|
| 1440 |
+
distillround: bool = False,
|
| 1441 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1442 |
+
memory_triplets: Optional[torch.Tensor] = None,
|
| 1443 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 1444 |
+
) -> Union[tuple, Qwen3VLModelOutputWithPast]:
|
| 1445 |
+
r"""
|
| 1446 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1447 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1448 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1449 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1450 |
+
"""
|
| 1451 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1452 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1453 |
+
|
| 1454 |
+
if inputs_embeds is None:
|
| 1455 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1456 |
+
|
| 1457 |
+
image_mask = None
|
| 1458 |
+
video_mask = None
|
| 1459 |
+
|
| 1460 |
+
if pixel_values is not None:
|
| 1461 |
+
image_embeds, deepstack_image_embeds = self.get_image_features(pixel_values, image_grid_thw)
|
| 1462 |
+
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1463 |
+
image_mask, _ = self.get_placeholder_mask(
|
| 1464 |
+
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
|
| 1465 |
+
)
|
| 1466 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
| 1467 |
+
|
| 1468 |
+
all_memory = None
|
| 1469 |
+
if pixel_values_videos is not None:
|
| 1470 |
+
if self.fixed_memory_size > 0:
|
| 1471 |
+
if memory_triplets is not None:
|
| 1472 |
+
video_embeds, deepstack_video_embeds, downsample_ids = memory_triplets["video_embeds"], memory_triplets["deepstack_video_embeds"], memory_triplets["downsample_ids"]
|
| 1473 |
+
elif self.freeze_ttt:
|
| 1474 |
+
with torch.no_grad():
|
| 1475 |
+
video_embeds, deepstack_video_embeds, downsample_ids = self.forward_ttt_layers(pixel_values_videos, video_grid_thw, inputs_embeds)
|
| 1476 |
+
if self.search_type != "none" and memory_triplets is None:
|
| 1477 |
+
all_memory = {
|
| 1478 |
+
"video_embeds": video_embeds,
|
| 1479 |
+
"deepstack_video_embeds": deepstack_video_embeds,
|
| 1480 |
+
"downsample_ids": downsample_ids,
|
| 1481 |
+
}
|
| 1482 |
+
memsize = self.workingmemsize // 8
|
| 1483 |
+
video_embeds, deepstack_video_embeds, downsample_ids = self.recursive_attention(
|
| 1484 |
+
video_embeds, deepstack_video_embeds=deepstack_video_embeds, downsample_ids=downsample_ids, memory_size=memsize)
|
| 1485 |
+
else:
|
| 1486 |
+
video_embeds, deepstack_video_embeds, downsample_ids = self.forward_ttt_layers(pixel_values_videos, video_grid_thw, inputs_embeds)
|
| 1487 |
+
if self.search_type != "none" and memory_triplets is None:
|
| 1488 |
+
all_memory = {
|
| 1489 |
+
"video_embeds": video_embeds,
|
| 1490 |
+
"deepstack_video_embeds": deepstack_video_embeds,
|
| 1491 |
+
"downsample_ids": downsample_ids,
|
| 1492 |
+
}
|
| 1493 |
+
memsize = self.workingmemsize // 8
|
| 1494 |
+
video_embeds, deepstack_video_embeds, downsample_ids = self.recursive_attention(
|
| 1495 |
+
video_embeds, deepstack_video_embeds=deepstack_video_embeds, downsample_ids=downsample_ids, memory_size=memsize)
|
| 1496 |
+
_, video_mask, _ = self.get_placeholder_mask(
|
| 1497 |
+
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
|
| 1498 |
+
)
|
| 1499 |
+
else:
|
| 1500 |
+
