diff --git "a/atlas_test_pub.jsonl" "b/atlas_test_pub.jsonl" new file mode 100644--- /dev/null +++ "b/atlas_test_pub.jsonl" @@ -0,0 +1,497 @@ +{"question": "在实验室中使用大肠杆菌系统表达纯化一个植物来源的真核蛋白A,在蛋白的N段设计一个6His tag, 最终使用Ni-NTA进行蛋白纯化。第一次实验中,纯化的样品中使用SDS-PAGE检测,没有目标蛋白A对应的分子量大小的条带,请问设计下一步实验完成A蛋白的表达纯化?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "现阶段科学研究中,怎么解释植物特异识别共生与病原微生物的分子信号的差异?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "假设环境中存在总量为N的DNA,AT含量为70%,全部胞嘧啶中有30%以5mC的形式存在。对DNA使用亚硫酸盐处理后再进行PCR扩增,随后再使用亚硫酸盐进行处理,请问最终得到的总DNA中C含量为?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "对于众多动物来说,亚油酸(Omega-6)和亚麻酸(Omega-3)属于必需脂肪酸,只能从食物中摄取。这两种脂肪酸是合成DHA(脑黄金)和ARA(花生四烯酸)这两种长链多不饱和脂肪酸的原料。在大脑发育以及认知能力形成的过程中,多不饱和脂肪酸的摄入量及其比例起着关键作用,不过其具体的作用机制目前还未完全清楚。最近,有研究团队通过培育无菌蜜蜂,并且精准调控蜜蜂食物中的脂肪酸种类和构成,探讨了多不饱和脂肪酸对认知功能的影响,以及肠道菌群在其中的作用。\n经研究,膳食亚油酸代谢产生内源性大麻素Anandamide并与蜜蜂中特定受体结合,调控细胞Ca2+内流。蜜蜂基因组中没有什么基因,即亚油酸和亚麻酸向DHA和ARA代谢的限速酶。在蜜蜂肠道菌Gilliamella apicola的协助下,蜜蜂摄取的膳食亚油酸最终代谢为什么物质?蜜蜂体内存在13个潜在的大麻素的经典受体TRP蛋白,经过蛋白同源分析,蜜蜂特有的什么受体对内源性大麻素响应最强烈,并且具有四个经典的什么结合位点。\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "实验室发现某种大豆材料,通过表型分析发现这个大豆材料不能够共生结瘤固氮。通过转录组分析发现已知的结瘤共生固氮基因都有表达,且与野生型大豆的表达水平没有差异。通过基因组测序和表观基因组分析发现也没有明显的遗传变异和表观遗传变,问下一步如何检测这个大豆材料丧失结瘤固氮能力?给出可行的途径。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "艾滋病是 HIV 病毒引起的严重的慢性传染病。由于病毒遗传多样性很⼤,因此没有获批的 HIV 疫苗。尽管联合抗逆转录病毒疗法 (ART) 有效,但 ART 不能治愈,必须持续给药(停药会导致病毒反弹),导致重⼤的预后挑战。⽽最近,科学家们发现了⼀种潜在的新治疗⽅法——⼲扰颗粒(TIP),可能为治疗带来全新的突破。\n1.现有研究发现有三种蛋⽩对于HIV侵⼊细胞核⾄关重要,它们分别是位于内体膜上的什么,位于核膜的什么,以及将前两种蛋⽩连接在⼀起的什么?\n2.⻓期感染HIV的⽣物反应器表现出什么特征?(提⽰:它是缺陷⼲扰颗粒DIPs的特征)\n3.专家发现了⼀个在HIV pol-vpr区域具有约2.5kb缺失的变异体。这⼀缺失变异体符合DIP的要求。通过引⼊额外的缺失以消除剪接并阻⽌所有HIV阅读框架的表达,同时修复HIV中央的什么区域?\n4. 有研究团队研发出⼀种新型HIV候选疫苗,在2019年的⼩规模临床试验中,成功激发了参与者体内产⽣⼴泛的中和抗体,对抗HIV病毒。这种候选疫苗靶向HIV-1外包膜上⼀个叫做什么的区域,这⼀区域即使在病毒变异中依旧稳定,为攻克HIV提供了稳定靶点?\n5. HIV gp41 MPER 肽脂质体疫苗在⼈类中引发什么效应?\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "The following double-stranded DNA contains the beginning of the sequence of a eukaryotic gene: \n5' TTGGTAAAGCCACCACGCTCTGGGTGTCATGGCGACGTCCAGGTGAGCTGGGCCCTGACCTCCACCTCCACTGACTCCCTACTCCCTGCTGTCCAGTGTGGACGAACAAGCAGGCTGTGCTGCTTG… 3'\nTranscription begins from the first nucleotide. The first 8 amino acids of the protein encoded by this gene are: \nNH3+ -met-ala-thr-ser-ser-val-asp-glu....COO-\nSo the nucleotides which correspond to the 5' untranslated region of the primary RNA transcript made from this gene are:\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Molecular Biology and Biotechnology", "subject_name": "Biology"} +{"question": "某仪器上有一只圆柱形的无盖水桶,桶高 6 cm ,半径为 1 cm ,在桶壁上钻有两个小孔,用于安装支架,使水桶可以自由倾斜,两个小孔距桶底 2 cm ,且两孔连线恰为直径,水可以从两个小孔向外流出,当水桶以不同角度倾斜放置且没有水漏出时,这时水桶最多可装多少水?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "设 $\\Omega$ 是由曲面 $z=y^2, z=4 y^2(y>0)$ ,平面 $z=x, z=2 x$ 及 $z=2$ 所围成的区域.计算下列积 分:(1) $\\iiint_{\\Omega} x^2 \\mathrm{~d} x \\mathrm{~d} y \\mathrm{~d} z$ ; (2) $\\iiint_{\\Omega} \\frac{z \\sqrt{z}}{y^3} \\cos \\frac{z}{y^2} \\mathrm{~d} x \\mathrm{~d} y \\mathrm{~d} z$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "\\text { 一均匀圆雉体高为 } h \\text { ,半顶角为 } \\alpha \\text { .求圆雉体对位于其顶点处且质量为 } m \\text { 的质点的引力.}", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "设 \\n\\\\[a_1 = 6, \\\\quad n(n+1)a_{n+1} = 3(n+2)(a_n + n(n+1)) \\\\cdot 3^n\\\\] \\n\\n求极限 \\n\\\\[\\\\lim_{n \\\\to \\\\infty} \\\\left( \\\\prod_{k=1}^n a_k \\\\right)^{\\\\frac{1}{n^2}}\\\\]", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "calculate \\[ \\int_{0}^\\infty \\frac{\\tanh^2 x}{x^2} \\, dx \\]", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "求由下列曲面所围的体积:$\\frac{x^2}{a^2}+\\frac{y^2}{b^2}+\\frac{z^2}{c^2}=1, \\frac{x^2}{a^2}+\\frac{y^2}{b^2}=\\frac{z}{c}$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "求闭曲线 \\(\\gamma(t) = e^{it} \\sin(2t)\\) 关于 \\(z_0\\)(\\(z_0\\) 不在 \\(\\gamma\\) 上)的绕数。(\\(0 \\leq t \\leq 2\\pi\\))", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "Call an 8-digit number a flamingo if it uses each of the digits 2 through 9 exactly once. Estimate the number of flamingos that are prime. Submit a positive integer $E$. If the correct answer is $A$, you will receive round $\\left(20 \\cdot \\min \\left(\\frac{A}{E}, \\frac{E}{A}\\right)^{21}\\right)$ points.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": " Let $F$ be the vector field on $\\mathbb{R}^d$ and consider the equation\n\\begin{equation}\\label{1}\nF(x)=a\n\\end{equation}\nfor a given $a \\in \\mathbb{R}^d$. If $F$ is monotone, that is\n$$\n\\langle x-y, F(x)-F(y)\\rangle>0\n$$\nfor all $x, y \\in \\mathbb{R}^d$ with $x \\neq y$, then Eq. \\ref{1} has at most one solution. If $F$ is continuous and it is coercive, that is\n$$\n\\lim _{|x| \\rightarrow \\infty} \\frac{\\langle x, F(x)\\rangle}{|x|}=\\infty\n$$\nthen for every $a \\in \\mathbb{R}^d$, Eq. \\ref{1} has a unique solution $x \\in \\mathbb{R}^d$. Furthermore, the inverse operato $F^{-1}$ exists.\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "For $i=0,1,2,...,n$, we consider the polynomial \n$$\np_i(x)=a_{i0} + a_{i1}x + a_{i2} x^2 + \\cdots + a_{i(i-1)} x^{i-1} + a_{ii} x^i,\\quad\\quad x\\in[a,b],\n$$\nwhere $a_{ii}\\neq 0$. Let $h\\in P_n[a,b]$ such that $h(b)=0$ and $(h,p_i)=0$ for all $i\\in\\{0,1,...,n-1\\}$. Please calculate $h(x)$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "有一形状为 $x^2+y^2 \\leqslant z \\leqslant 1$ 的均匀物体,斜放置于水平桌面上,试求物体静止时的位置(即求出轴线与桌面的夹角 $\\theta$ ).", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Mathematical Analysis", "subject_name": "Math"} +{"question": "用154pmX射线对某晶体沿c方向摄取一张回旋图,从图中量得第四层和第零层距离为40nm,照相机直径为60nm,求c方向的重复周期c", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "用投影算符法计算水分子中两个氢原子组成的对称性匹配群轨道", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "探讨NO₂与N₂O₄混合气体在特定条件下的行为是高中化学中的一个重要实验。实验表明,当该混合气体的体积被压缩至原来的一半,并且温度从298K升高到402K时,涉及的反应N₂O₄(g) ⇌ 2NO₂(g)的平衡常数Kₚ在这两个温度下分别为0.141和0.488。请通过计算确定,在上述压缩过程中,NO₂的浓度增加了多少倍。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "测得某电极反应a=0.5,n=1,T=298K,计算当η=200mV时,应用Tafel公式的相对误差", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": " (答案可能不唯一)一定温度下,分别将两种亚硫酸氢盐加热分解,达平衡时的压强分别为 p₁、p₂。 \ni. NH₄HSO₃(s) ⇌ NH₃(g) + H₂O(g) + SO₂(g) p₁ = a Pa\nii. 2NaHSO₃(s) ⇌ Na₂SO₃(s) + H₂O(g) + SO₂(g) p₂ = b Pa\n在该温度下,将一定质量的 NH₄HSO₃与 NaHSO₃加入某密闭容器中,平衡时,三种固体均存在。下列说法不正确的是\nA. 平衡时,K₁ = a³/27 Pa³,K₂ = b²/4 Pa²\nB. 保持恒温将容器体积压缩,再次平衡时各气体的浓度均减小 \nC. 保持恒温、恒压,若再通入少量 NH₃,再次平衡时容器内 H₂O 的物质的量不变 \nD. 保持恒温、恒容,若再通入少量 NH₃,再次平衡时体系的总压强不变\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "下列有关说法中不正确的是:\nA.\t火力发电是将化学能转化为热能再转化为电能\nB.\t燃料电池提高了化学能的利用率\nC.\t铅蓄电池充电时电能转化为化学能\nD.\t氢前金属 a、b 相连放入稀硫酸中可验证 a、b 的活动性强弱\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "相较于20nm以下的PtCu纳米颗粒而言,20nm以上的PtCu纳米颗粒在电化学去合金化后的形貌有何不同?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "水蒸气可以与镁屑反应生成 MgO 和氢气: Mg + H2O(g) → MgO + H2(g) 该反应是一级反应,反应速率正比于 H2O(g)的分压;若体系中还有 HDO(g)存在,则体 系中将存在以下两个平行反应(为方便起见,以下将氕 1H 简记为 H): Mg + H2O(g) → MgO + H2(g) r1 = k1[H2O] Mg + HDO(g) → MgO + HD(g) r2 = k2[HDO] 将含氘 1.104%(此处指氘的摩尔数占总氢原子的摩尔数的比值,下同)的 1.2908 g 水蒸 气在 600°C 下与镁屑反应,将反应生成的所有氢气用 CuO 全部氧化为水,用干冰浴冻下, 其质量为 0.8051 g,含氘 1.077%。无需考虑体系中存在的极少量 D2O(g)和其他同位素的影 响,计算 k1 与 k2 的比值。(本题要求有效数字;可能参考的部分核素及原子量:1H: 1.008; 2H: 2.014;O: 15.999)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "在30℃和80℃时研究了氨在木炭上的吸附,已知每克木炭吸附一定量的氨所需要的压力是:在30℃时为14.1kPa,在80℃时为74.6kPa,计算吸附焓,保留一位小数", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "NO分子(14N与16O,非重同位素)的平均核间距为115pm,用λ=253.65nm的Hg线照射,求NO分子的斯托克斯线的位置,单位nm,保留两位小数", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "以CH2=CHCN为原料,稀硫酸为电解液,Sn作阴极,用电解的方法可制得 Sn(CH₂CH2CN)4,其阴极反应式为_________________________。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "假定1 ɸ=N(1-br/2)·exp(-br/2)是氢原子薛定谔方程的一个本征解,试求参数N, b和能量E的值。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "1.000g铝黄铜合金(设只含铜、锌、铝)与0.100 mol dm-3硫酸反应,在 25 ℃和101.325 kPa下测得放出的气体的体积为149.3 cm3。将相同质量的该合金溶于足量热浓硫酸,在相同温度和压强下测得放出的气体的体积为411.1 cm3。计算此铝黄铜合金中各组分的质量分数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physical Chemistry", "subject_name": "Chemistry"} +{"question": "MoS2 是一种重要的润滑剂材料,常用MoO3 与硫脲水热反应制备,反应有三种气体产 生。写出化学反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "在80℃时,向硫酸锌和硫酸亚铁的混合溶液中加入过量的草酸钠溶液(反应1),分离 出沉淀、干燥后在空气中热解,主要经历两步失重:在212℃附近失重19.68%,对应失去六 个结晶水;在303℃附近失重36.43%,得到一种多孔纳米材料,该材料是一种复合氧化物 (反应2)。