run_id
string | service_name
string | timestamp
string | timestamp_unix_nano
string | co2_emissions_gco2e
float64 | power_cost_usd
float64 | gpu_utilization_percent
float64 | gpu_memory_used_mib
float64 | gpu_memory_total_mib
float64 | gpu_temperature_celsius
float64 | gpu_power_watts
float64 | gen_ai_server_requests_running
float64 | gen_ai_server_requests_waiting
float64 | gen_ai_server_requests_max
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:14:50.894974
|
1764785690894974257
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:00.895321
|
1764785700895320483
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:10.895638
|
1764785710895637790
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:20.896018
|
1764785720896017611
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:30.896410
|
1764785730896410317
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:40.896783
|
1764785740896783014
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:15:50.897109
|
1764785750897108491
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:00.897466
|
1764785760897466025
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:10.897870
|
1764785770897869782
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:20.898235
|
1764785780898235012
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:30.898550
|
1764785790898549645
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:40.898842
|
1764785800898841557
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
job_9def90ba
|
smoltrace-eval
|
2025-12-03T18:16:44.466121
|
1764785804466121048
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
SMOLTRACE GPU & Environmental Metrics
This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run.
Dataset Information
| Field | Value |
|---|---|
| Model | Qwen/Qwen3-Coder-30B-A3B-Instruct |
| Run ID | job_9def90ba |
| Total Samples | 13 |
| Generated | 2025-12-03 18:16:52 UTC |
| GPU Metrics | Available |
Schema
| Column | Type | Description |
|---|---|---|
run_id |
string | Unique run identifier |
timestamp |
string | ISO timestamp of measurement |
timestamp_unix_nano |
string | Unix nanosecond timestamp |
service_name |
string | Service identifier |
gpu_id |
string | GPU device ID |
gpu_name |
string | GPU model name |
gpu_utilization_percent |
float | GPU compute utilization (0-100%) |
gpu_memory_used_mib |
float | GPU memory used (MiB) |
gpu_memory_total_mib |
float | Total GPU memory (MiB) |
gpu_temperature_celsius |
float | GPU temperature (°C) |
gpu_power_watts |
float | GPU power consumption (W) |
co2_emissions_gco2e |
float | Cumulative CO2 emissions (gCO2e) |
power_cost_usd |
float | Cumulative power cost (USD) |
Environmental Impact
SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads:
- CO2 Emissions: Calculated based on GPU power consumption and regional carbon intensity
- Power Cost: Estimated electricity cost based on configurable rates
Usage
from datasets import load_dataset
import pandas as pd
# Load metrics
ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP")
# Convert to DataFrame for analysis
df = pd.DataFrame(ds['train'])
# Plot GPU utilization over time
import matplotlib.pyplot as plt
plt.plot(df['timestamp'], df['gpu_utilization_percent'])
plt.xlabel('Time')
plt.ylabel('GPU Utilization (%)')
plt.title('GPU Utilization During Evaluation')
plt.show()
# Get total environmental impact
total_co2 = df['co2_emissions_gco2e'].max()
total_cost = df['power_cost_usd'].max()
print(f"Total CO2: {total_co2:.4f} gCO2e")
print(f"Total Cost: ${total_cost:.6f}")
Related Datasets
This evaluation run also generated:
- Results Dataset: Pass/fail outcomes for each test case
- Traces Dataset: Detailed OpenTelemetry execution traces
- Leaderboard: Aggregated metrics for model comparison
About SMOLTRACE
SMOLTRACE is a comprehensive benchmarking and evaluation framework for Smolagents - HuggingFace's lightweight agent library.
Key Features
- Automated agent evaluation with customizable test cases
- OpenTelemetry-based tracing for detailed execution insights
- GPU metrics collection (utilization, memory, temperature, power)
- CO2 emissions and power cost tracking
- Leaderboard aggregation and comparison
Quick Links
Installation
pip install smoltrace
Citation
If you use SMOLTRACE in your research, please cite:
@software{smoltrace,
title = {SMOLTRACE: Benchmarking Framework for Smolagents},
author = {Thakkar, Kshitij},
url = {https://github.com/Mandark-droid/SMOLTRACE},
year = {2025}
}
Generated by SMOLTRACE
- Downloads last month
- 7