video_embeds, deepstack_video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
|
| 1501 |
+
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1502 |
+
_, video_mask, _ = self.get_placeholder_mask(
|
| 1503 |
+
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
|
| 1504 |
+
)
|
| 1505 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
| 1506 |
+
if torch.cuda.current_device() == 0:
|
| 1507 |
+
print(f"RANK 0 video embeds shape: {video_embeds.shape}")
|
| 1508 |
+
|
| 1509 |
+
audio_downsample_ids = None
|
| 1510 |
+
if audio_feature is not None:
|
| 1511 |
+
audio_embeds = self.get_audio_features(audio_feature)
|
| 1512 |
+
if torch.cuda.current_device() == 0:
|
| 1513 |
+
print(f"RANK 0 audio embeds shape: {audio_embeds.shape}")
|
| 1514 |
+
_, _, audio_mask = self.get_placeholder_mask(
|
| 1515 |
+
input_ids, inputs_embeds=inputs_embeds, audio_features=audio_embeds
|
| 1516 |
+
)
|
| 1517 |
+
if self.fixed_memory_size > 0 and not distillround:
|
| 1518 |
+
audio_embeds, _, audio_downsample_ids = self.recursive_attention(
|
| 1519 |
+
audio_embeds.view(-1, audio_embeds.size(-1)),
|
| 1520 |
+
memory_size=self.fixed_memory_size_audio,
|
| 1521 |
+
stepsize=self.stepsize,
|
| 1522 |
+
mergemode="sim",
|
| 1523 |
+
)
|
| 1524 |
+
else:
|
| 1525 |
+
inputs_embeds = inputs_embeds.masked_scatter(audio_mask, audio_embeds)
|
| 1526 |
+
# print(f"Both shapes: {video_embeds.shape}, {audio_embeds.shape}")
|
| 1527 |
+
|
| 1528 |
+
visual_pos_masks = None
|
| 1529 |
+
deepstack_visual_embeds = None
|
| 1530 |
+
if image_mask is not None and video_mask is not None:
|
| 1531 |
+
# aggregate visual_pos_masks and deepstack_visual_embeds
|
| 1532 |
+
image_mask = image_mask[..., 0]
|
| 1533 |
+
video_mask = video_mask[..., 0]
|
| 1534 |
+
visual_pos_masks = image_mask | video_mask
|
| 1535 |
+
deepstack_visual_embeds = []
|
| 1536 |
+
image_mask_joint = image_mask[visual_pos_masks]
|
| 1537 |
+
video_mask_joint = video_mask[visual_pos_masks]
|
| 1538 |
+
for img_embed, vid_embed in zip(deepstack_image_embeds, deepstack_video_embeds):
|
| 1539 |
+
embed_joint = img_embed.new_zeros(visual_pos_masks.sum(), img_embed.shape[-1]).to(img_embed.device)
|
| 1540 |
+
embed_joint[image_mask_joint, :] = img_embed
|
| 1541 |
+
embed_joint[video_mask_joint, :] = vid_embed
|
| 1542 |
+
deepstack_visual_embeds.append(embed_joint)
|
| 1543 |
+
elif image_mask is not None:
|
| 1544 |
+
image_mask = image_mask[..., 0]
|
| 1545 |
+
visual_pos_masks = image_mask
|
| 1546 |
+
deepstack_visual_embeds = deepstack_image_embeds
|
| 1547 |
+
elif video_mask is not None:
|
| 1548 |
+
visual_pos_masks = video_mask[..., 0]
|
| 1549 |
+
deepstack_visual_embeds = deepstack_video_embeds
|
| 1550 |
+
|
| 1551 |
+
if position_ids is None:
|
| 1552 |
+
attention_mask_tensor = (
|
| 1553 |
+
attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"]
|
| 1554 |
+
)
|
| 1555 |
+
if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4:
|
| 1556 |
+
attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2)
|
| 1557 |
+
# Only apply conversion for floating point tensors (inverted masks)
|
| 1558 |
+
if attention_mask_tensor.dtype.is_floating_point:
|
| 1559 |
+
attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min
|
| 1560 |
+
attention_mask_tensor = (1.0 - attention_mask_tensor).int()