写出反应1~反应2 的化学方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "实验发现,TlI3(三碘化铊)与碳酸钠溶液一起震荡时产生棕色沉淀,测试红外光谱发现TlI3在甲醇 中没有出现I3-的可见的吸收峰。 预测TlI3在甲醇中的可能存在形式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "LiB(OCH3)4 和(H3C)3SiOOCCOOSi(CH3)3 在无水乙腈中反应可生成1:1 型盐X,X 的阴 离子有2 个五元环。写出制备X 的反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "铜粉可以与湿润的氯仿按照1 : 2 的计量比反应,产物为氯化亚铜和两种w(Cl)为89.85% 和83.48%的氯代烃。请写出化学反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "稀有分散元素X 的单质是一种半导体材料,常伴随其他元素共生。2.00 g X 的纯单质 在空气中燃烧,发出蓝色火焰,反应完全后应得到2.50 g A。A 在酸中可以被SO2 还原, 得到黑色沉淀X,加入浓硫酸,溶液变红,说明X 存在。A 与KOH 反应,后投至氢氟酸 中,将溶液蒸发可以得到1:1 型盐B (反应1)。用S2Cl2 处理A,可以得到化合物C 及气体 等产物(反应2)。C 和N[Si(CH3)3]3 在四氢呋喃(THF)中反应,得到了浅黄色固体D·4THF, 理想情况下D 具有正四面体对称性。D 的形成过程可看作先形成与立方体对称性相同的骨 架XmNn,后者再与过量的C 发生配位反应。在二氯甲烷中,B 的阴离子可以与过量 (CH3)3SiN3 反应,并与体系中四甲基铵正离子作用,沉淀出1:1 型盐E。 写出X、A ~ E 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "PbS2O3 与过量Na2S2O3 共热反应生成三种物质,其物质的量之比为1 : 3 : 4。写出反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "高温下,四氯合钴(II)酸铯与 F2 气体反应,得到钴的低自旋八面体配合物。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "**1** 一种羰基配合物 Aₘ(CO)ₙ 中,ω(A) = 0.5707,通过计算判断 A 为何种元素。 \n**2** 有人认为 A–A 之间不存在金属–金属键,也可满足 18 电子规则,解释原因。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "M 是一种在地壳中分布分散的金属元素。将M 的单质在纯氧中于730°C 加热,可生成A, A 是两性氧化物。向A 的酸性溶液中通入H2S 气体,可制得白色沉淀B;向A 的酸性溶液 中逐渐滴加NaBH4 水溶液,可制得C;C 在室温下为气态,因具有溶血作用而有毒。C 溶 于液氨生成D,使所得的溶液具有一定的导电性。将A 加热至红热并通入COCl2 气流,得 到无色液体E;E 与H2 在石英管中共热可得到F。F 与过量的碳酸钠溶液反应,唯一固体产 物为黄色沉淀G,同时无气体生成。在惰性气氛下,F 与一些有机物能发生反应;如F 与蒽 反应(摩尔比1:1)得到H;F 与乙炔反应(摩尔比2:1)得到I。 写出A ~ G 的化学式(C、E、F 都是四面体分子)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "研究离子晶体,常考察以一个离子为中心时,其周围距离不同的离子对它的吸引或排斥的静电作用力。设氯化钠晶体中钠离子跟离它最近的氯离子之间的距离为\\(d\\),以钠离子为中心,则:\n\n(1)第二层离子有几个,离中心离子的距离为多少,它们是什么离子。\n\n(2)已知在晶体中Na离子的半径为116pm,Cl离子的半径为167pm,它们在晶体中是紧密接触的。求离子占据整个晶体空间的百分数。\n\n(3)纳米材料的表面原子占总原子数的比例极大,这是它的许多特殊性质的原因,假设某氯化钠纳米颗粒的大小和形状恰等于氯化钠晶胞的大小和形状,求这种纳米颗粒的表面原子占总原子数的百分比。\n\n(4)假设某氯化钠颗粒形状为立方体,边长为氯化钠晶胞边长的10倍,试估算表面原子占总原子数的百分比。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "请解释(1)为什么品体场理论不能应用于主族金属的配合物?(2)为什么配合物比其它配合物更容易具有平面正方形结构?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "书写化学反应方程式:将擦亮的铜片投入装有足量浓硫酸的大试管中,微热片刻,有固体析出但无气体立生,固体为Cu2S与另一种白色物质的混合物。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "X 是元素M 的金属有机化合物,只含有C、H、O 以及M 四种元素,不含有结晶水。将 3.414 g 的化合物X 置于空气中充分煅烧,残余固体称重后质量为3.318 g。将X 与H3PO2 溶液混 合,X 会被还原为化合物Y。X 中M 的质量分数为74.71%,Y 中M 的质量分数为79.83%。 通过计算,推出X 和Y 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "金属A常用于铁的防护。A与氯气反应,生成易挥发的液态物质B,B和过量A反应生成具有还原性的物质C,C可以还原Fe;B和格氏试剂(C6H5MgBr)反应生成D(只含元素A、碳和氢)。D和B反应得到E,E水解、聚合成链状的F并放出HCI。向B的盐酸溶液中通人 H2S,得到金黄色沉淀 G(俗名“金粉”),G溶于硫化铵液得到H。向C的盐酸溶液中通人H2S,得到黑色沉淀I,I可溶于多硫化铵溶液但不溶于硫化铵溶液。写出A~E,G~I的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "硒的提纯 硒与碲在一些矿物中常常伴生,因此提纯硒时将其与碲元素分离至关重要。 其中一种方法是将含有少量碲的粗硒溶于浓HNO3 溶液中,蒸除HNO3 后,向溶液中 加入氢碘酸,可以良好分离硒和碲两种元素,其中一者以单质形式沉淀,另一者仍存在于 溶液中。写出加入氢碘酸时,溶液中发生的两个主要反应的化学方程式", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "硫元素还可以形成有趣的超价化合物:SF4与 Cl2、CsF 于 250 ℃下发生反应(三者计量 比为 1 : 1 : 1),可得到一种硫的混合卤化物 A。20 ℃时,该混合卤化物与乙烯酮于 CFCl3中 发生化合反应,可得到羧酸衍生物 B,B 经水解可生成羧酸 C。C 依次经 Ag2CO3、Br2 处理 可得到 D,D 用 Zn/HCl 还原可得到 E,E 中硫为八面体配位。写出 A ~ E 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "在有机溶剂中,四溴化硒与氨作用,生成Se4N4 和Se。写出化学反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "工业漂白粉由次氯酸钙、氢氧化钙、氯化钙和水组成,有效成分为次氯酸钙。准确称取 7.630g研细试样,用蒸馏水溶解,定容于1000ml 容量瓶。移取25.00ml该试样溶液至250ml锥形瓶中,加入过量的KI水溶液,以足量的1:1乙酸水溶液酸化,以0.1076 mol/L的 Na2S2O3 标准溶液滴定至终点, 消耗18.54 mL。移取25.00mL试样溶液至250ml锥形瓶中,缓慢加入足量的3%H2O2水溶液,搅拌至不再产生气泡。以0.1008 mol/L的 AgNO3标准溶液滴定至终点,消耗 20.36 mL。移取25.00mL试样溶液至100.0mL容量瓶中,以蒸馏水稀释至刻度。移取25.00mL该稀释液至250ml锥形瓶中,以足量的3% H2O2水溶液处理至不再产生气泡。于氨性缓冲液中以0.01988mol/L的EDTA标准溶液滴定至终点,消耗24.43mL。\n(1) 计算该漂白粉中有效氯的百分含量(以Cl2计)。\n(2) 计算总氯百分含量。\n(3) 计算总钙百分含量。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "将无水 FeCl₃ 溶于含 0.3% 水的乙酸中,生成沉淀。沉淀用含少量水的苯-乙酸混合溶液重结晶,得晶体 A。A 中 Fe 含量为 24.56%,Cl 含量为 15.59%。将���与过量高氯酸和 30% H₂O₂ + 乙酸酐混合液反应,放出 Cl₂ 得产物 B(Fe 含量 24.24%,Cl 含量 5.13%)。A 与 B 具有相同的阳离子,均为 D₃d 对称性八面体结构,阴离子为 Ta 对称性,A 含结晶溶剂,B 不含。\n\n**1** 无水 FeCl₃ 是什么颜色? \n**2** 通过计算写出 B 的化学式。 \n**3** 通过计算写出 A 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "钍的难溶盐KTh4(IO3)17 与含有过量KI 的酸性溶液反应,生成Th4+等产物。请写出化学反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "第一过渡系金属M 的氯化物A 为红色顺磁性液体,其分子为四面体构型,磁矩μ = 1.7 B.M.。 A 在惰性气氛中加热时,放出氯气,生成化合物B;B 中氯做六方最密堆积,金属原子填入 三分之一的八面体空隙。在高压的一氧化碳气氛下, 若有二乙二醇二甲醚 (CH3OCH2CH2OCH2CH2OCH3,以下可简记为L)存在,B 被金属Na 还原,得到1:1 型盐C; C 的阳离子为Na 的八面体配离子,阴离子为M 的八面体配离子。C 与大量稀磷酸反应,放 出氢气并得到绿色固体D;D 具有顺磁性,可升华,易着火。D 在四氢呋喃(可简记为THF) 中发生歧化,用二氯甲烷可重结晶出歧化产物E;E 为1:2 型盐,其阳离子通过M…O 的静 电作用和2 个阴离子相连接,使得在其结构中所有的M 均为八面体配位。 写出A~E 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "将过渡金属元素M 的最高价氧化物A 溶于硝酸,冷却结晶后析出六水合物MOx(NO3)y·6H2O。 该六水合物在400℃下发生分解,失重43.04%,仍可以得到A;若在800℃下分解,失重 44.10%,生成另一种M 的氧化物B。B 被H2 还原可以得到氧化物C,C 比A 少一个氧原 子。 请通过计算,给出化合物A 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "A 为白色氧化物粉末;1.578 g A 经足量 CO 还原,生成 1.200 g 单质 B(反应 1)。A 易溶于水 并与水反应转化为 C;C 与氨水反应,浓缩析出结晶 D,D 在 150°C 下热分解,产物中有 3 种单质(反应 2)。使用 B 单质直接与浓氨水作用,无法得到 D,而是得到黑色的一氨合物沉 淀 E(反应 3);若 B 单质的含量较低,则还有可能生成分子 F。F 也可由 E 溶于过量氨水中 得到。E 受光照或撞击易爆炸,关于 E 的爆炸机制以及产物在历史上曾有争议;其中一种观 点认为,低压下 E 爆炸初步分解成氨以及 2 种单质(反应 4);产物之间进一步反应生成白色 固体(反应 5)。D 与浓度为 40%的氢氟酸反应,可制得无色透明的块状结晶 G;G 为 1:1 型 盐,其阴离子含 5 个原子。 写出 A ~ G 的化学式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "A 为非金属元素;B 为A 的含氧酸形成的二钠盐,带5 个结晶水。B 受热分解时,失重 36.3%(对应于失去所有结晶水)。将B 溶于NaOH 溶液并通入氯气(反应1),然后浓缩结晶, 析出钠盐晶体C;C 于130°C 下失重14.9%,给出A,B,C的化学反应式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "根据无机成因假说,天然气的形成过程颇具吸引力。该假说认为,地幔中的一种主要成分——橄榄石(包括Mg₂SiO₄和Fe₂SiO₄)在与水和二氧化碳发生反应后,能够生成甲烷。反应后,橄榄石会转化为蛇纹石(Mg₃Si₂O₅(OH)₄)和磁铁矿。请根据这些信息写出相应的化学反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "2:1 型铵盐A 与浓硫酸在0°C 反应(反应1),生成化合物B,并放出有刺激性气味的吸湿性 气体。B 为黄色油状液体,熔点-15°C,式量349.0,可溶于浓盐酸,遇水转化为棕黑色固体 C;C 不与稀酸反应,但可溶于浓盐酸(反应2)或浓硫酸(反应3)并放出气体。B 不稳定,只 能在低温下存在,50°C 时分解为白色粉末D 并放出黄绿色气体E。C 与SOCl2 于150°C 反 应也能得到D(反应4)。D 与不同的有机金属化合物反应,视计量比和条件的不同,得到不 同的产物。D 与苯基溴化镁按摩尔比1:2 反应,发生歧化,生成白色固体F(反应5);F 能与 HCl 反应生成G;G 中所有中心原子为6 配位,所有���为桥基,形成一维无限长链。D 与苯 基锂按摩尔比1:3 反应,生成盐H;H 与D 反应得到红色固体X。为确定X 的结构,令X 与 过量的碘单质反应(反应6),发现仅得到了2 种产物;其中一种是亮黄色固体I,X 中有五分 之一的金属原子转移到了I 中。 写出A ~ I 的化学式;写出X 的结构简式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "当锌粒被添加到四钛酸溶液(TiOSO₄)中时,溶液颜色变为紫色。随后,向该溶液中加入适量的氯化铜(CuCl₂)水溶液,会观察到白色沉淀的形成。请写出形成白色沉淀的离子反应方程式。如果继续添加氯化铜水溶液,白色沉淀会溶解。请写出沉淀溶解的离子反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "将 HfCl4、H2BPDC (4,4’-联苯二甲酸)在甲醇中混合密封,于 200°C 反应 3 天,缓慢冷却至 室温,得到一种无色的多面体晶体 X。结构测定表明,X 中存在的粒子仅为一种 Hf 的多核 簇合物分子,摩尔质量 3565.6 g/mol;Hf 有 2 种化学环境,配体仅有 2 种;神奇的是,加入 的反应物 H2BPDC(及其阴离子)并未参与配位。元素分析测得 X 中各元素含量(质量分数,%) 分别为:C, 12.09; H, 3.13;且 X 中不含氯元素。X 在空气气氛下充分氧化,失重 23.3%,剩 余固体为 HfO2。(提示:通过元素分析得到的氢的含量通常误差较大) 4-1 通过计算,推出 X 的化学式", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "推测下面配合物中心金属离子的氧化态和价电子排布 [Fe2O(TPA)2(H2O)2](ClO4)2", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "M 是一种对生命体十分重要的元素。现给出 M 的四种卤化物的制备方法和性质:(1)在低 温下,将 M 的单质溶于 S2Cl2 便能得到透明液体 A,A 在潮湿空气中水解为 B。(2)198 K 时,B 和液态氟化氢反应得到 C。C 为无色无味气体,因其可以与血红蛋白中的铁稳定结合 而具有很高的毒性。(3)M 与碘单质在二硫化碳中以合适比例反应,得到暗红色固体 D。 (4)将 D 与 Hg 共振摇并以 1 : 1 反应,得到橙色固体 E。 给出 A ~ E 代表物质的化学式,并写出(4)中的反应方程式", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "四氯化硒与无水液氨在作用可得到一种爆炸性极强的八元环分子X;但是该反应需要高 压条件,故人们开发出了新的方法:将二氯化二硒、四氯化硒和二(三甲基硅基)氨基锂按当 量比在乙醚中反应即可制得X。写出X 的化学式以及制备X 的新方法的反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "新型储氢材料氨硼烷(NH3BH3)常温下以固体稳定存在,极易溶于水。氨硼烷晶体中存在的微粒间作用力有哪些?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "去年报道,在-55℃令XeF₄(A)和C₆F₅BF₂(B)化合,得一离子化合物(C),测得Xe的质量分数为31%,阴离子为四氟硼酸根离子,阳离子结构中有B的苯\n环。C是首例有机氙(IV)化合物,-20℃以下稳定。C为强氟化剂和强氧化剂,如与碘反应得到五氟化碘,放出氟,同时得到B。\n(1)写出C的化学式,正、负离子应分开写。\n(2)根据什么结构特征把C归为有机氙化合物?\n(3)写出C的合成反应方程式:\n(4)写出C和碘的反应。\n(5)五氟化碘分子的立体结构。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "PbFCl属四方晶系,其结构中Pb与Cl共同沿晶胞c轴方向作bcp堆积,若Pb所在平面四方层 用ab表示,Cl所在平面四方层用AB表示,则其堆积方式可表示为:…AbaBAbaBA…。F位于 两个相邻Pb层间四面体空隙。若以F为正当晶胞顶点,其中一个Cl的分数坐标为(0, 0.5, 0.3058),一个Pb的分数坐标为 (0, 0.5, 0.7940)。写出该晶胞内所有原子的分数坐标。并指出该晶体属于何种点阵形式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "A 是一种具有强氧化性的二元化合物,其可由两种单质加热至 400℃直接化合得到。20℃ 时,将 A 加入到发烟硝酸中,可观察到棕红色的固体,后者快速分解并会显现出短暂而强 烈的蓝色。−78 ℃时,溶解在液态 HF 中的[H3O][AsF6]与 A 反应几天后,可以结晶得到深 棕红色的盐,其阳离子 B 有 7 个原子,不含氢,为 Z 型离子(反应 1)。