The dataset viewer is not available for this split.
Error code: StreamingRowsError
Exception: CastError
Message: Couldn't cast
data: list<item: struct<text: string, meter: string, topic: string, pattern: string, source: string, data_type: string, difficulty: string, description: string>>
child 0, item: struct<text: string, meter: string, topic: string, pattern: string, source: string, data_type: string, difficulty: string, description: string>
child 0, text: string
child 1, meter: string
child 2, topic: string
child 3, pattern: string
child 4, source: string
child 5, data_type: string
child 6, difficulty: string
child 7, description: string
text: null
meter: null
topic: null
pattern: null
source: null
data_type: null
to
{'text': Value(dtype='string', id=None), 'meter': Value(dtype='string', id=None), 'topic': Value(dtype='string', id=None), 'pattern': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None), 'data_type': Value(dtype='string', id=None)}
because column names don't match
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2270, in __iter__
for key, example in ex_iterable:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1888, in _iter_arrow
pa_table = cast_table_to_features(pa_table, self.features)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2215, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
data: list<item: struct<text: string, meter: string, topic: string, pattern: string, source: string, data_type: string, difficulty: string, description: string>>
child 0, item: struct<text: string, meter: string, topic: string, pattern: string, source: string, data_type: string, difficulty: string, description: string>
child 0, text: string
child 1, meter: string
child 2, topic: string
child 3, pattern: string
child 4, source: string
child 5, data_type: string
child 6, difficulty: string
child 7, description: string
text: null
meter: null
topic: null
pattern: null
source: null
data_type: null
to
{'text': Value(dtype='string', id=None), 'meter': Value(dtype='string', id=None), 'topic': Value(dtype='string', id=None), 'pattern': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None), 'data_type': Value(dtype='string', id=None)}
because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Sanskrit Metrical Poetry Dataset
This dataset contains examples and tasks for Sanskrit metrical poetry composition, designed to train models to generate metrically correct Sanskrit poetry.
Dataset Description
Dataset Summary
The Sanskrit Metrical Poetry dataset is designed for training models to compose Sanskrit poetry that adheres to specific metrical patterns (chandas). It contains examples of Sanskrit poems with their metrical analysis and tasks for poetry composition.
Languages
The dataset is in Sanskrit (sa).
Dataset Structure
The dataset contains two main components:
Examples
Examples of Sanskrit poems with their metrical analysis:
{
"text": "धर्मो रक्षति रक्षितः\nसत्यं वदति सर्वदा।\nज्ञानं ददाति विनयं\nविद्या ददाति पात्रताम्॥",
"meter": "अनुष्टुभ्",
"topic": "ज्ञानम्",
"source": "Traditional",
"pattern": "LGGLGGLG\nLGGLGGLG\nLGGLGGLG\nLGGLGGLG",
"identified_meters": "{'exact': {'अनुष्टुभ्'}, 'partial': set()}",
"syllable_info": "{'syllables': ['ध', 'र्मो', 'र', 'क्ष', 'ति', 'र', 'क्षि', 'तः', '\n', 'स', 'त्यं', 'व', 'द', 'ति', 'स', 'र्व', 'दा', '।', '\n', 'ज्ञा', 'नं', 'द', 'दा', 'ति', 'वि', 'न', 'यं', '\n', 'वि', 'द्या', 'द', 'दा', 'ति', 'पा', 'त्र', 'ताम्', '॥'], 'weights': ['L', 'G', 'G', 'L', 'G', 'G', 'L', 'G', '\n', 'L', 'G', 'G', 'L', 'G', 'G', 'L', 'G', '।', '\n', 'L', 'G', 'G', 'L', 'G', 'G', 'L', 'G', '\n', 'L', 'G', 'G', 'L', 'G', 'G', 'L', 'G', '॥']}"
}
Tasks
Tasks for Sanskrit metrical poetry composition:
{
"meter": "अनुष्टुभ्",
"topic": "ज्ञानम्",
"meter_info": {
"description": "अनुष्टुभ् (Anuṣṭubh) is a common meter with 8 syllables per quarter (pāda).",
"pattern": "LGGLGGLG"
},
"difficulty": "medium"
}
Dataset Creation
Source Data
The examples are sourced from traditional Sanskrit literature and poetry.
Annotations
The dataset includes metrical analysis of each poem, including:
- Meter identification
- Syllable weights (laghu/guru)
- Pattern representation
Additional Information
Licensing Information
This dataset is released under the CC BY-SA 4.0 license.
Citation Information
@misc{sanskrit-metrical-poetry,
author = {Sanskrit Coders},
title = {Sanskrit Metrical Poetry Dataset},
year = {2025},
publisher = {GitHub},
howpublished = {\url{https://github.com/sanskrit-coders/chandas}}
}
Contributions
Thanks to the Sanskrit Coders community for their contributions to this dataset.
- Downloads last month
- 32