|
| 1561 |
+
|
| 1562 |
+
# Calculate RoPE index once per generation in the pre-fill stage only.
|
| 1563 |
+
# When compiling, we can't check tensor values thus we check only input length
|
| 1564 |
+
# It is safe to assume that `length!=1` means we're in pre-fill because compiled
|
| 1565 |
+
# models currently cannot do asssisted decoding
|
| 1566 |
+
prefill_compiled_stage = is_torchdynamo_compiling() and (
|
| 1567 |
+
(input_ids is not None and input_ids.shape[1] != 1)
|
| 1568 |
+
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
|
| 1569 |
+
)
|
| 1570 |
+
prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
|
| 1571 |
+
(cache_position is not None and cache_position[0] == 0)
|
| 1572 |
+
or (past_key_values is None or past_key_values.get_seq_length() == 0)
|
| 1573 |
+
)
|
| 1574 |
+
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
|
| 1575 |
+
position_ids, rope_deltas = self.get_rope_index(
|
| 1576 |
+
input_ids,
|
| 1577 |
+
image_grid_thw,
|
| 1578 |
+
video_grid_thw,
|
| 1579 |
+
attention_mask=attention_mask_tensor,
|
| 1580 |
+
)
|
| 1581 |
+
self.rope_deltas = rope_deltas
|
| 1582 |
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
| 1583 |
+
else:
|
| 1584 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1585 |
+
delta = (
|
| 1586 |
+
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
|
| 1587 |
+
if cache_position is not None
|
| 1588 |
+
else 0
|
| 1589 |
+
)
|
| 1590 |
+
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
| 1591 |
+
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
| 1592 |
+
if cache_position is not None: # otherwise `deltas` is an int `0`
|
| 1593 |
+
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
| 1594 |
+
position_ids = position_ids.add(delta)
|
| 1595 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
| 1596 |
+
|
| 1597 |
+
if self.fixed_memory_size > 0 and pixel_values_videos is not None and not distillround:
|
| 1598 |
+
video_mask_sel = torch.where(visual_pos_masks == 1)[1][downsample_ids]
|
| 1599 |
+
if audio_feature is not None and audio_downsample_ids is not None:
|
| 1600 |
+
audio_mask_sel = torch.where(audio_mask[:, :, 0] == 1)[1][audio_downsample_ids]
|
| 1601 |
+
keep_mask = ~(audio_mask[:, :, 0] + visual_pos_masks)
|
| 1602 |
+
keep_mask[:, video_mask_sel] = True
|
| 1603 |
+
keep_mask[:, audio_mask_sel] = True
|
| 1604 |
+
keep_ids = torch.where(keep_mask)[1]
|
| 1605 |
+
inputs_embeds = inputs_embeds[:, keep_ids]
|
| 1606 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask[:, keep_ids], video_embeds)
|
| 1607 |
+
inputs_embeds = inputs_embeds.masked_scatter(audio_mask[:, keep_ids], audio_embeds)
|
| 1608 |
+
else:
|
| 1609 |
+
keep_mask = ~visual_pos_masks
|
| 1610 |
+
keep_mask[:, video_mask_sel] = True
|
| 1611 |
+
keep_ids = torch.where(keep_mask)[1]
|
| 1612 |
+
inputs_embeds = inputs_embeds[:, keep_ids]
|
| 1613 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask[:, keep_ids], video_embeds)
|
| 1614 |
+
if labels is not None:
|
| 1615 |
+
labels = labels[:, keep_ids]
|
| 1616 |
+
attention_mask = attention_mask[:, keep_ids]
|
| 1617 |
+
visual_pos_masks = visual_pos_masks[:, keep_ids]
|
| 1618 |
+
newposids = []
|
| 1619 |
+
for posids in position_ids:
|
| 1620 |
+
newposid = posids[:, keep_ids]
|
| 1621 |
+
newposids.append(newposid)
|
| 1622 |
+
position_ids = torch.stack(newposids, dim=0)
|
| 1623 |
+
|
| 1624 |
+
outputs = self.language_model(
|
| 1625 |
+
input_ids=None,
|
| 1626 |
+
position_ids=position_ids,
|
| 1627 |
+
attention_mask=attention_mask,
|
| 1628 |
+
past_key_values=past_key_values,
|
| 1629 |
+
inputs_embeds=inputs_embeds,
|
| 1630 |
+
cache_position=cache_position,
|
| 1631 |
+
visual_pos_masks=visual_pos_masks,
|
| 1632 |
+
deepstack_visual_embeds=deepstack_visual_embeds,
|
| 1633 |
+
**kwargs,
|
| 1634 |
+
)
|
| 1635 |
+
if self.search_type != "none" and all_memory is not None:
|
| 1636 |
+
query_start_pos = torch.where(input_ids == 151653)[1][-1].item() + 2 - input_ids.size(1)
|
| 1637 |