−78℃时,将 B[AsF6]加入到 NO2F 中,体系先转化为橘黄色(该过程中拉曼光谱检测到了五原子分子 C 的生成),再转化为白色,产物包括 A 和 D(反应 2),将 A 溶解在 N2O4 中也可得到 D (反应 3)。D 形式上可看作硝酸与 A 发生一次取代的产物,但 A 与 HNO3 反应并不能得 到 D:在较高温度时仅可通过核磁共振探测到 D 的分解产物和底物,而低温时则结晶得到 了 A·HNO3。A·HNO3属于正交晶系,Pnma 空间群,其晶胞参数为 a = 17.3543 Å,b = 5.6539 Å,c = 4.7658 Å,理论密度 D = 3.300 g·cm-3,Z = 4。 4-1 结合相关信息,推断 A 的化学式,并指出 A·HNO3 晶胞的结构基元。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "利用钠-氯化钙体系在高温下还原U3O8 和Cr2O3 的混合物,可制得金属间化合物U4Cr。写出反应方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "高温高压下可得含 CO4(4-)基团的 Sr3(CO4)O,其结构可看成理想反钙钛矿的调变:[OSr6] 八面体绕 c 方向的四重轴发生 17°的旋转,以理想位置为参照,相邻八面体的旋转角度相 同、方向相反;在 c 方向不变化。 判断 Sr3(CO4)O 的点阵型式和结构基元(将 CO4(4-)基团近似为球形考虑)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "在蚀变矿物的形成过程中水解作用具有重要影响,如辉石(MgSiO3)的滑石化过程。这 一过程辉石发生水解反应,生成一种被称为滑石的化合物,其中Si 的质量分数为29.62%。写出该反应的化学方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "黄铜矿及其转化:黄铜矿(CuFeS2)是自然界中铜的主要存在形式。炼铜的传统方法主要是火法, 即使黄铜矿和氧气在控制条件下逐步反应得到单质铜。随着铜矿的减少、矿物中黄铜矿含量的降低以及环境保护的要求,湿法炼铜越来越受关注。该法的第一步也是关键的一步就是处理黄铜矿,使其中的铜尽可能转移到溶液中。 最简便的处理办法是无氧化剂存在的酸溶反应:向含黄铜矿的矿物中加入硫酸,控制浓度和温 度,所得体系显蓝色且有臭鸡蛋味的气体(A)放出(反应 1);为避免气体 A 的产生,可采用三价铁盐 如 Fe2(SO4)3 溶液处理黄铜矿,所得溶液和反应 1 的产物类似,但有浅黄色固体物质 B 生成(反应 2); 浅黄色固体会阻碍黄铜矿的溶解,因此,办法之一是在类似反应 1 的体系中引入硫酸杆菌类微生物, 同时通入空气,反应产物无气体,也无黄色浑浊物(反应 3),溶液中阴离子为 C;但是,微生物对反 应条件要求较为严格(如温度不能过高,酸度应适宜等)。采用合适的氧化剂如氯酸钾溶液(足量),使 之在硫酸溶液中与黄铜矿反应(反应 4),是一种更有效的处理方法。只是,后两种方法可能出现副反 应(反应 5),生成黄钾铁矾(D)。D 是一种碱式盐(无结晶水),含两种阳离子且二者摩尔之比为 1 : 3, 它会沉积在黄铜矿上影响其溶解,应尽量避免。5.008 g D 和足量硫酸钾在硫酸溶液中反应(反应 6), 得到 15.10 g 铁钾矾 E,E 与明矾(相对分子质量为 474.4 $g⋅mol^{−1}$ )同构。写出反应 1–6 的离子方程式(要求系数为最简整数比)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "钴的硫化物是模拟活性酶催化剂的理想体系。这类硫化物可以有多样 的组成其中黄铁矿晶型 CoS2 由于其更好的活性而受到广泛关注。如 何制备具有特征形态的高纯度 CoS2 并非易事,需要合理设计。一种 有效的合成方法如下: (1)将 Co(CH3COO)2·4H2O、十二钨硅酸(钨的杂多酸,H4SiW12O40,分子量 2877.7)、中性有机配体 btap(分子量 213.2)溶解在去离子水中,常温下持续搅拌 2 小时。将混合溶液 pH 调至 2.5,密封在高压釜中,在 160℃下加热 4 天。随后将高压釜以 10℃/h 的速率冷却至室温,得到粉红色块状晶体 A,用去离子水洗涤,室温下干燥。X 射线行射数据表明 A 为钴的络离子与杂多酸形成的化合物,骨架由钴的络离子形成���其中配体仅有 btap 和水分子。该晶体结构属于正交晶系,一个正当晶胞中含有 4 个 A 分子,晶胞参数为 a = 14.81 Å,b = 20.76 Å,c = 23.19 Å,晶体密度为 3.650 g·cm-3。 (2)将 A 与硫脲(CS(NH2)2)分散在去离子水中,超声处理 1 h,得到的悬浊液在 200℃下 水热反应 24h。在常温下自然冷却得到固体,经过滤、去离子水和乙醇洗涤,在 60℃下于燥 12h,就可得到 CoS2。这个过程涉及硫脲在高温下的彻底水解:A 发生解离,释出 有机小分子,其中,杂多酸离子发生水解脱出中心杂原子并保持其同多酸根离子;写出杂多酸水解的离子方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "将定量的 MnO2、NH4H2PO4与 H3PO4 混合共热至 300°C(反应 1),经水洗、干燥可以得到 一种被称为“锰紫”的紫色粉末,其不含结晶水,式量为 246.9。若将其溶于稀硫酸,溶液 颜色无显著变化但有沉淀生成(反应 2),而将其溶于浓硫酸则会得到澄清的红色溶液。 结合实验现象,给出“锰紫”的化学式,写出反应 1、反应 2 的方程式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "本题共涉及 2 个含同一元素 X 的化合物。\n第一个化合物可通过 C₆H₅X(OH)₂ 与 KHF₂ 反应得到。其正交晶胞的晶胞参数: \na = 724 pm,b = 1437 pm,c = 744 pm,密度 ρ = 1.58 g·cm⁻³。\n**1** 通过计算写出此化合物的化学式。 \n**2** 相比于简单卤化物中的 X–F 键长,此化合物的 X–F 键长更长还是更短? \n**3**第二个化合物是有机化学中常用的 Lewis 酸催化剂,其含 X 量为 7.62%,含碳量为 33.85%。推断此化合物的分子式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Inorganic Chemistry", "subject_name": "Chemistry"} +{"question": "请根据斯科特(Scott)规则,计算给出对溴苯甲酸最大紫外吸收的波长。(源于《谱学导论(第二版)》范康年主编)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Chemistry", "subject_name": "Chemistry"} +{"question": "常温下乙酸乙酯加入到加有酚酞的氢氧化钠溶液中,会使溶液红色褪去吗?请给出判断和依据。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Chemistry", "subject_name": "Chemistry"} +{"question": "在芳香族化合物的亲电取代反应过程中,取代基能够影响反应的活性和定位效应。取代基可以被分类为活化基团(致活基)和钝化基团(致钝基)。同时,根据它们在芳香环上的位置效应,取代基还可以被分为邻位和对位定位基团(促进反应发生在邻位或对位)以及间位定位基团(促进反应发生在间位)。请识别下列哪些取代基同时具有钝化效应和邻位、对位定位效应。( )\n(a)Me;(b)NHCOMe;(c)CONHMe;(d)以上基团都不是。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Chemistry", "subject_name": "Chemistry"} +{"question": "答案可能不唯一)实验室回收废水中苯酚的过程如下:\n步骤Ⅰ:苯与含苯酚的废水混合,充分搅拌并静置分层后,分液得到含有苯酚的有机溶液。\n步骤Ⅱ:将有机溶液与试剂a(如NaOH溶液或Na₂CO₃溶液)混合,充分搅拌并静置分层后,分液得到苯酚钠溶液。\n步骤Ⅲ:向苯酚钠溶液中加入试剂b(如少量CO₂),充分反应后,苯酚析出。\n有关说法不正确的是:\nA.步骤I为萃取,分液,萃取剂用芳香烃更好\nB.试剂a可用NaOH溶液或Na₂CO₃溶液\nC.试剂b若为少量CO₂,则反应为2C₆H₅O⁻+CO₂+H₂O→2C₆H₅OH+CO₃²⁻\nD.若苯酚不慎粘到皮肤上,先用酒精冲洗,再用水冲洗\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Chemistry", "subject_name": "Chemistry"} +{"question": "分子 $H_3SiNCS$ 中除 H 之外,其余原子共线,写出分子中 N 原子的杂化方式及分子中的大 $\\Pi$ 键。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Chemistry", "subject_name": "Chemistry"} +{"question": "某化合物分子式是C_6H_{11}O_2Br,其质谱图碎裂峰m/z分别为166,149,138,121,115,请推导其结构。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "研究人员合成了一种由离子混合组成的新型固态化合物,由氢、磷和第二周期的四种元素组成,按原子序数分别记为W、X、Y、Z。给出各元素的质量分数:W是4.52%,X是17.59%,Y是20.09%,Z是39.76%。另外,该化合物由两种正四面体离��和一种四面体离子组成,并且已知其中仅含一个磷原子。推出该固态化合物的分子式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "根据伍德沃德-费歇尔(woodward-fischer)规则,计算1,2-环戊二酮的烯醇最大紫外吸收的波长。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "根据伍德沃德-费歇尔(woodward-fischer)规则,计算1-乙酰环己烯最大紫外吸收的波长。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "A分子[Fe(TPA)(CH3CN)2](ClO4)2可以催化烯烃与 H2O2的反应,采用电喷雾质谱(正离子模式 ESI-MS)检测反应过程中的 中间体。A 与 H2O2反应,首先在 m/z = 462 和 478 处出现两个离子峰(478 占主导),分别 对应于络离子中间体 D 和 E;E 会发生异构化生成 F,这个过程可以理解为“分子内的氧化 加成”,如果体系中有水的存在,这个异构化的速度会大大加快。在反应体系中注入苯乙烯, 继续监测,发现在 m/z = 482、500、516、582 处出现特征离子峰;反应最后得到的产物为 苯基环氧乙烷。写出中间体配离子 D、E、F 的分子式", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "根据伍德沃德-费歇尔(woodward-fischer)规则,计算胆甾-1,4-二烯-3-酮最大紫外吸收的波长。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "已知在1mol·L⁻¹ HCl溶液中,φ°′(Cr₂O₇²⁻/Cr³⁺)=1.00,φ°′(Fe³⁺/Fe²⁺)=0.68V,计算溶液中含Cr₂O₇²⁻ 1.0×10⁻²mol·L⁻¹、Cr³⁺ 1.0×10⁻³mol·L⁻¹时,Cr₂O₇²⁻/Cr³⁺电对的电位。若用6.0×10⁻²mol·L⁻¹ Fe²⁺滴定该溶液,计算计量点的电位。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Analytical Chemistry", "subject_name": "Chemistry"} +{"question": "一$\\mu$子以$0.6c$的速度通过某实验室,计算$\\mu$子维持该状态的时间。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "物理学家 John Wheeler 为了概括总结爱因斯坦的广义相对论曾经写过一副很有意思的 "对联",上联退"Matter tells spacetime how to curve",下咲是"Spacetime tells matter how to move".敝译成中文就是:物质告诉时空如何弯曲,时空告诉物质如何运动. 本迻中我们给出一个仅考感空间离曲的玩具模型,最终达到牛顿引力的效果.注:本体中所有微分针对 $(X, Y, Z)$ 系而言. (1)考感一个二维弹性膜,其杨氏模量为 $\\alpha$ ,切变模湿为 $\\beta$ ,起初它位于 $X-Y$ 平面上,现在考虑其单位面积受力 $d \\vec{F}=d \\vec{\\sigma} \\cdot d s$ 导致原来位于 $(x, y)$ 的点位移至 $\\left(x^{\\prime}, y^{\\prime}, \\Phi(x, y)\\right.$ ),考感一个小面元,请在直角坐标下写出受力平衡对应的微分方程( $\\Phi$ 是小宣) 补允知识:杨氏模退 $E=\\frac{\\sigma}{\\epsilon}$ ,其中 $\\sigma$ 是应力,表现为单位面积上的法相力,$\\epsilon$ 是应变,表现为长度的相对变化 $\\epsilon=\\frac{\\Delta L}{L_0}$ .切边模量的定义不过是把 $\\sigma$ 从法向力改成切向力,$\\epsilon$ 改为切向相对形变。 (2)现在考虑将(1)问中的情景"拓展至三维",直接写出相应的微分方程. (3)对于(1)问情楽,考虑空间原本在 $X, Y, Z$ 方向上均有很大的单位面积张力 $T$(作用点在边界上),导致原来 $(x, y, z, 0)$ 坐标系被均匀拉伸至 $\\left(x^{\\prime}, y^{\\prime}, z^{\\prime}, 0\\right)$ ,假设两个系原点重合,有 $\\left|\\overrightarrow{r^{\\prime}}\\right| \\gg|\\vec{r}|$ .这样这个模型下,"準膜"只有杨氏模量,而没有切变模里.现在考虑(仪有)"第四方向"外力 $f$ 的微小扰动,导致点 $\\left(x^{\\prime}, y^{\\prime}, z^{\\prime}, 0\\right)$ 位移至 $\\left(x^{\\prime}, y^{\\prime}, z^{\\prime}, \\Phi(x, y, z)\\right.$ ),写出此时 $\\Phi$ 方向近似的微分方程。 这就是我们模型的场方程.给出牛顿引力的场方程与动力学方程: $$ \\begin{aligned} \\nabla^2 \\varphi & =4 \\pi G \\rho \\\\ \\vec{a} & =-\\nabla \\varphi \\end{aligned} $$ 假设沿潘 $-\\nabla \\phi$ 方向存在恒定"重力加速度"$g^{\\prime}$ ,再假设有 $f=\\gamma \\rho$ ,给出我们模型的动力学方程.这样我们的体系最后等价于牛顿引力模型( $\\rho$ 即牛顿质量的密度)。注:你可以利用 $$ \\nabla^2=\\frac{\\partial^2}{\\partial x^2}+\\frac{\\partial^2}{\\partial y^2}+\\frac{\\partial^2}{\\partial z^2} $$ 来化简式子。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "考虑一根做相对论性转动的带电溙: (1)半径为 $R$ 的无限长圆柱内,数密度 $n$ 的正电荷 $q$ 绕抽线做环绕角速度统一为 $\\omega$ 的相对论性运动.求这样的圆柱所产生的电磁场分布,有必要的话分圆柱内外的区域分别得到结果. (2)原参考系为 $S$ .现在换一个平行轴线方向以速度 $\\beta c$ 相对 $S$ 系运动的参考系 $S^{\\prime}$ ,不准用电磁场的洛仑兹变换,再次计算新系中圆柱内部的电荷分布与运动所产生的电磁场分布. (3)我们来考虑加速运动电荷的辐射.相对论情况的一个具有任意速度 $v$ 与任意加速度 $a$ $$ P=\\frac{\\gamma^6 q^2}{6 \\pi \\varepsilon_0 c^3}\\left[a^2-\\frac{(v \\times a)^2}{c^2}\\right] $$ 其中 $\\gamma=1 / \\sqrt{1-v^2 / c^2}$ .认为所有电荷辐射都是不相干的.不准用能褁或者功率变换的公式,直接通过电荷辐射的方式来计算两个系 $S, S^{\\prime}$ 中单位长度棒的辐射功率.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "(1)一个高能光子可以在质子旁自发地衰变为一对正负电子.质子静质量 $m_p$ ,初始视作静止, 正负电子的静质量都是 $m_e$ .过程中无其他光辐射放出.求为了实现该过程光子的能量至少是多少?用表达式表达你的结果并计算其数值.保留三位有效数字. (2)取光子能量为以上临界值的两倍.反应过程中质子有一定几率吸收带负电的电子而转化为静质量为 $m_n$ 的中子,该反应伴随着一个静质量可视作零的中微子的放出.写出总反应式并数值计算出射正电子的速度范围。