--- configs: - config_name: default data_files: - split: train path: - data/recitation_0/train/*.parquet - data/recitation_1/train/*.parquet - data/recitation_2/train/*.parquet - data/recitation_3/train/*.parquet - data/recitation_5/train/*.parquet - data/recitation_6/train/*.parquet - data/recitation_7/train/*.parquet - split: validation path: - data/recitation_0/validation/*.parquet - data/recitation_1/validation/*.parquet - data/recitation_2/validation/*.parquet - data/recitation_3/validation/*.parquet - data/recitation_5/validation/*.parquet - data/recitation_6/validation/*.parquet - data/recitation_7/validation/*.parquet - split: test path: - data/recitation_8/train/*.parquet - data/recitation_8/validation/*.parquet dataset_info: splits: - name: train num_examples: 54823 - name: test num_examples: 8787 - name: validation num_examples: 7175 featrues: - dtype: string name: aya_name - dtype: string name: aya_id - dtype: string name: reciter_name - dtype: int32 name: recitation_id - dtype: string name: url - dtype: audio: decode: false sampling_rate: 16000 name: audio - dtype: float32 name: duration - dtype: float32 name: speed - dtype: array2_d: dtype: float32 shape: - null - 2 name: speech_intervals - dtype: bool name: is_interval_complete - dtype: bool name: is_augmented - dtype: array2_d: dtype: float32 shape: - null - 2 name: input_features - dtype: array2_d: dtype: int32 shape: - null - 1 name: attention_mask - dtype: array2_d: dtype: int32 shape: - null - 1 name: labels language: - ar license: mit task_categories: - automatic-speech-recognition tags: - quran - arabic - speech-segmentation - audio-segmentation - audio --- # Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning [Paper](https://huggingface.co/papers/2509.00094) | [Project Page](https://obadx.github.io/prepare-quran-dataset/) | [Code](https://github.com/obadx/recitations-segmenter) ## Introduction This dataset is developed as part of the research presented in the paper "Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning". The work introduces a 98% automated pipeline to produce high-quality Quranic datasets, comprising over 850 hours of audio (~300K annotated utterances). This dataset supports a novel ASR-based approach for pronunciation error detection, utilizing a custom Quran Phonetic Script (QPS) designed to encode Tajweed rules. ## Recitation Segmentations Dataset This is a modified version of [this dataset](https://huggingface.co/datasets/obadx/recitation-segmentation) with these modifications: * adding augmentation to the speed of the recitations utterance with column `speed` reflects the speed from 0.8 to 1.5 on 40% of the dataset using [audumentations](https://iver56.github.io/audiomentations/). * adding data augmentation with [audiomentations](https://iver56.github.io/audiomentations/) on 40% of the dataset to prepare it for training the recitations spliter. The codes for building this dataset is available at [github](https://github.com/obadx/recitations-segmenter) ## Results The model trained with this dataset achieved the following results on an unseen test set: | Metric | Value | |-----------|--------| | Accuracy | 0.9958 | | F1 | 0.9964 | | Loss | 0.0132 | | Precision | 0.9976 | | Recall | 0.9951 | ## Sample Usage Below is a Python example demonstrating how to use the `recitations-segmenter` library (developed alongside this dataset) to segment Holy Quran recitations. First, ensure you have the necessary Python packages and `ffmpeg`/`libsndfile` installed: #### Linux ```bash sudo apt-get update sudo apt-get install -y ffmpeg libsndfile1 portaudio19-dev ``` #### Winodws & Mac You can create an `anaconda` environment and then download these two libraries: ```bash conda create -n segment python=3.12 conda activate segment conda install -c conda-forge ffmpeg libsndfile ``` Install the library using pip: ```bash pip install recitations-segmenter ``` Then, you can run the following Python script: ```python from pathlib import Path from recitations_segmenter import segment_recitations, read_audio, clean_speech_intervals from transformers import AutoFeatureExtractor, AutoModelForAudioFrameClassification import torch if __name__ == '__main__': device = torch.device('cuda') dtype = torch.bfloat16 processor = AutoFeatureExtractor.from_pretrained( "obadx/recitation-segmenter-v2") model = AutoModelForAudioFrameClassification.from_pretrained( "obadx/recitation-segmenter-v2", ) model.to(device, dtype=dtype) # Change this to the file pathes of Holy Quran recitations # File pathes with the Holy Quran Recitations file_pathes = [ './assets/dussary_002282.mp3', './assets/hussary_053001.mp3', ] waves = [read_audio(p) for p in file_pathes] # Extracting speech inervals in samples according to 16000 Sample rate sampled_outputs = segment_recitations( waves, model, processor, device=device, dtype=dtype, batch_size=8, ) for out, path in zip(sampled_outputs, file_pathes): # Clean The speech intervals by: # * merging small silence durations # * remove small speech durations # * add padding to each speech duration # Raises: # * NoSpeechIntervals: if the wav is complete silence # * TooHighMinSpeechDruation: if `min_speech_duration` is too high which # resuls for deleting all speech intervals clean_out = clean_speech_intervals( out.speech_intervals, out.is_complete, min_silence_duration_ms=30, min_speech_duration_ms=30, pad_duration_ms=30, return_seconds=True, ) print(f'Speech Intervals of: {Path(path).name}: ') print(clean_out.clean_speech_intervals) print(f'Is Recitation Complete: {clean_out.is_complete}') print('-' * 40) ``` ## License This dataset is licensed under the [MIT](https://mit-license.org/)