+
if len(torch.where(input_ids == 151644)[1]) > 2:
|
| 1638 |
+
gen_start_pos = torch.where(input_ids == 151644)[1][2].item() + 2 - input_ids.size(1)
|
| 1639 |
+
else:
|
| 1640 |
+
gen_start_pos = -1
|
| 1641 |
+
hidden_states = outputs.last_hidden_state[:, query_start_pos:gen_start_pos]
|
| 1642 |
+
video_embeds, deepstack_video_embeds, downsample_ids = self.chunk_memory(
|
| 1643 |
+
all_memory["video_embeds"],
|
| 1644 |
+
all_memory["deepstack_video_embeds"],
|
| 1645 |
+
all_memory["downsample_ids"],
|
| 1646 |
+
hidden_states,
|
| 1647 |
+
)
|
| 1648 |
+
memory_triplets = {
|
| 1649 |
+
"video_embeds": video_embeds,
|
| 1650 |
+
"deepstack_video_embeds": deepstack_video_embeds,
|
| 1651 |
+
"downsample_ids": downsample_ids,
|
| 1652 |
+
}
|
| 1653 |
+
else:
|
| 1654 |
+
memory_triplets = None
|
| 1655 |
+
torch.cuda.empty_cache()
|
| 1656 |
+
|
| 1657 |
+
return Qwen3VLModelOutputWithPast(
|
| 1658 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1659 |
+
past_key_values=outputs.past_key_values,
|
| 1660 |
+
rope_deltas=self.rope_deltas,
|
| 1661 |
+
labels=labels,
|
| 1662 |
+
memory_triplets=memory_triplets,
|
| 1663 |
+
)
|
| 1664 |
+
|
| 1665 |
+
|
| 1666 |
+
@dataclass
|
| 1667 |
+
@auto_docstring(
|
| 1668 |
+
custom_intro="""
|
| 1669 |
+
Base class for Qwen3VL causal language model (or autoregressive) outputs.
|
| 1670 |
+
"""
|
| 1671 |
+
)
|
| 1672 |
+
class Qwen3VLCausalLMOutputWithPast(ModelOutput):
|
| 1673 |
+
r"""
|
| 1674 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 1675 |
+
Language modeling loss (for next-token prediction).
|
| 1676 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 1677 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 1678 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1679 |
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
| 1680 |
+
|
| 1681 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 1682 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 1683 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 1684 |
+
The rope index difference between sequence length and multimodal rope.
|
| 1685 |
+
"""
|
| 1686 |
+
|
| 1687 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1688 |
+
logits: Optional[torch.FloatTensor] = None
|
| 1689 |
+
past_key_values: Optional[Cache] = None
|
| 1690 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 1691 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 1692 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 1693 |
+
memory_triplets: Optional[Dict[str, torch.Tensor]] = None
|
| 1694 |
+
|
| 1695 |
+
|
| 1696 |
+
class Qwen3VLForConditionalGeneration(Qwen3VLPreTrainedModel, GenerationMixin):
|
| 1697 |
+
_checkpoint_conversion_mapping = {}
|
| 1698 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1699 |
+
# Reference: fix gemma3 grad acc #37208
|
| 1700 |
+
accepts_loss_kwargs = False
|
| 1701 |
+
config: Qwen3VLConfig
|
| 1702 |
+
|
| 1703 |
+
def __init__(self, config):
|
| 1704 |
+
super().__init__(config)
|
| 1705 |
+
self.model = Qwen3VLModel(config)
|
| 1706 |
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
| 1707 |
+
|
| 1708 |
+
self.post_init()
|
| 1709 |
+
|
| 1710 |
+
def get_input_embeddings(self):
|
| 1711 |
+
return self.model.get_input_embeddings()
|
| 1712 |
+
|
| 1713 |
+
def set_input_embeddings(self, value):
|
| 1714 |
+
self.model.set_input_embeddings(value)
|
| 1715 |
+
|
| 1716 |
+
def set_decoder(self, decoder):
|
| 1717 |
+
self.model.set_decoder(decoder)
|
| 1718 |
+
|
| 1719 |
+
def get_decoder(self):
|
| 1720 |
+
return self.model.get_decoder()
|
| 1721 |
+
|
| 1722 |
+
def get_video_features(
|
| 1723 |
+
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
|
| 1724 |
+
):
|
| 1725 |
+
return self.model.get_video_features(pixel_values_videos, video_grid_thw)
|
| 1726 |
+
|
| 1727 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
|
| 1728 |
+
return self.model.get_image_features(pixel_values, image_grid_thw)
|
| 1729 |
+
|
| 1730 |
+