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "In the future, human being may live on space stations orbiting around supermassive black holes (SMBH) with mass $M$. Due to an accident, twins Bill and Bob are separated immediately after their birth. Bill lives on space station A, which is orbiting around a SMBH on a circular orbit with radius $r$. Bob lives on space station B, which is kept stationary relative to the SMBH and with a same distance $r$. When Bob is $10$ years old, Bob and meet at spacestation B. How old is Bill then ?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "空间站在质量M的施瓦西黑洞周围匀速绕转,即$r$和角速度$\\Omega=d\\phi/d t$为常数。现从空间站以速度$v$沿径向远离黑洞的方向释放一无动力飞船,$v$至少要达到多少才能让飞船逃离黑洞(到达$r=\\infty$)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "所有小问均认为质子质量远大于电子质量,可以做适当近似。 (1)考虑氢原子的玻尔模型,非相对论情况下,求出氢原子基态电子绕原子核运动的速度 $v=\\alpha c$ ,给出 $\\alpha$ 的表达式。 $\\alpha$ 被称为精细结构常数。 (2)考虑相对论影响,求出氢原子能级,要求精确到第一阶修正,用 $\\alpha$ 以及其他常数表示。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Relativity", "subject_name": "Physics"} +{"question": "The central temperature of the sun is about $2\\times10^7$ K. Estimate the fraction of protons with energy $> 1$ MeV that are sufficiently energetic for overcoming the Coloumb barrier of proton pairs. The answer should be accurate to $10\\%$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Astrophysics", "subject_name": "Physics"} +{"question": "天文爱好者宇智波喜欢看星星!具体来说,他特别喜欢观测黄道上的恒星。某天午夜(地方太阳时),他在观星时望向反日点(天球上与太阳正对的点),注意到12星等/平方角秒的微弱辉光。经研究,他确认这是一种叫做“对日照”(gegenschein)的现象——太阳系尘埃被太阳照亮后,将部分光线反射回地球。这些粒子在距太阳2.06天文单位的轨道上运行。假设粒子半径约1厘米、反照率(albedo)为0.14,且辐射是各向同性的。请计算这些粒子的密度,答案单位用粒子数/平方角秒表示。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Astrophysics", "subject_name": "Physics"} +{"question": "探测某行星的探测器,已知行星半径为\\(R\\) ,表面重力加速度为\\(g\\) ,探测器在距离行星中心\\(\\alpha R\\)处的圆轨道运行。 (1) 求探测器周期\\(T\\)。 (2) 探测器总质量\\(M\\) ,将质量为\\(m = \\beta M\\)的着陆器沿垂直于轨道向内快速扔出,使着陆器沿行星表面切线着陆,求扔出的相对速度\\(u\\)。 (3) 求探测器扔出着陆器后新轨道的周期\\(T'\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Astrophysics", "subject_name": "Physics"} +{"question": "Let $X_1,X_2,\\dots$ be a sequence of iid random variables with probability density $f$. Let $g$ be another probability dnesity. Suppose both $f$ and $g$ are strictly positive, and assume $\\int|\\log g(x)-\\log f(x)| f(x) d x<\\infty$. Define $Z_0=1$, $Z_n = \\prod_{i=1}^n \\frac{g(X_i)}{f(X_i)}$. Let $00$. Let $\\tau$ be the stopping time. Compute $E[\\tau]$ for $p\\neq 1/2$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fundamental Disciplines of Computer Science and Technology", "subject_name": "Computer Science"} +{"question": "一年仅有一次,仅在短时间内,世界上99%的人口将在太阳照射范围内,其中完全处于白天的约有64亿人,超过12亿人在经历黄皆。这个具体的时刻是什么时候?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "若有一未饱和湿空气流经一座高3000米的高山,已知t0=20 ℃,τ0=15℃, P=1000百帕,试问:(1)凝结高度等于多少? (2)在山顶处的温度等于多少? (3)在背风山麓处温度等于多少?(注:取γm=0.5℃/100米,凝结出的水全部下降掉)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "温度为25℃,水汽压为22hPa的空气块,从迎风坡山脚处向上爬升,已知山高1500米,凝结产生的水滴均降在迎风坡。求求空气块的凝结高度、山顶处的温度和相对湿度。气温为19℃和25℃的饱和水汽压依次是22.0hPa和31.7hPa,忽略空气上升时露点的变化。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "通过测量,已知某山的山脚的温度为25.7℃,气压为1005.5hPa,山顶处气温14.3℃,气压855.5hPa,计算此山的相对高度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "在一个超级单体云底,观测到一个半径为 r=2 km 的旋转上升气流,旋转周期约为 T=15 分钟。空气密度约为 ρ=1 kg m−3。假设旋转上升气流内部的空气近似刚体旋转,这个旋转气流引起了从边界到中心的动力气压梯度。设上述水平气压梯度带来的气压扰动在近地面为0,在地面上方1km处达到1 hPa。另外给定从地面到上方1km范围内环境大气处于静力平衡状态。请估算上述气压扰动引起的大气垂直运动速度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "近年来,青海省北部越来越多的牧民不再转场到冬春牧场,而是将牲畜运输至甘肃省祁连山北麓的农区租地放牧,充分利用农区秸秆,走出了一条生态保护、绿色转型、牧业增长、农户增收、民族团结、互利共赢的“异地借牧”新模式。青海省牧民选择祁连山北麓农区放牧遇到的主要难题有( ) ①疫病防治 ②低温冷害 ③农户配合度 ④生产用水 A.①④ B.②③ C.①③ D.②④", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "沿经圈由 57.5°N 到 52.5°N 气压升高 1%,如果温度等于 7℃,求地转风。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "当日地距离为一个天文单位时,试求在赤道和极地的太阳辐射日总量的最大值和最小值。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "下列对云的描述正确的是( ),请说明理由。 A.卷云,卷积云,卷层云属于暖云(只包含液态水的云) B.层云,层积云属于冷云(包含冰的云) C.荚状云形成在顺风的右侧 D.大气中云层只含有液态水", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "在一个超级单体云底,观测到一个半径为 r=2 km 的旋转上升气流,旋转周期约为 T=15 分钟。空气密度约为 ρ=1 kg m−3。假设旋转上升气流内部的空气近似刚体旋转,请估算(1)这个旋转气流引起的动力气压梯度(从旋转气流边界到旋转中心)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "2011年7月17日,我国南极中山站(69°22'S,76°22E)越冬科考队的队员们迎来了极夜后的第一次日出。当中山站“第一次日出”时,若在新加坡(103°38'E-104°6'E,1°09’N-129'N)观测太阳,太阳位于观测者的哪个方位?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "假设温度为25℃、21.3℃、20℃时,相对于纯水平面的饱和水汽压分别为31.67hPa、25.34 hPa、23.37 hPa。一块10千克的湿空气,其温度为25℃,相对湿度为80%,气压为1000 hPa,日落西山后,由于辐射冷却,假如其温度降低了5 ℃,试问: (1)此时是否会产生露(雾); (2)假如产生了露(雾),若不考虑凝结过程中潜热释放的影响,那么其量为多少克?( 结果保留两位小数)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geography", "subject_name": "Earth Science"} +{"question": "如果地面气压观测准确,而700百帕气压观测误差为2百帕,地面到700百帕的平均温度为17℃,其计算误差为1℃,若算得700百帕的高度为3000米,问其误差为多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "简述大地测量学中的几类边值问题?Stokes 问题是哪类边值问题?为什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "水准面的不平行性是由于什么原因引起的?这种现象对水准测量会产生什么影响? ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "在测量学中,从误差概念出发,中误差、标准偏差和方差的定义和联系是什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "何为控制网的基准?水准网、测角网、测边网、边角网、导线网和GPS网的起算数据是如何规定的?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "根据《测绘管理工作国家秘密范围的规定》,下面所列的国家基本比例尺地形图及其数字化成果中,定为秘密级的是( )。\nA.1:5千 B.1:2.5万 C.1:5万 D.1:10万\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "判断题:根据椭球定位与定向原理知,在大地原点上的垂线与法线一定重合.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "已知αAB=89°12’01‘’,xB=3065.347m,yB=2135.265m,坐标推算路线为B➡1➡2,测得坐标推算路线的右角分别为βB=32°30‘12’‘,β1=261°06’16‘’,水平距离分别为DB1=123.704m,D12=98.506m,是计算1,2点的平面坐标。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "\t某平差问题有 18 个同精度观测值,必要观测数等于 9,该平差问题的自由度为 ____ ,按条件平差法可以列 ____ 个条件方程;现取 9 个参数,且参数之间有两个限制条件。若按附有限制条件的条件平差法进行平差,应列出 ____ 个一般条件方程和 ____ 个限制条件方程;", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "有一五边形导线环,等精度观测了各内角,共观测了八组结果,而计算处该导线的八组闭合差为–16″、+18″、+22″、–13″、–14″、+16″、–10″、–12″,试求该导线环之中误差及各角观测中误差。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "判断题:海洋测绘中,GPS技术不能用于水下定位。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "在测量学中,用最小二乘平差准则求参数估值时,对观测误差有无要求?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geodesy", "subject_name": "Earth Science"} +{"question": "设u* = 10m·s⁻¹,K = 5m²·s⁻¹,试根据埃克曼螺线解计算40°、100、200、400、1000m高度上u、v,估算hE。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "上海市居民王某在2024年冬季夜晚发现,收音机短波广播出现持续性杂音(持续3小时),同时智能电表显示家庭用电量异常升高(峰值达日常的150%),手机信号基站频繁切换通信频段。已知此时太阳活动指数$K_p=4^+$,电离层F2层临界频率$f_{oF2}=4.0\\ \\text{MHz}$(较日常下降40%),那么导致该异常现象的主要空间天气机制是?\n\nA. 太阳风增强引发的电离层电子密度激增 \nB. 地磁暴引起的电力系统谐波干扰 \nC. 电离层暴导致的信号折射异常 \nD. 太阳耀斑引发的低频电磁脉冲 ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "低纬度地区的沿海城市(北纬$22^\\circ15'$,东经$114^\\circ10'$)在2025年太阳活动第25周期极大期期间,渔民使用北斗卫星导航系统时,发现连续多日正午至下午$\\mathbf{16:00}$期间RTK定位精度频繁出现显著下降(水平误差超过$20\\ \\text{m}$)。已知此时电离层F2层临界频率$f_{oF2}=5.8\\ \\text{MHz}$(正常日照条件下的实测值),地磁活动指数$K_p=4^+$,且该区域白昼电离层电子总含量(TEC)较夜间高$3\\times10^{16}\\ \\text{m}^{-2}$。 \n\n请推断导致该定位异常的主要原因是?\nA. 电离层闪烁 B.电离层梯度 C.电离层延迟 D.电离层暴", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "假设摩擦力与速度大小成正比,方向与速度方向相反,即F = -kV。\n(1) 试写出考虑摩擦力的相对环流定理;\n(2) 在经圈平面内取一物质环线,设初始环流为零,当环线内力管数N保持不变时,试求任意时刻的环流,以及最大环流位多少?(这里暂不考虑地球旋转作用)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "假设距太阳中心 D 个天文单位的地方,有一吸收率为 a 的薄片型卫星的法线与太阳光投射方向的夹角 θ,太阳半径为 R☉,当卫星处于辐射平衡时,求它的温度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "某挪威特罗姆瑟市(北纬69°39',东经18°56')在2025年太阳活动第25周期极大期期间,业余无线电爱好者发现每日午夜至凌晨2:00期间短波通信(频率30MHz)出现异常衰减,而同一时段极光观测站记录到强烈的极光活动。已知此时地磁活动指数$K_p=6^-$,电离层F2层临界频率$f_{oF2}=3.2\\ \\text{MHz}$(较日间下降60%),且电离层电子总含量(TEC)夜间较白天减少$2\\times10^{16}\\ \\text{m}^{-2}$。请推断导致该通信异常的主要极光相关物理过程。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Space Physics", "subject_name": "Earth Science"} +{"question": "一可逆卡诺热机高温热源的温度为 $T_1=227 ℃$,低温热源的温度为$T_2=27 ℃$。其每次循环对外做净功$W=2000 J$,现通过提高高温热源的温度改进热机的工作效率,使其每次对外做净功为$W'=3000 J$。若前后两个卡诺循环都工作在相同的两条绝热线间且低温热源温度不变,计算改进后热机的高温热源温度$T_1'$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "单原子气体由具有两个内部能级的原子组成:基态的简并度为 \\( g_1 \\),低激发态的简并度为 \\( g_2 \\),其能量比基态高 \\( E \\)。假设基态的解离能为$E_0$,玻尔兹曼常数为$k_B$,求该气体的比热容$C_v$与温度$T$的关系式。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "类似于理想气体,某温度下达到热平衡的热辐射也会具有能量并可以对容器壁造成压强。其内能密度,压强和温度的关系为: $$ u=\\frac{4 \\sigma T^4}{c} \\quad, \\quad p=\\frac{1}{3} u $$ 现在把这样的热辐射装在一个气球里,气球的弹性特性和一个表面张力系数为 $\\alpha$ 的肥皀泡相当,其总质量为 $m$ ,均分分布在表面上,平衡时气球形成球体,测得内部辐射温度为 $T$ .而气球外部为真空.问: (1)平衡时,气球的半径为���? (2)如果气球相对中心做各向同性的径向小振动.求这样的振动的周期.