Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K - 1M
License:
Louis Thomson
commited on
Commit
Β·
af9e50a
1
Parent(s):
1aac526
Upload clean.py
Browse filesThis file contains the preprocessing applied to the original datasets taken from Kaggle's [Toxic Comment Classification Challenge](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) in order to create the train, evaluation, and test datasets.
clean.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
seed = 7497
|
| 9 |
+
|
| 10 |
+
TOXIC_COLUMNS = [
|
| 11 |
+
"toxic",
|
| 12 |
+
"severe_toxic",
|
| 13 |
+
"obscene",
|
| 14 |
+
"threat",
|
| 15 |
+
"insult",
|
| 16 |
+
"identity_hate",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
# Time and date regexes
|
| 20 |
+
TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)"
|
| 21 |
+
DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)"
|
| 22 |
+
MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)"
|
| 23 |
+
YEAR = r"('?[0-9]{2}|[0-9]{4})"
|
| 24 |
+
DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)"
|
| 25 |
+
TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)"
|
| 26 |
+
|
| 27 |
+
# The 'talk' part at the end of a signature
|
| 28 |
+
TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)"
|
| 29 |
+
|
| 30 |
+
# IP addresses
|
| 31 |
+
IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})"
|
| 32 |
+
|
| 33 |
+
# Username and the username part of a the signature
|
| 34 |
+
USERNAME = r"([^#<>[\]|{}/@\s]+)"
|
| 35 |
+
USER_SIG = rf"((((?:\s)[-ββ]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-ββ]\s*{USERNAME})(\s+{TALK})?)"
|
| 36 |
+
|
| 37 |
+
# A full signature
|
| 38 |
+
SIGNATURE = rf"(((([-ββ]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-ββ]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)"
|
| 39 |
+
|
| 40 |
+
# List of the patterns to remove
|
| 41 |
+
REGEX_REMOVE = [
|
| 42 |
+
r"^(\"+|'+)", # Initial quotation marks
|
| 43 |
+
r"(\"+|'+)$", # Final quotation marks
|
| 44 |
+
r"^REDIRECT.*$", # The whole comment is a redirect
|
| 45 |
+
rf"^\s*{SIGNATURE}", # Initial signature
|
| 46 |
+
rf"{SIGNATURE}\s*$", # Final signature
|
| 47 |
+
r" \[[0-9]+\]|\[[0-9]+\] ", # Citations
|
| 48 |
+
r"β\s+[tT]alk - [-a-zA-Z0-9._()\s]+β",
|
| 49 |
+
r"==[^=]+==",
|
| 50 |
+
r"^::+",
|
| 51 |
+
r"^\s*\(UTC\)",
|
| 52 |
+
rf"Unblock {IP}",
|
| 53 |
+
r"2nd Unblock Request",
|
| 54 |
+
r":Category:",
|
| 55 |
+
r"File:[^\s]+",
|
| 56 |
+
r"\{\|.+\|\}", # Embedded code
|
| 57 |
+
# r"\{\{.+\s.+\}\}", # Embedded code
|
| 58 |
+
r"^\s+", # Initial whitespace
|
| 59 |
+
r"\s+$", # Trailing whitespace
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# List of patterns to replaces
|
| 63 |
+
REGEX_REPLACE = {
|
| 64 |
+
"\n+": "\n",
|
| 65 |
+
"\\'": "'",
|
| 66 |
+
'""+': '"',
|
| 67 |
+
"''+": "'",
|
| 68 |
+
# r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links
|
| 69 |
+
r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links
|
| 70 |
+
r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs
|
| 71 |
+
r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def clean_sentence(sentence):
|
| 76 |
+
"""Preprocess a sentence using the regex rules"""
|
| 77 |
+
for pattern in REGEX_REMOVE:
|
| 78 |
+
sentence = re.sub(pattern, "", sentence)
|
| 79 |
+
for pattern, repl in REGEX_REPLACE.items():
|
| 80 |
+
sentence = re.sub(pattern, repl, sentence)
|
| 81 |
+
return sentence
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def make_binary_label(row):
|
| 85 |
+
"""Make a row label binary by combining all toxicity types"""
|
| 86 |
+
for column in TOXIC_COLUMNS:
|
| 87 |
+
if row[column] == 1:
|
| 88 |
+
return 1
|
| 89 |
+
return 0
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
print("Loading original data...")