# Make modules available through conditional class for BC
|
| 1731 |
+
@property
|
| 1732 |
+
def language_model(self):
|
| 1733 |
+
return self.model.language_model
|
| 1734 |
+
|
| 1735 |
+
@property
|
| 1736 |
+
def visual(self):
|
| 1737 |
+
return self.model.visual
|
| 1738 |
+
|
| 1739 |
+
@check_model_inputs
|
| 1740 |
+
def forward(
|
| 1741 |
+
self,
|
| 1742 |
+
input_ids: torch.LongTensor = None,
|
| 1743 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1744 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1745 |
+
past_key_values: Optional[Cache] = None,
|
| 1746 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1747 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1748 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1749 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 1750 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1751 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1752 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1753 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1754 |
+
audio_feature: Optional[torch.Tensor] = None,
|
| 1755 |
+
train_type: Optional[str] = "sft",
|
| 1756 |
+
distillround: bool = False,
|
| 1757 |
+
memory_triplets: Optional[dict] = None,
|
| 1758 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 1759 |
+
) -> Union[tuple, Qwen3VLCausalLMOutputWithPast]:
|
| 1760 |
+
r"""
|
| 1761 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1762 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1763 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1764 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1765 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1766 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1767 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1768 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1769 |
+
|
| 1770 |
+
Example:
|
| 1771 |
+
TODO: Add example
|
| 1772 |
+
"""
|
| 1773 |
+
outputs = self.model(
|
| 1774 |
+
input_ids=input_ids,
|
| 1775 |
+
pixel_values=pixel_values,
|
| 1776 |
+
pixel_values_videos=pixel_values_videos,
|
| 1777 |
+
image_grid_thw=image_grid_thw,
|
| 1778 |
+
video_grid_thw=video_grid_thw,
|
| 1779 |
+
position_ids=position_ids,
|
| 1780 |
+
attention_mask=attention_mask,
|
| 1781 |
+
past_key_values=past_key_values,
|
| 1782 |
+
inputs_embeds=inputs_embeds,
|
| 1783 |
+
cache_position=cache_position,
|
| 1784 |
+
audio_feature=audio_feature,
|
| 1785 |
+
labels=labels,
|
| 1786 |
+
distillround=distillround,
|
| 1787 |
+
memory_triplets=memory_triplets,
|
| 1788 |
+
**kwargs,
|
| 1789 |
+
)
|
| 1790 |
+
|
| 1791 |
+
if outputs.labels is not None:
|
| 1792 |
+
labels = outputs.labels
|
| 1793 |
+
|
| 1794 |
+
hidden_states = outputs[0]
|
| 1795 |
+
|
| 1796 |
+
loss = None
|
| 1797 |
+
logits = None
|
| 1798 |
+
|
| 1799 |
+
shift_labels = kwargs.pop("shift_labels", None)
|
| 1800 |
+
return_logits = kwargs.pop("return_logits", False)
|
| 1801 |
+
memory_triplets = outputs.memory_triplets
|
| 1802 |
+
|
| 1803 |
+
if self.training and (labels is not None or shift_labels is not None):
|
| 1804 |
+
loss = LigerForCausalLMLoss(
|
| 1805 |
+
hidden_states=hidden_states,
|
| 1806 |
+
lm_head_weight=self.lm_head.weight,
|
| 1807 |
+
labels=labels,
|
| 1808 |
+
shift_labels=shift_labels,
|
| 1809 |
+
hidden_size=self.config.text_config.hidden_size,
|
| 1810 |
+
**kwargs,
|
| 1811 |
+
)
|
| 1812 |
+
if return_logits:
|
| 1813 |
+
distill_labels = labels[0, 1:]
|
| 1814 |
+
start_idx = torch.where((distill_labels != -100)==True)[0][0]
|
| 1815 |
+
logits = self.lm_head(hidden_states[:, start_idx:, :])
|
| 1816 |
+
elif memory_triplets is None:
|
| 1817 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1818 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1819 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1820 |
+
|
| 1821 |
+
if labels is not None:
|
| 1822 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
| 1823 |
+
|
| 1824 |
+
return Qwen3VLCausalLMOutputWithPast(
|
| 1825 |
+
loss=loss,