假设在振动频率较高,气球内部热辐射来不及从气球上吸收热量。 (3)气泡形成的热平衡是否是热力学稳定的?(提示:考虑体系的热容.)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "某个系统满足 $P = -\\frac{NU}{NV - 2AUV}$ 和 $T = 2C\\frac{U^{1/2}V^{1/2}}{N - 2AU}e^{AU/N}$,求出熵。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "Consider a classical statistical system consisting of two Ising spins $\\sigma_{1,2}=\\pm1$, whose energy is given by $E = -h_1\\sigma_1 - h_2\\sigma_2 - J\\sigma_1\\sigma_2$. If we integrate out the second spin and calculate the effective free energy of the first spin, it can be written in the form $E_{\\text{eff}} = -h_{\\text{eff}}\\sigma_1 + E_0$. Please calculate the expression of $h_{\\text{eff}}$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "只考虑由系统不平衡性所做的功,即系统对外界除做功外无任何影响,过程始末外界复原,如系统体积不变,与外界总热交换为零等。 (1)写出系统由非平衡态到平衡态过程中对外做功的表达式,用初末能量 $E, E^{\\prime}$ 表示,并说明何种条件下做功最大。 现考虑一具体情形:两绝热容器中有粒子数均为 $N$ ,温度均为 $T_0$ ,绝热系数为 $\\gamma$ 同种理想气体,但容器体积不同,分别为 $V_1, V_2$ 。 (2)求容器连通后最大对外做功 $W_m$ 。 (3)试构造具体过程,使可获得(2)问中的最大功,并写出具体运算过程", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "水的密度为$\\rho$,蒸发潜热为L,水滴的表面张力为$\\gamma$,问如果一滴水能够在不吸收外界热或者不损失内能的情况下蒸发,水滴半径应该满足什么条件?这样的水滴是否存在?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "在研究物质的量子现象中,为避免环境热效应的干扰,低温环境是至关重要的.磁制冷的一种能够将温度降低到毫开级别的技术.本题我们考虑顺磁材料的制冷过程,顺磁材料无自发磁化,仅在外磁场中会发生磁化. 简单起见,本题我们考虑由 $N$ 个粒子构成的顺磁材料,每个粒子相当于一个磁偶极子.粒子的磁偶极矩有两个可能取值:向上 $(\\uparrow)$ 和向下 $(\\downarrow)$ ,分别记为 $$ \\mu_{\\uparrow}=\\mu \\hat{z}, \\quad \\mu_{\\downarrow}=-\\mu \\hat{z} $$ 这里 $\\mu=e \\hbar / 2 m_e$ 为 Bohr 磁子,这里 $e$ 是元电荷量,$\\hbar=h / 2 \\pi$ 是约化 Planck 常量,$m_e$ 是电子质量. 磁偶极子在磁场中的能量为 $$ E=-\\boldsymbol{\\mu} \\cdot \\boldsymbol{B} $$ 定义 $N_{\\uparrow}$ 和 $N_{\\downarrow}$ 为磁矩向上和磁矩向下的粒子数目。(1)粒子的分布. 对于大量粒子,在热平衡时,根据 Boltzmann 分布,某粒子处于 $i$ 状态 $(i=\\uparrow, \\downarrow)$ 的概率 $p_i$ 有 $$ p_i=\\frac{N_i}{N} \\propto e^{-E_i / k_B T} $$ 这里 $E_i$ 是 $i$ 状态的能量,$T$ 是系统的绝对温度. (i)求 $N_{\\uparrow}$ 和 $N_{\\downarrow}$ . (ii)求 $S / N k_B$ ,结果用 $B, T, \\mu, k_B$ 表示. (iii)在外磁场很弱的极限下,系统的总磁矩 $M$ 与外磁场 $B$ 有线性关系 $M \\simeq \\chi B$ .求 $\\chi$ . (2)磁制冷。 磁制冷的过程如下.通过液氨制冷,可以将顺磁材料冷却到 $T_i=1 \\mathrm{~K}$ 的热平衡状态,磁场为 $B_L$ .维持液氦制冷,等温地缓慢增加磁场,使得系统达到磁场为 $B_H$ 的热平衡状态.现将系统的液氨分离,准静态绝热地将磁场从 $B_H$ 降回到 $B_L$ ,系统温度降为 $T_f$ . (i)磁场 $B_L$ 的大小可以通过磁矩相互作用估计.已知磁矩 $\\mu$ 在距离 $r$ 处产生的磁场为 $$ B=\\frac{\\mu_0}{4 \\pi} \\frac{\\mu}{r^3} $$ 这里 $\\mu_0$ 是真空磁导率.取粒子间距 $r=1 \\mathrm{~nm}$ ,估计 $B_L$ 的大小. (ii)取最大磁场为 $B_H=1 \\mathrm{~T}$ ,求系统末态温度 $T_f$ . (iii)求在磁场增加的过程中,单个粒子释放的热量.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "(微观摘与宏观摘之间的联系)微观熵表达式 $S=k \\ln (\\Omega)$ 可以由信息熵的逻辑给出。一个随机事件的信��摘衡量的是我们对这一随机事件的无知程度。给定随机事件中不同独立事件的概率分布 $\\left\\{p_i\\right\\}_{i=1}^M$ ,则这一随机事件的信息熵定义为: $$ S=\\sum_i-p_i \\ln \\left(p_i\\right) $$ 对于热力学中研究的对象,一个宏观状态包含等可能的 $\\Omega$ 个微观状态,这对应的随机事件包含 $\\Omega$ 个独立事件,并且每个随机事件的概率均为 $\\frac{1}{\\Omega}$ 。根据定义,这一宏观状态的信息摘为 $S=\\ln (\\Omega)$ ,多乘一个玻尔兹曼常数就得到了热力学摘。 (1)我们考虑一个很简单的模型一个矩形箱子内部装有八个可分辨粒子,一个隔板将箱子分为左右两个体积相同部分。一种宏观状态是两部分各有四个粒子,求这一状态对应的微观摘。(4 分) (2)如果我们考虑内部的八个粒子是不可分辨粒子,例如电子,质子之类的基本粒子,重新求系统的微观熵。(4 分) (3)考虑一随机事件由两个独立的随机事件组成,也就是其概率分布满足 $\\left\\{p_i q_j\\right\\}_{i, j=1}^M$ ,并且有 $\\sum_i p_i=$ $\\sum_j q_j=1$ 。证明这一随机事件的信息熵等于两个独立随机事件的信息熵之和。(4 分) (4)处于平衡态的气体速度分布满足麦克斯韦分布 $V\\left(\\frac{m}{2 \\pi k T}\\right)^{\\frac{3}{2}} e^{-\\frac{m v^2}{2 k T}}$ ,也就是说一个气体分子速度处于 $v_x \\sim v_x+d v_x, v_y \\sim v_y+d v_y, v_z \\sim v_z+d v_z$ 的概率为 $V\\left(\\frac{m}{2 \\pi k T}\\right)^{\\frac{3}{2}} e^{-\\frac{m v^2}{2 k T}} d v_x d v_y d v_z$ 。我们考虑一个体积为 $V$ 的气缸中装有 $N$ 个处于平衡态温度为 $T$ 的可分辨单原子分子,求这个系统的微观熵。提示:计算一个连续概率分布的信息熵时,可以将概率分布分立化从而应用标准信息熵公式,结果可以包含一些无法确定的常数。(18 分) (5)考虑处于平衡态的理想气体经过一个准静态过程,温度体积由 $\\left(T_0, V_0\\right)$ 变化为 $\\left(T_1, V_1\\right)$ ,由宏观摘公式求解其摘的变化,结果和上一问给出的微观摘变化是否一致?(10 分)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "考虑一个 $d$ 维空间中的 $N$ 粒子体系,外加两个自由度: $(P_{s},S)$ ,整个系统的哈密顿量写成$$\nH_{\\scriptscriptstyle N}=\\sum_{i=1}^{N}\\frac{\\stackrel{\\rightharpoonup}{p}_{i}}{2m_{i}S^{2}}+U(\\stackrel{\\rightharpoonup}{r},...,\\stackrel{\\rightharpoonup}{r}_{N})+\\frac{\\stackrel{\\rightharpoonup}{p}_{s}}{2Q}+g k T\\ln S\n$$ 整个系统遵从微正则分布,请问子系统 $\\vec{\\{r_{i},p_{i}\\}}_{i=1}^{N}$ 在 $g$ 取何值时遵从正则分布?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "已知质点离开地球引力作用所需的逃逸速率为$v=\\sqrt{2gR_E}$,其中$R_E$为地球半径。计算氢气分子平均速率与逃逸速率相等时对应的温度$T_{H_2}$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "考虑一个 $d$ 维空间中的 $N$ 粒子体系,外加两个自由度: $(P_{s},S)$ ,整个系统的哈密顿量写成$$\nH_{\\scriptscriptstyle N}=\\sum_{i=1}^{N}\\frac{\\stackrel{\\rightharpoonup}{p}_{i}}{2m_{i}S^{2}}+U(\\stackrel{\\rightharpoonup}{r},...,\\stackrel{\\rightharpoonup}{r}_{N})+\\frac{\\stackrel{\\rightharpoonup}{p}_{s}}{2Q}+g k T\\ln S\n$$\n将 $g$ 视作常数,重新取变量 $\\stackrel{\\longrightarrow}{p_{i}}=\\stackrel{\\longrightarrow}{p_{i}}/S$ , $\\overrightarrow{p}_{s}=\\overrightarrow{p}_{s}/S$ 以及 $d t^{\\prime}=d t/S$ ,使用这些变量推导每个自由度的演化方程;", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "涨落-耗散定理是联系不可逆过程中能量耗散和热平衡状态热涨落的重要定理。这个定理有不同的表述方式,其中一个是最早在物理学"奇迹年"1905年由爱因斯坦的一篇论文指出布朗运动中微观粒子在液体中的热学扩散系数 $D$ 与力学阻尼系数 $\\gamma$ 之间存在爱因斯坦关系: $$ D=\\frac{k T}{\\gamma} $$ 其中,$k$ 为玻尔兹曼常数,$T$ 为体系的热力学温度.这个定理成功地在近平衡态体系的线性响应理论的框架下将涨落现象与输运现象都归因于热扰动(thermal agitation)的统计行为.后来人们在几个不同的实际体系中都发现了与其类似的对应定理。我们要研究的体系恰好也属于其中的一类. 1926 年约翰逊(J.B.Johnson)在贝尔实验室发现了电阻元件两端存在噪声电动势的现象,其电压平方对频率的谱为一个常数,称为白噪声(white noise).他向同实验室的奈奎斯特(H. Nyquist)描述了这个现象,后者建立了理论解释了这个结果.奈奎斯特论证了,如果电阻元件置于温度为 $T$ 的环境下而其电阻为 $R$ ,那么在其频率谱的低频部分(高频部分将与普朗克公式一致)中,一段频率间隔 $\\Delta \\nu$ 中的噪声电动势的均方值符合奈奎斯特关系: $$ \\mathcal{E}_{\\Delta \\nu}^2=4 k T R \\Delta \\nu $$ 由此回答以下问题:"田"字形网格电路具有九个格点,任意两个格点间的每一条直线段都具有相等的电阻 $R$ .那么当这个 电路处于温度为 $T$ 的热平衡时,每一条边上将产生完全独立的随机变化的 电动势,在某个特定的频率区间上的电动势的平方的随时间平均值符合上面给出的奈奎斯特关系 .而所有边的独立电动势共同决定了整个电路的电流分布.计算长时间内频率间隔 $\\Delta \\nu$ 内整个电路的平均热功率 $P_{\\Delta \\nu}$ .", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "空间中有一团稀薄的高度电离气体,体积为 $V$ ,温度为 $T$ ,第 $i$ 种离子带电为 $Z_i e$ ,数量为 $N_i, C_{v i}$ 表示一摩尔 $i$ 分子的等体比热。由于离子之间的静电相互作用,对外表现出偏离理想气体的行为,接下来我们将对这团气体进行研究,为方便起见,设 $n_{i 0}=\\frac{N_i}{V}$ ,答案可以用其表示。且在计算电势能的时候不用考虑第 $i$ 种离子数密度随空间变化使得感受到电势的不同。(1)忽略静电能对系统熵的影响,请求出 $\\mu$ ,并给出任意一种离子在该处的数密度分布。(2)稀薄的含义是,粒子间距较大,即便静电作用为长程也无法与热运动能量比拟。在此近似下,求出 $\\phi(r)$ ,并给出原点处这个特定的 $i$ 种离子感受到的电势。(对 $\\phi$ 进行一阶近似) (3)请给出该气体的内能与压强。你可以用 $U_0, F_0$ 指代理想气体内能,自由能而不必求出。(使用上一问的结果作为第 $i$ 种离子感受到的电势 $\\phi_i$ ) 提示: $$ \\frac{U}{T^2}=-\\frac{\\partial}{\\partial T}\\left(\\frac{F}{T}\\right), P=-\\left(\\frac{\\partial F}{\\partial V}\\right)_T, \\nabla^2 \\varphi=\\frac{1}{r^2} \\frac{d}{d r}\\left(r^2 \\frac{d \\varphi}{d r}\\right) $$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Thermodynamics and Statistical Physics", "subject_name": "Physics"} +{"question": "半径为$R$的薄柱壳上流有沿轴向的电流,其分布为$\\alpha = \\alpha_{0}(1 + k\\cos\\phi)$,$\\alpha_{0}$、$k$均为常数。求空间磁场分布。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "考虑真空中一个半径为\\(R\\)、总电量为\\(0\\)的金属球,以球心为原点建立立体直角坐标系,原点为\\(O\\)。 (1)存在沿\\(z\\)方向、大小为\\(E_{0}\\)的匀强电场,求静电平衡时表面感应电荷密度随与\\(z\\)轴夹角\\(\\theta\\)的函数\\(\\sigma_{0}(\\theta)\\); (2)空间中的电场方向沿\\(z\\)轴,大小随\\(z\\)变化,\\(E_{z}=E_{0}+\\alpha z\\),满足\\(\\alpha R\\ll1\\) 。若要求该电场绕\\(z\\)轴对称且为无源场,电场的\\(x\\)、\\(y\\)方向分量也需随坐标变化,如\\(E_{x}=\\beta x\\),\\(E_{y}=\\beta y\\) ,求\\(\\beta\\); (3)将上述金属球置于(2)问的电场中,静电平衡时电荷密度为\\(\\sigma(\\theta)=\\sigma_{0}(\\theta)+\\sigma_{1}(\\theta)\\) ,\\(\\sigma_{1}\\)相对\\(\\sigma_{0}\\)为一阶小量。保留到一阶小量,计算\\(\\sigma_{1}\\) 。为避免复杂数学技巧,考虑点电荷在球外对球附近产生的电场(可视为匀强电场加变化电场 ),使等效电场与题设电场一致,求外部点电荷大小\\(Q\\)及到球心的距离\\(l\\) ,利用电像法求金属表面电场,经小量近似得到\\(\\sigma_{1}\\) 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "GEOMETRIC OPTICS 在光学实验中,目镜的作用是将待观察的在较近处的像成像在无穷远处,以便观察者能不费力地长时间观察像。 任何光学仪器设计时都会考虑光阑对成像的影响。由光轴上一物点发出的光束通过光具组时,不同的光阑对此光束的孔径限制到不同的程度。其中对光束孔径的限制最多的光阑,即真正决定着通过光具组光束孔径的光阑,称为孔径光阑:孔径光阑在物方的共轭(一个物点经过一理想光具组成一个像,根据光路可逆,此像作为物经过一理想光具组成的像的位置正是原来物的位置;这两点就称为互为共轭)称为入射光瞳,在像���的共轭称为出射光瞳。 入射光瞳中心 $O$ 与出射光瞳中心 $O^{\\prime}$ 对整个光具组是一对共轭点。在轴外共轭点 $P, ~ P^{\\prime}$ 之间的共轭光束中通过 $O, ~ O^{\\prime}$ 的那条共轭光线称为此光束的主光线。随着 $P, ~ P^{\\prime}$ 到光轴距离的加大,主光线通过光具组时会与某个光阑 $D D^{\\prime}$ 的边缘相遇,离光轴更远的共轭点的主光线将被此光阑所遮断。这个光阑称为视场光阑。 某型号目镜由向场镜 $L_1$ 和接目镜 $L_2$ 组合而成,$L_1$ 和 $L_2$ 的焦距 $f_1$ 和 $f_2$ 以及两透镜的间隔 $d$ 满足 $f_1: f_2: d=4: 1: 3$ 。外加光阑 $A A^{\\prime}$ 位于两透镜之间的正中央处。 $L_1$ 和 $L_2$ 以及光阑的孔径直径依次为 $D_1$和 $D_2$ 以及 $D$ 。本题不考虑任何波动光学效应。 (1)为使 $L_1$ 成为孔径光阑(物点为此目镜的等效物方焦点)同时 $A A^{\\prime}$ 成为视场光阑,$D_1, ~ D_2, ~ D$之间应该满足什么条件? (2)在上述条件下,计算出射光瞳的位置和大小。 (3)此目镜的设计相较惠更斯目镜 $\\left(f_1: f_2: d=3: 1: 2\\right.$ ,外加光阑 $A A^{\\prime}$ 仍位于两透镜之间的正中央处)有不合理的地方,请指出何处不合理并说明用此目镜看像,像有什么缺陷。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "沿$z$轴放置的一无线长直导线,载有电流\\[ I(t) = \\begin{cases} 0, & t \\leq 0 \\\\ I_0, & t > 0 \\end{cases}\\] ,即一恒定电流$I_0$在$t=0$时刻突然出现。求该导线在$s$处产生的电场$\\mathbf{E}$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": " 一个交变电流 \\( I = I_0 \\cos(\\omega t) \\) 流经一个长直导线,然后沿着一个半径为 \\( a \\) 的同轴导电管流回。 假定导线边缘离导电管轴中心的距离 \\( s \\to \\infty \\) 时电场趋近于零,计算电场\\( \\mathbf E(s, t) \\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "星际空间中常常弥漫着等离子体,外电磁场在等离子体云内的传播与等离子体云的固有振荡频率与衰减常数密切相关。假设等离子体云仅由质量为 $m_{+}$,带电量为 $+e$ 的正离子和质量为 $m_{-}$,带电量为 $-e$ 的负离子组成,且稳定状态下两种离子的数密度都是 $n_0$ 。由于星际空间中的温度极低,离子的热运动可以忽略不计,离子的运动仅由等离子体内部的静电作用和运动阻尼决定。当正离子运动速度为 $v_{+}$时,会受到正比于速度的阻尼力 $f_{+}=-k_{+} v_{+}$,而负离子同样受到阻力 $f_{-}=-k_{-} v_{-}$。假设离子的运动阻尼十分弱。若等离子体内部存在一个微小扰动,那么这个扰动将会以固有圆频率 $\\omega$ 振荡,同时以衰减常数 $\\beta$ 按 $e^{-\\beta t}$ 形式指数衰减。请在弱阻尼条件下导出 $\\omega$ 和 $\\beta$ 的表达式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "有一内外半径分别为$a$和$b$的空心介质球,介质的电容率为$\\epsilon$,使介质内均匀带静止自由电荷$\\rho_f$,求空间各点的电场", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "一均匀带电球体,用球的半径$R$和总电荷$Q$表示南半球与北半球之间的净相互作用力$F$。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "有一块磁矩为\\(\\vec{m}\\)的小永磁体,位于一块磁导率非常大的实物的平坦界面附近的真空中,求作用在小永磁体上的力\\(\\vec{F}\\) .", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "磁矩为\\(\\vec{m}\\) 的小永久磁体,放置于磁导率为\\(\\mu\\) 的介质平面(\\(z = 0\\))上方\\(\\vec{r}=a\\vec{e}_{z}\\) 处,\\(\\vec{m}\\) 与\\(\\vec{e}_{z}\\) 夹角为\\(\\alpha\\)。求小磁体受力情况", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "有一个内外半径为\\(R_{1}\\)和\\(R_{2}\\)的空心球,位于均匀外磁场\\(\\vec{H}_{0}\\)内,球的磁导率为\\(\\mu\\),求空 腔内的场\\(\\vec{B}\\),讨论\\(\\mu >> \\mu_{0}\\)时的磁屏蔽作用。(即\\(\\vec{B}\\)的大小)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "在均匀外电场$\\vec{E}_{0}$中置入一带均匀自由电荷$\\rho_{f}$的绝缘介质球$\\varepsilon$,求空间各点的电势。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "一半径为 $a$ 的小圆线圈,电阻为 $R$ ,开始时与一个半径为 $b(b \\gg a)$ 的大线圈共面且同心,固定大线圈,并在其中维持恒定电流 $I$ ,使小线圈绕其直径以匀角速 $\\omega$ 转动如图(线圈的自感可忽略)。(20 分)求: (1)小线圈中的电流; (2)为使小线圈保持匀角速度转动,需对它施加的力矩 $T$ ; (3)大线圈中的感应电动势。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "真空中有一理想反射镜,形状方程为 $2 p z=x^2+y^2, z=\\frac{p}{2}$ 处有一半径为 $p$ 的圆形理想黑体挡板与反射镜相连,使整个体系变成一个封闭系统,总质量为 $M$ 。系统内部 $z=\\frac{p}{2}, x=y=0$,紧贴黑体平面处有一各向同性发光的光源,功率为 $I$ 。整个系统初始静止放在真空中,光源未开启。假设后面反射镜的运动速度远小于光速,在 ${ }_c$ 的时间尺度下可以视为反射镜没有发生位置变化。 $t=0$ 时刻打开光源,下面几问分析在 $t=0$ 到 $t=\\frac{p}{c}$ 这段时间内反射镜的运动,问: (1)$t=\\frac{p}{c}$ 时反射镜的速度。(10 分) (2)什么时间反射镜的速度达到最大,是多少?(24 分)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "一个半径为$R_{0}$的球面,在球坐标$0 < \\theta < \\frac{\\pi}{2}$的半球面上电势为$\\varphi_{0}$,在$\\frac{\\pi}{2} < \\theta < \\pi$的半 球面上电势为$-\\varphi_{0}$,求空间各点电势。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "真空中有一根固定的无限长均匀带电直线,电荷线密度为 $\\lambda$ 。另有质量为 $m$ 的尘埃颗粒,可视作体积为 $V$ 的各向同性均匀介质球,相对介电常数为 $\\varepsilon_r$ 。已知介质球体积 $V$ 很小,真空介电常数为 $\\varepsilon_0$ ,忽略重力,忽略电荷运动产生的电磁辐射,忽略相对论效应,研究尘埃颗粒在带电直线作用下的运动: (1)首先推导尘埃颗粒受到作用力的形式: (1.1)考虑颗粒到带电直线距离为 $r$ ,求颗粒的极化强度矢量 $P(r)$ ; (1.2)求颗粒受到的作用力,给出其大小和方向。 (2)给定颗粒初速度垂直于带电直线,这样就只需要研究颗粒在垂直于带电直线的平面内的运动,以带电直线与该平面的交点为原点,在该平面内建立 $r-\\theta$ 极坐标系。接下来根据极坐标系下的基本动力学方程推导描述颗粒运动轨迹的方程,以下(2.1)和(2.2)两问不用代入上一问得到的作用力表达式: (2.1)直接写出颗粒在极坐标系中的径向动力学方程,颗粒受力用 $F(r)$ 表示(以远离带电直线为正); (2.2)引入辅助变量 $u=\\frac{1}{r}$ ,设颗粒对带电直线的角动量为 $L$ ,请推导以下方程: $$ L^2 u^2\\left(\\frac{\\mathrm{~d}^2 u}{\\mathrm{~d} \\theta^2}+u\\right)=-m F\\left(\\frac{1}{u}\\right) $$ (3)根据第(1)问得到的作用力表达式求解第(2)问得到的方程,考虑颗粒从无穷远入射,初速度为 $v_0$(垂直于带电直线),瞄准距离为 $b$(带电直线与颗粒初速度所在直线之间的最近距离),取颗粒入射时的方位为 $\\theta=0$ 。为简化结果表述,设颗粒受力为 $F(r)=K r^n$(以远离带电直线为正),以下各问可使用 $K$ ,但不可使用 $n$( $n$ 值应由考生根据前面得到的结果自行给出): (3.1)求颗粒的轨迹方程 $r=r(\\theta)$ ; (3.2)求颗粒到带电直线距离的极小值 $r_{\\text {min }}$ 。 (3.3)求颗粒的偏转角 $\\phi$(最终出射速度方向与最初入射速度方向的夹角)。 (3.4)考虑大量相同颗粒从无穷远处以相同初速度 $v_0$ 按不同瞄准距离 $b$ 入射,忽略颗粒彼此间的相互作用。定义微分散射截面 $\\sigma(\\phi)$ 为单位时间内在偏转角 $\\phi$ 附近单位立体角内收到的出射颗粒数除以入射的颗粒流强度(在垂直入射颗粒流方向上单位面积单位时间通过的颗粒数),本题直接给出其计算公式为 $\\sigma(\\phi)=\\frac{b}{\\sin \\phi}\\left|\\frac{\\mathrm{~d} b}{\\mathrm{~d} \\phi}\\right|$ 。请先导出本问题的微分散射截面 $\\sigma(\\phi)$ ,再对立体角积分导出 $\\phi_0 \\leqslant \\phi \\leqslant \\pi$ 范围内的总散射截面 $\\Sigma_{\\phi_0 \\sim \\pi}$ ,本问结果表达式一律不得出现 $b$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "均匀带电线段与长轴旋转椭球电容器: (1)考虑一个均匀带电直线段,长度为 $2 c$ ,电荷线密度为 $\\lambda$ 。以线段中点为原点,以线段某一方向为 $z$ 轴,建立柱坐标系,求空间电势分布。 (2)考虑一个长轴旋转椭球电容器(长轴旋转椭球是指椭圆绕其长轴旋转得到的椭球体),其内极板为半长轴为 $a$ ,焦距为 $c$ 的长轴旋转椭球,外极板为半长轴为 $A$ ,焦距为 $c$ 的长轴旋转椭球,$A>a>c$ ;内外极板长轴重合,中心点也重合,内外极板之间填充相对介电常数为 $\\varepsilon_r$ 的介质。试求该电容器的电容。 (3)接上问,给定填充介质的电导率为 $\\sigma$ ,求内外极板之间的电阻。 (4)接上问,上述电容器等效于一个纯电容和一个纯电阻做并联,将上述电容器与电感 $L$ ,直流电源和开关串联起来组成闭合回路,其中直流电源电动势恒定且内阻可忽略。最初开关断开,某时刻突然闭合开关,当电感 $L$ 满足什么条件时,系统会以最快速度到达稳态?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "在一条内半径为\\(R_{1}=4.70cm\\),外半径\\(R_{2}=6.00cm\\)的无限长竖直空心固定铜圆柱层内放入一个半径\\(r_{0}=0.800cm\\),匝数\\(N = 20\\),质量为\\(m = 6.58g\\)的小超导线圈。该线圈的截面始终水平,且其中心始终在圆柱层的轴线上运动。已知铜的电阻率\\(\\rho=1.67\\times10^{-8}\\Omega\\cdot m\\),重力加速度\\(g = 9.78m/s^{2}\\),真空磁导率\\(\\mu_{0}=4\\pi\\times10^{-7}N/A^{2}\\)。忽略铜柱层的自感。 沿着竖直向下为\\(z\\)轴建立直角坐标系\\(xyz\\),并记\\(r\\)为线圈中心到场点的距离,\\(\\theta\\)为上述连线和\\(z\\)轴夹角,并引入\\(r\\)增大的方向对应的方向矢量\\(\\hat{r}\\),\\(\\theta\\)增大的方向对应的方向矢量\\(\\hat{\\theta}\\),以及方位角方向\\(\\hat{\\phi}=\\hat{r}\\times\\hat{\\theta}\\)。 起初固定超导线圈,并为其通入\\(I_{0}=100A\\)的超导电流达到稳定状态。研究线圈在重力作用下的稳定过程,记稳定下落速度为\\(v_{c}\\)。 (1)求给定\\(v_{c}\\)后铜柱层内的电流密度分布\\(j\\); (2)求\\(v_{c}\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "空间中存在磁场 $\\vec{B}=-B(x) \\overrightarrow{\\mathrm{e}_{\\overrightarrow{2}}}, 0 \\leq X \\leq L$ ,在坐标为 x 处,磁感应强度 $B=$ $B_0 \\cos \\left(\\frac{2 \\pi \\mathrm{X}}{L}\\right)$(垂直于纸面向内为正)。现有一个边长为 L ,电阻为 R ,质量为 m 的正方形导电线框,忽略线框自感。 1,若线框以恒定速度 $V_0$ 通过磁场区域,求线框产生的热量Q。 2,若线框以初速度 $V_0$ 进入磁场区域,且能完全通过磁场区域,求线框产生的热量 Q 和通过磁场区域后的速度 v ,以及线框能完全通过磁场区域的条件。 3,在线框中串联一个理想二极管(二极管的正方向未知)后,以初速度 $V_0$ 进入磁场区域,求 $\\mathrm{v}(\\mathrm{x})$ 。(直接写出最终结果即可)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "在标准的 CD 光盘上,环的半径以 $a \\approx 1.6 \\mu \\mathrm{~m}$ 为间距递增,称为轨距. 将光源 $S$ 和观察者 $O$ 置于光盘平面略高的位置,光源指向光盘以实现掠入射条件.光源和观察者到光盘的距离远大于光盘半径.光源到光盘中心的连线与观察者到光盘中心的连线形成角度 $2 \\alpha(\\ll 1)$ .考虑远侧的光带,设光盘上同心环存在的半径范围是 $r_0 \\leq r \\leq r_1$ .设白光入射. (1)求反射光强 $I$ 与波长 $\\lambda$ ,角度 $\\alpha$ 的关系.常数可略去. (2)在可见光 $400 \\mathrm{~nm}<\\lambda<700 \\mathrm{~nm}$ 范围内求干涉增强条纹的波长 $\\lambda_m$ . (3)实验中, SO 与圆心形成的平面比光盘平面略高,设两平面的夹角为 $\\beta$ .求 $\\beta=25^{\\circ}$ 以及 $\\beta=35^{\\circ}$ 时,光带的波长. (4)光盘一般是通过聚焦的激光烧录的,其储存容量主要由激光聚焦后的光斑大小限制的.CD 光盘一般使用 635 nm或 650 nm 的激光进行烧录,而蓝光光盘使用 405 nm 的蓝色激光进行烧录.解释为何同等面积下,蓝光光盘的容量比 CD 光盘大得多.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "半径为\\(R_{0}\\)的不带电导体球壳放入匀强电场\\(\\vec{E} = E_{0}\\vec{e}_{z}\\) 中,球心处于坐标原点。现在沿着\\(x - y\\)���面把这个球壳一分为二。计算为了保持这两个部分不分开需要多少外力。 ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "有一个梯子,可以分为相同的n节,对每一节,都由两根竖着的支撑棍和它们顶端的横杠构成。已知横杠和左侧的支撑棍的电阻都为R,而右侧的支撑棍电阻为2R,求n=3时最低端两个梯子脚之间的等效电阻", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "Tolmen-Stewart 实验。 1916 年,Tolmen 和 Stewart 进行了他们的著名实验,证明了金属中的电流是由运动的自由电子引起的.实验装置示意如下。 一半径为 $r$ ,长 $h$ 的长螺线管转动惯量为 $J_0$ .螺线管外由长为 $\\ell$ ,质量 $m$ 的金属丝单层缠绕,使得螺线管单位长度上的匝数为 $n$ .金属丝两端通过滑动触点与电流计相连。螺线管与金属丝以角速度 $\\omega_0$ 共同转动,然后施加摩擦力矩 $M$ 使得螺线管停止转动.回路总电阻为 $R$ ,电容可忽略不计. (1)本部分忽略线圈电感,假设欧姆定律时刻成立. (i)求螺线管与金属丝的总转动惯量 $J$ .结果用 $J_0, m, r$ 表示. (ii)求螺线管角速度与时间的关系 $\\omega(t)$ .结果用 $J, M, \\omega_0$ 表示. (iii)求电流与时间的关系 $\\omega(t)$ .结果用 $J, M, r, \\ell, R$ ,以及电子质量和电量 $m_e, e$ 表示. (iv)实验中,电流计记录到通过电路的总电量为 $Q$ .求电子的荷质比 $e / m_e$ ,用 $\\omega_0, r, \\ell, R, Q$ 表示. (2)本部分你需要考虑螺线管的微小电感.线圈很长,边缘效应可忽略. (i)求螺线管中的最大电流 $I_{\\max }$ .用 $J, M, r, \\ell, R, m_e, e$ 表示. (ii)求实验中螺线管储存的最大能量 $W_0$ ,用 $J, M, r, \\ell, R, m_e, e, n, h$ 和真空磁导率 $\\mu_0$ 表示. (iii)通过单位面积的电磁能流 $S$ 由 Poynting 矢量决定.其垂直于电场和磁场方向,大小为 $S=\\frac{1}{\\mu_0} E B \\sin \\alpha$ ,其中 $E$ 是电场强度,$B$ 是磁感应强度,$\\alpha$ 是两者夹角,求电流增加阶段,通过侧面的电磁能 $W$ 和电流减小阶段,通过端面的电磁能 $W^{\\prime}$ .结果用 $\\ell, r, M, J, n, R, m_e, e, \\mu_0$ 表示.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "(有限厚度全反射)我们先来回顾一下菲涅尔公式的推导过程。在线性介质中,电磁波中电场的波动方程可以被写为 $$ \\vec{E}_0 e^{i(\\vec{k} \\cdot \\vec{x}-\\omega t)} $$ 其中 $\\vec{k}$ 与 $\\omega$ 分别为电磁波的波矢与角频率,满足关系 $k^2=\\epsilon \\mu \\omega^2$ ,其中 $\\epsilon, \\mu$ 分别为介质的介电常数与磁导率。