|
| 93 |
+
|
| 94 |
+
# Load up the original data
|
| 95 |
+
train_df = pd.read_csv("orig_train.csv").set_index("id")
|
| 96 |
+
test_text_df = pd.read_csv("orig_test.csv").set_index("id")
|
| 97 |
+
test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id")
|
| 98 |
+
|
| 99 |
+
# Remove the datapoints which have no label
|
| 100 |
+
test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1]
|
| 101 |
+
test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1]
|
| 102 |
+
|
| 103 |
+
# Join the test text and labels to make a complete dataset
|
| 104 |
+
test_df = test_text_df.join(test_labels_df)
|
| 105 |
+
|
| 106 |
+
print("Cleaning train split...")
|
| 107 |
+
for index, row in tqdm(train_df.iterrows(), total=len(train_df)):
|
| 108 |
+
row["comment_text"] = clean_sentence(row["comment_text"])
|
| 109 |
+
|
| 110 |
+
print("Cleaning test split...")
|
| 111 |
+
for index, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
| 112 |
+
row["comment_text"] = clean_sentence(row["comment_text"])
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# Some texts will get reduced to the empty string. Let's remove them first
|
| 116 |
+
print("Removing empty texts...")
|
| 117 |
+
train_df = train_df.loc[train_df["comment_text"] != ""]
|
| 118 |
+
test_df = test_df.loc[test_df["comment_text"] != ""]
|
| 119 |
+
|
| 120 |
+
# Get rid of any duplicates we made
|
| 121 |
+
print("Removing duplicate entries...")
|
| 122 |
+
train_df = train_df.drop_duplicates(subset=["comment_text"])
|
| 123 |
+
test_df = test_df.drop_duplicates(subset=["comment_text"])
|
| 124 |
+
|
| 125 |
+
print("Creating binary column...")
|
| 126 |
+
|
| 127 |
+
# Make the new binary column
|
| 128 |
+
train_df["label"] = train_df.apply(make_binary_label, axis=1)
|
| 129 |
+
test_df["label"] = test_df.apply(make_binary_label, axis=1)
|
| 130 |
+
|
| 131 |
+
# Remove all other classification columns
|
| 132 |
+
train_df = train_df.drop(columns=TOXIC_COLUMNS)
|
| 133 |
+
test_df = test_df.drop(columns=TOXIC_COLUMNS)
|
| 134 |
+
|
| 135 |
+
print("Creating eval split...")
|
| 136 |
+
|
| 137 |
+
# Shuffle the current train split
|
| 138 |
+
train_df = train_df.sample(frac=1, random_state=seed)
|
| 139 |
+
|
| 140 |
+
# The new size of the train split
|
| 141 |
+
train_size = math.floor(len(train_df) * 0.8)
|
| 142 |
+
|
| 143 |
+
# Separate into train and eval splits
|
| 144 |
+
eval_df = train_df[train_size:]
|
| 145 |
+
train_df = train_df[:train_size]
|
| 146 |
+
|
| 147 |
+
# print("Saving to disk...")
|
| 148 |
+
with open("train.csv", "w") as f:
|
| 149 |
+
train_df.to_csv(f)
|
| 150 |
+
with open("eval.csv", "w") as f:
|
| 151 |
+
eval_df.to_csv(f)
|
| 152 |
+
with open("test.csv", "w") as f:
|
| 153 |
+
test_df.to_csv(f)
|