|
| 1826 |
+
logits=logits,
|
| 1827 |
+
past_key_values=outputs.past_key_values,
|
| 1828 |
+
rope_deltas=outputs.rope_deltas,
|
| 1829 |
+
memory_triplets=memory_triplets,
|
| 1830 |
+
)
|
| 1831 |
+
|
| 1832 |
+
def prepare_inputs_for_generation(
|
| 1833 |
+
self,
|
| 1834 |
+
input_ids,
|
| 1835 |
+
past_key_values=None,
|
| 1836 |
+
attention_mask=None,
|
| 1837 |
+
inputs_embeds=None,
|
| 1838 |
+
cache_position=None,
|
| 1839 |
+
position_ids=None,
|
| 1840 |
+
use_cache=True,
|
| 1841 |
+
pixel_values=None,
|
| 1842 |
+
pixel_values_videos=None,
|
| 1843 |
+
image_grid_thw=None,
|
| 1844 |
+
video_grid_thw=None,
|
| 1845 |
+
audio_feature=None,
|
| 1846 |
+
**kwargs,
|
| 1847 |
+
):
|
| 1848 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 1849 |
+
|
| 1850 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 1851 |
+
input_ids,
|
| 1852 |
+
past_key_values=past_key_values,
|
| 1853 |
+
attention_mask=attention_mask,
|
| 1854 |
+
inputs_embeds=inputs_embeds,
|
| 1855 |
+
cache_position=cache_position,
|
| 1856 |
+
position_ids=position_ids,
|
| 1857 |
+
pixel_values=pixel_values,
|
| 1858 |
+
pixel_values_videos=pixel_values_videos,
|
| 1859 |
+
image_grid_thw=image_grid_thw,
|
| 1860 |
+
video_grid_thw=video_grid_thw,
|
| 1861 |
+
use_cache=use_cache,
|
| 1862 |
+
audio_feature=audio_feature,
|
| 1863 |
+
**kwargs,
|
| 1864 |
+
)
|
| 1865 |
+
|
| 1866 |
+
# Qwen3VL position_ids are prepareed with rope_deltas in forward
|
| 1867 |
+
model_inputs["position_ids"] = None
|
| 1868 |
+
|
| 1869 |
+
if cache_position[0] != 0:
|
| 1870 |
+
model_inputs["pixel_values"] = None
|
| 1871 |
+
model_inputs["pixel_values_videos"] = None
|
| 1872 |
+
model_inputs["audio_feature"] = None
|
| 1873 |
+
|
| 1874 |
+
return model_inputs
|
| 1875 |
+
|
| 1876 |
+
def _get_image_nums_and_video_nums(
|
| 1877 |
+
self,
|
| 1878 |
+
input_ids: Optional[torch.LongTensor],
|
| 1879 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1880 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 1881 |
+
"""
|
| 1882 |
+
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
|
| 1883 |
+
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
|
| 1884 |
+
|
| 1885 |
+
Args:
|
| 1886 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1887 |
+
Indices of input sequence tokens in the vocabulary.
|
| 1888 |
+
|
| 1889 |
+
Returns:
|
| 1890 |
+
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
|
| 1891 |
+
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
|
| 1892 |
+
"""
|
| 1893 |
+
image_token_id = self.config.image_token_id
|
| 1894 |
+
video_token_id = self.config.video_token_id
|
| 1895 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 1896 |
+
|
| 1897 |
+
if inputs_embeds is not None:
|
| 1898 |
+
vision_start_mask = (
|
| 1899 |
+
inputs_embeds
|
| 1900 |
+
== self.get_input_embeddings()(
|
| 1901 |
+
torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1902 |
+
)
|
| 1903 |
+
)[..., 0]
|
| 1904 |
+
image_mask = (
|
| 1905 |
+
inputs_embeds
|
| 1906 |
+
== self.get_input_embeddings()(
|
| 1907 |
+
torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1908 |
+
)
|
| 1909 |
+
)[..., 0]
|
| 1910 |
+
video_mask = (
|
| 1911 |
+
inputs_embeds
|
| 1912 |
+
== self.get_input_embeddings()(
|
| 1913 |
+
torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1914 |
+
)
|
| 1915 |
+
)[..., 0]
|
| 1916 |
+
else:
|
| 1917 |
+
vision_start_mask = input_ids == vision_start_token_id
|
| 1918 |
+
image_mask = input_ids == image_token_id
|
| 1919 |
+
video_mask = input_ids == video_token_id
|
| 1920 |
+
|
| 1921 |
+
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
|
| 1922 |
+
image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
|
| 1923 |
+
video_nums = torch.sum(vision_first_mask & video_mask, dim=1)
|
| 1924 |
+
|
| 1925 |
+
return image_nums, video_nums
|
| 1926 |
+
|
| 1927 |
+
def _expand_inputs_for_generation(
|
| 1928 |
+
self,
|
| 1929 |
+
expand_size: int = 1,
|
| 1930 |
+
is_encoder_decoder: bool = False,
|