根据麦克斯韦方程 $\\nabla \\times \\vec{E}=-\\frac{\\partial \\vec{B}}{\\partial t}$ ,我们可以得到电磁波中电场强度与磁场强度之间的关系 $\\vec{B}=\\frac{\\vec{k}}{\\omega} \\times \\vec{E}$ ,大小关系为 $B=\\sqrt{\\epsilon \\mu} E$ 。 (1)考虑情况,界面两侧是两无限大介质,入射光的电场强度 $E$ 方向垂直于入射平面,入射角度为 $\\theta$ ,两介质折射率,透射率分别为 $\\epsilon_1, \\mu_1$ 与 $\\epsilon_0, \\mu_0$ ,请求出反射光与透射光的电场强度振幅大小。提示:在没有自由电流与自由电荷的电磁介质中电位移矢量法向连续,电场强度矢量切向连续,磁感应强度矢量法向连续,磁场强度矢量切向连续。(12) (2)考虑全反射情况, $\\sin \\theta>\\frac{\\sqrt{\\epsilon_0 \\mu_0}}{\\sqrt{\\epsilon_1 \\mu_1}}$ ,且有 $\\epsilon_0 \\mu_0<\\epsilon_1 \\mu_1$ 。请问此时透射光的电场强度随时间以及位置的分布,给定电磁波角频率 $\\omega$ 。(16) (3)同样考虑上一问中的全反射情况。一般来说我们会用光传播方向与电场,磁感应强度矢量之间的相互关系来描述光的偏振情况,并且根据电场强度以及磁感应强度矢量随时间的变化分类为线偏振,圆偏振,椭圆偏振,部分偏振,以及自然光。请分别根据电场强度与磁感应强度矢量来描述透射光的偏振情况以及偏振种类。(10) (4)同样考虑全反射情况,但是我们考虑三层介质情况,并且中间介质厚度有限,为 $d=$ $\\frac{1}{\\omega \\sqrt{\\epsilon_1 \\mu_1 \\sin ^2 \\theta-\\epsilon_0 \\mu_0}}$ ,请重新推导反射与透射光的振幅强度 $E^{\\prime}, E^{\\prime \\prime \\prime}$ 。(由于计算过于复杂,列出可以计算出 $E^{\\prime \\prime}, E^{\\prime}$与 $E$ 之间关系的式子即可)(18)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "有一个不带电的金属球,其半径为 $R$ ,距离其球心 $r=2 R$ 处有一个电偶极子 $p$ ,其方向为沿径向向外.在电偶极子的作用下,整个体系达到静电平衡. (1)求电偶极子受到金属球的吸引力. (2)在金属球面上的某一点,其与球心连线与电偶极子与球心的连线方向夹角记为 $\\theta$ .求该处球面上的电荷面密度,并找到电荷面密度等于零的点对应的角度. (3)计算球面上的总正电荷量与总的负电荷量.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "一个金属圆柱体以角速度$\\omega$绕中轴旋转,空间中有一均匀磁场B与它的中轴平行,求电荷分布,及角速度为多少时金属中的电荷分布处处为零", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "2001 年诺贝尔物理学奖授予埃里克•康奈尔,沃尔夫冈-克特勒,以及卡尔-韦是。三位科学家的获奖理由是实现了碱金属原子气体中的玻色-爱因斯坦凝聚态。为此,他们采用了磁阱囚禁和蒸发冷却两项关键技术。 (1)利用磁阱囚禁原子的一种常见装置是所谓Ioffe势阱。Ioffe势阱由四根横截面积可忽略,相互平行的无限长直导线组成。这四根导线垂直穿过一边长为 $a$ 和 $b$ 的长方形的四个顶点。导线中通以大小相同的电流 $I$ ,电流方向如图 $a$ 所示。以长方形中心 $O$ 点为原点,垂直于长度分别为 $b$ ,$a$ 的边的直线为 $x, ~ y$ 轴,建立右手直角坐标系,任取 $x-y$ 平面上原点附近一点 $p$ ,其坐标为 $(x, y, 0)(x \\ll a, y \\ll b, ~ a$ 和 $b$ 为同阶量),求 $O, ~ P$ 两点的磁感应强度;所得结果如果可做小量近似的,试将所得结果做小量近似并保留至领头阶。 (2)实现玻色-爱因斯坦凝聚态的另一个重要条件是降温,也就是将原子气体的平均能量降低。常用的一种方法称为蒸发冷却,其原理是将具有高能量的原子蒸发掉,从而降低剩下原子的平均能量。设有一团原子气体,通过实验手段调控每个原子的磁矩方向始终与它所处位置的磁场方向相反,进而被上述Ioffe势阱囚禁在一高度固定的圆柱形区域内,圆柱体的横截面为平行于 $x-y$ 平面,半径为 $\\left(R_1 \\ll a, b\\right.$ ,柱体高度远小于 $R_1$ )的圆,被囚禁的原子的密度近似均匀。以 $O$ 点为势能零点,求这团原子气体在外磁场中的平均势能。如果缓慢地将一部分原子蒸发掉,使得剩余原子冷却且向中心收缩为半径为 $\\frac{R_1}{5}$ ,高度不变的圆柱形区域,原子密度保持不变,求冷却后原子团的总原子数,原子团在外磁场中的总势能和原子平均势能。已知真空磁导率为 $\\mu_0$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "航天员 Don Pettit 在国际空间站上进行了一个有趣的实验:通过摩擦使得织针带电,再向织针附近喷入带电的小水珠,则可以发现,许多水珠被束缚在织针附近,直到因为空气阻力等耗散效应损失能量,最终沾附在织针上。为简化起见,带电的织针可视为长度 $2 a$ ,均匀带电的线段,总电量为 $Q(>0)$ .水珠可视为质量 $m$ ,带电 $-q<0$的质点.建立柱坐标,原点取为织针的中点.已知真空介电常数 $\\epsilon_0$ . (1)求空间电势分布 $V(r, z)$ . (2)考虑 $z=0$ 的中平面上半径为 $r_0$ 的圆周运动.求圆周运动的角速度 $\\omega_0$ .若给予水珠一个径向扰动,求新轨道相邻两个 $r$ 最小的点之间的夹角 $\\delta_\\theta \\in[0, \\pi)$ . (3)若改为给予圆周运动的粒子一个 $z$ 方向的微扰,求粒子 $z$ 方向运动的角频率 $\\omega_z$ . (4)下面考虑粒子被束缚的性质.为简化起见,假设粒子额外被约束在光滑曲面 $r(z)=r_1+\\left(r_0-r_1\\right) \\mathrm{e}^{-z^2 / 2_0^2}$ 上,这里 $0", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "边长为$w$,带有电流$I$的方形线框,计算其中心轴上$z$点处的磁场$\\mathbf B$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "无限长的矩形波导管,在$z = 0$处被一块垂直地插入的理想导体平板完全封闭,求在$z = -\\infty$到$z = 0$这段管内可能存在的波模。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": "一个电阻R和一个电感L串联,接在电源V上.求打开开关后,什么时候电阻���耗的热变化速率最大?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Electrodynamics", "subject_name": "Physics"} +{"question": " 质量为 \\(\\mu\\) 的粒子在中心力场 \\(V(r) = -\\frac{\\alpha}{r^s} (\\alpha > 0)\\) 中运动。当存在束缚态时,计算$s$的取值范围。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "类似于用紫外线光照射活泼金属表面,可以使得表面的电子克服逸出功而从金属中逸出而成"光电子".用高能的 $\\gamma$ 光子轰击静止的靶原子核,也可以使得核中的质子或中子逸出.如在一个典型的散裂反应中作为靶的铍核可被光子击出一个"光中子": $$ { }^9 \\mathrm{Be}+\\gamma \\longrightarrow \\mathrm{n}+2{ }^4 \\mathrm{He} $$ 之后不稳定的 ${ }^8 \\mathrm{Be}$ 将分裂为两个 $\\alpha$ 粒子.已知质子中子的质量分别为 $m_p, m_n$ .氦-4与铍-9作为稳定核素的平均结合能分别为 $Q_2, Q_4$ . (1)通过反应式判断 $Q_2, Q_4$ 需要满足的条件. (2)写出能发生这个反应时入射光子的最小能量. (3)已知 $$ m_p=938.2721 \\mathrm{MeV} / c^2, m_n=939.5654 \\mathrm{MeV} / c^2, Q_2=7.0739 \\mathrm{MeV}, Q_4=6.4628 \\mathrm{MeV} $$ 若出射的中子与入射光子方向的夹角只能存在于在一定范围内(而非各个方向均可),求入射光子的能量的可能取值范围.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "二维晶格对光的散射 本题研究二维晶格对光的散射。我们简单认为晶体仅有同一种原子构成,原子可以视为点粒子。在晶体中,原子周期性地排列,其中最小的重复单元称为晶胞。考虑一种二维晶体,其晶胞是由两个常矢量 $\\vec{a}$ 和 $\\vec{b}$ 构成的平行四边形,其每个顶点各有一个原子。因此,选取其中一个原子为坐标原点,则晶体中的任一原子的位置可以表示为 $\\vec{r}_0=n_1 \\vec{a}+n_2 \\vec{b}$ ,其中 $n_1$ 和 $n_2$是任意整数。 一束圆频率为 $\\omega$ ,波矢为 $\\vec{k}$ 的平面电磁波,入射到该晶体,电磁波传播方向在晶体平面内。仅原子可以对电磁波进行散射,忽略电磁波对原子运动的影响,整体来看,相当于电磁波在晶格中发生了衍射。以下问题仅考虑衍射波的波矢仍处于三维晶体所在平面的情况。 (1)考虑原子固定不动的情形。电磁波受原子散射后圆频率不变,仅方向发生改变。设散射后的电磁波波矢为 $\\vec{k}^{\\prime}$ 。 (1.1)计算衍射主极大的衍射波矢方向 $\\vec{k}^{\\prime}, ~ \\vec{k}, ~ \\vec{a}$ 和 $\\vec{b}$ 应满足的方程。 (1.2)定义倒格矢 $\\vec{G}=\\vec{k}^{\\prime}-\\vec{k}$ ,已知(1.1)小问中方程的解可以写作 $$ \\vec{G}=m_1 \\vec{h}_1+m_2 \\vec{h}_2 $$ 其中 $m_1$ 和 $m_2$ 是任意整数,试求 $\\vec{h}_1$ 和 $\\vec{h}_2$(二者顺序可交换),结果用 $\\vec{a}, ~ \\vec{b}$ 和 $\\hat{e}_z$ 表示,$\\hat{e}_z$ 是方向垂直于二维晶体所在平面的单位矢量。 (2)我们对主极大的光强进行进一步的研究,考虑对应某个主极大衍射方向的倒格矢 $\\vec{G} \\circ$ 假设每个原子对衍射光复振幅贡献的模长均为 $A$ ,共计有 $N$ 个原子参与了衍射。 (2.1)对于每个原子都静止的情况,直接写出衍射主极大的光强 $I_0$ 。 (2.2)实际上,原子都在平衡位置附近进行热运动。设原子质量为 $m$ ,原子在平衡位置附近运动时的势能为 $$ V(\\vec{r})=\\frac{1}{2} m \\Omega^2\\left(\\vec{r}-\\vec{r}_0\\right)^2 $$ 其中 $\\vec{r}_0$ 为原子平衡位置的位置矢量。设晶体温度为 $T$ ,认为每个原子的热运动都是独立的,满足玻尔兹曼分布,忽略多普勒效应,求主极大相对光强 $I / I_0$ 随温度 $T$ 的变化。 (3)此问研究格波对衍射光的影响。忽略原子的热运动和多普勒效应,但晶体中存在机械波,其振幅为 $\\vec{u}_0$ 。对于格点位置为 $\\vec{r}_n$ 的原子,其相对格点的位移随时间 $t$ 的变化关系为 $$ \\vec{u}_n\\left(\\vec{r}_n, t\\right)=\\vec{u}_0 \\mathrm{e}^{\\mathrm{i}\\left(\\vec{q} \\cdot \\vec{r}_n-\\omega_0 t\\right)} $$ 其中 $\\vec{q}$ 和 $\\omega_0$ 为已知常量。 (3.1)由于格波的影响,衍射光的振幅会与 $\\vec{u}_0$ 有关,在主极大附近可以观察到一些次极大。当 $\\left|\\vec{u}_n\\right|$<$\\left|\\vec{r}_n\\right|$ 时,将衍射光的复振幅对 $\\vec{u}_0$ 进行展开并保留到一阶,计算次极大所对应的衍射波矢 $\\overrightarrow{k^{\\prime}}$ 以及角频率 $\\omega^{\\prime}$ 。 (3.2)实验上常用中子散射研究声子色散关系。假设该二维晶体的晶胞形状为正方形,即 $$ \\vec{a}=a \\hat{e}_x, \\vec{b}=b \\hat{e}_y $$ 已知 $a=b=2 \\pi \\times 0.1 \\mathrm{~nm}$ 。控制 $\\vec{q}$ 沿 $y$ 轴方向,固体理论指出 $$ |\\vec{q}|<\\frac{\\pi}{a} $$ 同时假设色散关系线性,即 $$ \\omega_0=|\\vec{q}| v $$ $v$ 为晶体内弹性波波速。 现有动能为 $E_0=5.00 \\mathrm{eV}$ 的中子流沿 $x$ 轴入射到晶体。测得 $x y$ 平面内一处次极大的方向与 $x$ 轴夹角为 $\\phi=16.73^{\\circ}$ ,散射后中子动能变为 $E^{\\prime}=7.90 \\mathrm{eV}$ 。试求解晶体内弹性波波速 $v$ 。已知:中子质量 $m_n=939.6 \\mathrm{MeV} / \\mathrm{c}^2$ ,真空光速 $c=2.998 \\times 10^8 \\mathrm{~m} / \\mathrm{s}$ ,元电荷 $e=1.602 \\times$ $10^{-19} \\mathrm{C}$ ,约化普朗克常数 $\\hbar=1.055 \\times 10^{-34} \\mathrm{~J} \\cdot \\mathrm{~s}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "一个 \\(N = 2\\) 的线性西格玛模型耦合到费米子,其拉格朗日量为:\n\\[\n\\mathcal{L} = \\frac{1}{2} \\left( \\partial_{\\mu} \\phi^i \\right)^2 + \\frac{1}{2} \\mu^2 \\left( \\phi^i \\right)^2 - \\frac{\\lambda}{4} \\left( \\left( \\phi^i \\right)^2 \\right)^2 + \\overline{\\psi} \\left( i \\not{\\partial} \\right) \\psi - g \\, \\overline{\\psi} \\left( \\phi^1 + i \\gamma^5 \\phi^2 \\right) \\psi\n\\]\n其中 \\(\\phi^i\\) 是一个具有两个分量的标量场(\\(i = 1, 2\\))。\n\n设 \\(\\phi^i\\) 的真空期望值为 \\(v\\),我们进行如下的变量替换:\n\\[\n\\phi^i(x) = (v + \\sigma(x), \\pi(x))\n\\]\n将拉格朗日量用新变量 \\(\\sigma(x)\\) 和 \\(\\pi(x)\\) 重写出来\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "电子在周期性变化的磁场中运动,\\(B_{x}=B_{0}\\cos\\omega t\\),\\(B_{y}=B_{0}\\sin\\omega t\\),\\(B_{z}=0\\)。不考虑空间运动。已知\\(t = 0\\)时,电子处于\\(s_{z}=\\hbar/2\\)的态上,求任意\\(t\\)时电子的波函数\\(\\psi(s_{z},t)\\),及电子处于\\(s_{z}=-\\hbar/2\\)态的几率。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "设有大量电子(或其他自旋为\\(1/2\\)的全同粒子)被束缚于二维各向同性谐振子势阱中,计算电子气体的面积,平均密度,总能量。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "在beautiful mirror模型中,我们会引入类矢量夸克$\\Psi_{L,R} = \\begin{pmatrix} B \\\\ X \\end{pmatrix} \\sim (3, 2, -5/6)$ 和一个单态夸克 $\\hat{B}_{L,R} \\sim (3, 1, -1/3)$,其中括号内的数字表示在 $SU(3)_C, SU(2), U(1)_Y$ 超荷下的表示。其质量项以及相互作用项为\n$$\n-\\mathcal{L} \\supset M_1 \\bar{\\Psi}_L \\Psi_R + M_2 \\bar{\\hat{B}}_L \\hat{B}_R \n+y_1 \\bar{Q}_L H b_R+ y_L \\bar{Q}_L H \\hat{B}_R + y_R \\bar{\\Psi}_L \\tilde{H} b_R +h.c.\n$$\n假设Higgs玻色子的真空态为$H=\\begin{pmatrix}\n0\\\\\nv/\\sqrt{2}\n\\end{pmatrix}$\n求$b$夸克以及新引入的夸克的质量\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "考虑标准模型的一种变体,将希格斯双重态替换为一个复数希格斯三重态,该三重态具有超荷 \\(Y = 1\\),并获得一个真空期望值(VEV)。