| 1931 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1932 |
+
**model_kwargs,
|
| 1933 |
+
) -> tuple[torch.LongTensor, dict[str, Any]]:
|
| 1934 |
+
# Overwritten -- Support for expanding tensors without a batch size dimension
|
| 1935 |
+
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
|
| 1936 |
+
# pixel_values.shape[0] is sum(seqlen_images for samples)
|
| 1937 |
+
# image_grid_thw.shape[0] is sum(num_images for samples)
|
| 1938 |
+
|
| 1939 |
+
if expand_size == 1:
|
| 1940 |
+
return input_ids, model_kwargs
|
| 1941 |
+
|
| 1942 |
+
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
|
| 1943 |
+
|
| 1944 |
+
def _expand_dict_for_generation_visual(dict_to_expand):
|
| 1945 |
+
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
| 1946 |
+
video_grid_thw = model_kwargs.get("video_grid_thw", None)
|
| 1947 |
+
image_nums, video_nums = self._get_image_nums_and_video_nums(
|
| 1948 |
+
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
|
| 1949 |
+
)
|
| 1950 |
+
|
| 1951 |
+
def _repeat_interleave_samples(x, lengths, repeat_times):
|
| 1952 |
+
samples = torch.split(x, lengths)
|
| 1953 |
+
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
|
| 1954 |
+
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
|
| 1955 |
+
return result
|
| 1956 |
+
|
| 1957 |
+
for key in dict_to_expand:
|
| 1958 |
+
if key == "pixel_values":
|
| 1959 |
+
# split images into samples
|
| 1960 |
+
samples = torch.split(image_grid_thw, list(image_nums))
|
| 1961 |
+
# compute the sequence length of images for each sample
|
| 1962 |
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
| 1963 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1964 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1965 |
+
)
|
| 1966 |
+
elif key == "image_grid_thw":
|
| 1967 |
+
# get the num of images for each sample
|
| 1968 |
+
lengths = list(image_nums)
|
| 1969 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1970 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1971 |
+
)
|
| 1972 |
+
elif key == "pixel_values_videos":
|
| 1973 |
+
samples = torch.split(video_grid_thw, list(video_nums))
|
| 1974 |
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
| 1975 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1976 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1977 |
+
)
|
| 1978 |
+
elif key == "video_grid_thw":
|
| 1979 |
+
lengths = list(video_nums)
|
| 1980 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1981 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1982 |
+
)
|
| 1983 |
+
elif key == "second_per_grid_ts":
|
| 1984 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1985 |
+
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size
|
| 1986 |
+
)
|
| 1987 |
+
return dict_to_expand
|
| 1988 |
+
|
| 1989 |
+
def _expand_dict_for_generation(dict_to_expand):
|
| 1990 |
+
for key in dict_to_expand:
|
| 1991 |
+
if (
|
| 1992 |
+
key != "cache_position"
|
| 1993 |
+
and dict_to_expand[key] is not None
|
| 1994 |
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
| 1995 |
+
and key not in visual_keys
|
| 1996 |
+
):
|
| 1997 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
| 1998 |
+
return dict_to_expand
|
| 1999 |
+
|
| 2000 |
+
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
|
| 2001 |
+
|
| 2002 |
+
if input_ids is not None:
|
| 2003 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
| 2004 |
+
|
| 2005 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
| 2006 |
+
|
| 2007 |
+
if is_encoder_decoder:
|
| 2008 |
+
if model_kwargs.get("encoder_outputs") is None:
|
| 2009 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
| 2010 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
| 2011 |
+
|
| 2012 |
+
return input_ids, model_kwargs
|
| 2013 |
+
|
| 2014 |
+
|
| 2015 |
+
__all__ = [
|
| 2016 |
+
"Qwen3VLVisionModel",
|
| 2017 |
+
"Qwen3VLForConditionalGeneration",
|
| 2018 |
+
"Qwen3VLModel",
|
| 2019 |
+
"Qwen3VLPreTrainedModel",
|
| 2020 |
+
"Qwen3VLTextModel",
|
| 2021 |
+
]
|