我们可以写为:\n$$\nH \\sim (1, 3)_1, \\qquad \n\\langle H \\rangle = \\frac{1}{\\sqrt{2}}\n\\begin{pmatrix}\n0 \\\\\n0 \\\\\nv\n\\end{pmatrix}\n\\tag{3}\n$$\n规范玻色子获得质量后的质量是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "两个无相互作用粒子具有相同质量\\(m\\),在宽为\\(a\\)的一维无限深方势阱中运动。 (1) 写出体系4个最低能级的能量。 (2) 对下述情况,分别求出体系4个最低能级的简并度: (a) 自旋为\\(1/2\\)的全同粒子; (b) 自旋为\\(1/2\\)的非全同粒子; (c) 自旋为\\(1\\)的全同粒子。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "转动惯量为$I$电偶极矩为$D$的平面转子绕$z$轴转动,体系的哈密顿量为$\\hat{H}_{0}=\\frac{\\hat{L}_{z}^{2}}{2I}$,定态能量为$E_{m}^{(0)} = \\frac{\\hbar^{2}m^{2}}{2I}$,定态波函数为$\\psi_{m}^{(0)}(\\varphi)=\\frac{1}{\\sqrt{2\\pi}} \\mathrm{e}^{i m \\varphi},m = 0,\\pm1,\\pm2,\\cdots$。如果在$x$方向存在均匀弱电场$\\boldsymbol{\\varepsilon}=\\varepsilon \\boldsymbol{i}$,电偶极矩同电场的作用$\\hat{H}'=-\\boldsymbol{D}\\cdot\\boldsymbol{\\varepsilon}=-D\\varepsilon\\cos\\varphi$可视为微扰,计算二级近似能量和一级近似波函数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "两个自旋为\\(1/2\\)的非全同粒子体系。以\\(\\vert+\\rangle,\\vert-\\rangle\\)分别代表自旋向上,下两个量子态。在\\(t = 0\\)时体系波函数为\\(\\vert\\psi(0)\\rangle=\\frac{1}{2}\\vert++\\rangle+\\frac{1}{2}\\vert+-\\rangle+\\frac{1}{\\sqrt{2}}\\vert--\\rangle\\)。体系的哈密顿量为\\(\\hat{H}=\\omega_{1}\\hat{S}_{1z}+\\omega_{2}\\hat{S}_{2z}\\)。(1) 求\\(t\\)时刻波函数;(2)求\\(t\\)时刻的平均值:\\(\\langle s_{1x}\\rangle\\)与\\(\\langle s_{1y}\\rangle\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "原子核发生α衰变时,α粒子(电荷\\(2e\\))受到的作用势可以近似表示为 \\[ V(r)=\\begin{cases}-V_{0},&r < R\\\\\\beta/r,&r > R\\end{cases}\\] 其中\\(\\beta = 2(Z - 2)e^{2}\\),\\(Z\\)是衰变前原子核的原子序数,\\(R\\)是“核半径”。\\(r < R\\)区域为核力,\\(r > R\\)区域为Coulomb力。试计算α粒子对Coulomb势垒的穿透概率,进而求出原子核α衰变的半衰期。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "一个质量为\\(m\\),无电荷但自旋为\\(1/2\\),磁矩为\\(\\hat{\\boldsymbol{\\mu}}=-\\frac{2\\mu_{0}}{\\hbar}\\hat{\\mathbf{S}}\\)的粒子在一维无限深势阱 \\[ V(x)= \\begin{cases} 0, &|x|L \\end{cases} \\] 中运动,其中\\(\\mu_{0}\\)和\\(L\\)为正的常数,\\(x\\)为粒子的坐标,\\(\\hat{\\mathbf{S}}\\)为粒子的自旋算符。现考虑在\\(x < 0\\)的半空间中有一沿\\(z\\)方向的均匀磁场,大小为\\(B\\),而在\\(x > 0\\)的半空间中有一同样大小但沿\\(x\\)方向的均匀磁场。在弱磁场极限下用微扰论找出体系基态的能级和波函数,并指出\\(B\\)能作为弱磁场处理的具体条件(微扰只须计算到最低阶,自旋空间的波函数在\\((\\hat{S}^{2},\\hat{S}_{z})\\)表象中写出)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "一个质量为$m$无自旋的粒子受到中心力势$V(r)=-\\frac{\\hbar^{2}}{ma^{2}}\\frac{1}{\\cosh^{2}(r/a)}$的散射,其中$a$是常数。已知方程$\\frac{\\mathrm{d}^{2}y(x)}{\\mathrm{d}x^{2}}+K^{2}y(x)+\\frac{2}{\\cosh^{2}x}y(x)=0$有解$y(x)=\\mathrm{e}^{\\pm\\mathrm{i}Kx}(\\tanh x\\mp\\mathrm{i}K)$。在低能下,求粒子能量为$E$时,$s$分波的散射截面及其角分布。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "若$^{238}\\text{U}$的质量为237.5558 u,计算$^{238}\\text{U}$的平均结合能$\\text{E}$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "质量为$\\mu$的粒子被中心力场$V(r)=\\frac{\\alpha}{r^{2}}(\\alpha>0)$散射。 (1) 求各分波的相移$\\delta_{l}$; (2) 在$\\frac{\\mu\\alpha}{\\hbar^{2}}\\ll\\frac{1}{8}$条件下,求$\\delta_{l}$的渐近式,并计算$E \\to 0$时$s$波散射总截面$\\sigma_{t}$,及任意能量$E$时的散射微分截面$\\sigma(\\theta)$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "已知体系的能量算符为 \\[ H = Kl^{2}+\\omega l_{z}+\\lambda l_{y} \\quad(1) \\] 其中\\(K,\\omega\\gg\\lambda > 0\\),\\(l\\)为轨道角动量算符. (a) 求体系能级的精确值; (b) 视\\(\\lambda\\)项为微扰,求能级(二级近似,不考虑偶然简并); (c) 对于每一个能级,求\\(l_{y}\\)、\\(l_{z}\\)的平均值. 用精确解法和微扰论(准确到\\(\\lambda\\)量级)分别计算,并作比较.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "在核子与π介子反应过程中,同位旋$(I, I_{z})$守恒。设反应主要通过$I = 3/2$道进行,试求下列反应的分支比。 (a) $\\mathrm{p}+\\pi^{+}\\to\\mathrm{p}+\\pi^{+}$ (b) $\\mathrm{p}+\\pi^{-}\\to\\mathrm{n}+\\pi^{0}$ (c) $\\mathrm{p}+\\pi^{-}\\to\\mathrm{p}+\\pi^{-}$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "有一个量子力学体系,Hamilton量记为\\(H_{0}\\),能级和正交归一化的本征函数为 \\(E_{1}^{(0)}\\)——\\(\\psi_{\\alpha},\\psi_{\\beta}\\),\\(E_{2}^{(0)}\\)——\\(\\psi_{\\gamma},\\psi_{\\delta}\\) 设体系受到微扰作用,微扰后的Hamilton量可以表示成下列矩阵形式(\\(H_{0}\\)表象): \\[ H = H_{0} + H' = \\begin{bmatrix} E_{1}^{(0)} & a & d & 0 \\\\ a & E_{1}^{(0)} & b & 0 \\\\ d & b & E_{2}^{(0)} & c \\\\ 0 & 0 & c & E_{2}^{(0)} \\end{bmatrix} \\quad(1) \\] 设无偶然简并,试用二级微扰论计算体系能级.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "假设两个质量为\\(m_{q}=70 MeV/c^{2}\\)的夸克可以通过位势\\(V(r)=-a(\\hat{\\boldsymbol{\\sigma}}_{1}\\cdot\\hat{\\boldsymbol{\\sigma}}_{2}-b)r^{2}\\)束缚在一起,其中\\(r\\)是两个夸克之间的距离,\\(a = 68.99 MeV/fm^{2}\\),而\\(b\\)是一个待定的参数。 (1)\\(b\\)取什么值才能使两个夸克束缚在一起? (2)设两个夸克是不同类型的,并取\\(b = 3/2\\)。试求基态能量和简并度。 (3)设两个夸克是同一类型的,并取\\(b = 3/2\\)。试求基态能量和简并度。 (4)令\\(b = 0\\),求两个全同夸克在基态的方均根距离。已知\\(\\hbar c=197.3 MeV\\cdot fm\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "双原子分子中两原子之间的作用力势可表示为 \\[ V(r)=V_0[1 - \\mathrm{e}^{-(r - R)/a}]^2 - V_0 \\] $r$为两原子之间的相对距离,$R$与$a$为正的常数。$R > a$,且$\\mathrm{e}^{R/a} \\gg 1$。 当$r = R$时,$V(r)$取最小值$-V_0$,当$r \\to \\infty$时,$V(r) \\to 0$,当$r \\to 0$时,$V(r) \\to \\infty$。求轨道角动量$l = 0$的束缚定态能量。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Quantum Mechanics", "subject_name": "Physics"} +{"question": "某市某街道为南北走向,汽车高峰流量为2600辆/h,车速平均40km/h,每辆车排出碳氢化合物量为2.5×10⁻²g/s,汽车排放高度0.4m,试问某一阴天白天吹东风,风速3m/s,该街道西边400m处碳氢化合物浓度为多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "对于现有对流层大气,如果欧美地区的氮氧化物排放增加1倍而一氧化碳排放增加50%,则北半球和南半球的对流层羟基自由基平均浓度分别会发生什么变化?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "温度为 200℃、压力为 0.101 MPa 的含尘气体通过一旋风除尘器,筒体直径为 D,筒体长度 L = 2 D,锥体高度 H = 2 D,进口宽度 b = 1/5 D,进口高度 h = 3/5 D,尘粒密度为 2000 kg/m³。若旋风除尘器筒体直径为 0.65 m,进口气速为 21 m/s,试求: (1)气体处理量(标态) (2)气体通过旋风除尘器的压力损失 (3)尘粒的临界粒径", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "晚上空气温度为-8.8度,相对湿度为80%,如果在日出前气温为-14度,试求雾的液态水含量(克/米3)和雾形成时释放热量(焦耳/米3)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "据估计,某燃烧着的垃圾堆以3gs的速率排放氨氧化物。在风速为7m/s的阴天夜里,源的正下风方向3km处的平均浓度是多少?假设这个垃圾堆是一个无有效源高的地面点源。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "一股含庚烷气流,流量为50m³/min,温度150°C,气压为1atm,庚烷浓度为50000ppm。需要冷却到多少温度,才能去除40%庚烷?若溶剂庚烷比重为0.75,市场价为7.0元/L,估算每天冷凝回收下来的庚烷金额。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "对流层甲基氯仿受到羟基自由基的显著影响。在考虑全球对流层大气中氮氧化物的源总量和汇总量始终处于平衡状态的情况下,如果平衡状态A下的氮氧化物汇比平衡状态B下的氮氧化物汇多30%,则状态A下甲基氯仿的生命周期比状态B长还是短?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "欲设计一个用于取样的旋风分离器,希望在入口气速为20m/s时,其空气动力学分割直径为1μm。1)估算该旋风分离器的筒体外径;2)估算通过该旋风分离器的气体流量。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "燃料油的重量组成为:C86%,H14%。在干空气下燃烧,烟气分析结果(基于干烟气)为:O₂1.5%;CO 600×10⁻⁶(体积分数)。试计算燃烧过程的空气过剩系数。若实测烟尘浓度为24mg/m³,试问校正至过剩空气系数α=1.8时烟尘浓度是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "普通煤的成分分析结果(质量分数)如下:C: 65.7%; 灰分: 18.1%; S: 1.7%; H: 3.2%; 水分: 9.0%; O: 2.3%, 含N量不计。计算燃煤1kg所需要的理论空气量和SO₂在烟气中的浓度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "大气中的某种痕量气体对特定波长的可见光具有一定的弱吸收,卫星探测器可以利用这一特点探测该气体。假设该气体的体积混合比在对流层内均一,若地面以上2km处突然出现大量气溶胶,则卫星探测器对于对流层不同高度处该痕量气体的浓度变化的敏感性会发生什么变化?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "已知地面气压P = 1000 hPa,温度t = 10℃,露点ta=5℃ (1)请求出其比湿q,虚温tv,空气密度ρ(kg/m³) (2)若温度和比湿不随高度改变,求850 hPa等压面离地面的高度 z。 (3)若在850 – 1000 hPa的气柱中,比湿不随高度变化,求出底面积为1 m²的气柱中水汽总质量 mv (kg/m²),如果其全部凝结成液体降落至地面,则层深有多厚(cm)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "为了能使云中半径为10-6厘米和10-5厘米的纯水滴长大,云中的过饱和度Δf该多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "地面气压为760mm汞柱时,测量得到1.5~1.6μm波段内的太阳直接辐射S∆λ入下表所示:\n天顶角分别为40°、50°、60°、70°时,对应的S∆λ(W·cm⁻²)分别为13.95、12.55、10.46、7.67。\n请计算大气上界处S∆λ,0,光学厚度δ∆λ及透明系数P∆λ。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "采用泥炭为滤料的生物过滤床处理苯乙烯废气,最大去除负荷在60-75 g/(m³·h)之间。最近的研究表明当负荷为40 g/(m³·h),苯乙烯的去除率可以达到97%。为了满足某地区的臭气排放标准,利用生物过滤床处理造船厂排放出的苯乙烯废气。已知废气气量为10000m³/h(30°C,1atm),苯乙烯浓度50μL/L,要求处理效率至少90%以上。假设设计的床层深度至少1m,表面负荷不超过1.5m/min,则该过滤床的长、宽、高分别为多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "利用活性炭吸附处理脱脂生产中排放的废气,排气条件为294K,1.38×10⁵Pa,废气量25400m³/h。废气中含有体积分数为0.02的三氯乙烯,要求回收率99.5%。已知采用的活性炭的吸附容量为28kg三氯乙烯/100kg活性炭,活性炭的密度为577kg/m³,其操作周期为4h,加热和解析2h,各用1h,试确定活性炭的用量和吸附塔尺寸。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "假设现有地球大气中的氮气分子全部变成氩气分子,计算此时大气的干绝热递减率(单位:K/km)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "请列举3个在运用气块法评估大气不稳定性时忽略掉的物理过程。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "蜡烛在一个有少量空气的完全隔热箱体内燃烧。蜡烛燃烧的热值为3.48×10⁷J/kg,蜡烛燃烧速度为0.0454kg/h。每kg蜡烛消耗的空气量为50kg,空气初始温度15°C。计算排出箱体气体的温度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Atmospheric Chemistry", "subject_name": "Earth Science"} +{"question": "在砂型中浇铸尺寸为 $300 \\times 300 \\times 20 \\mathrm{~mm}$ 的纯铝板。设铸型的初始温度为 $20^{\\circ} \\mathrm{C}$ ,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点 $660^{\\circ} \\mathrm{C}$ ,且在铸件凝固期间保持不变。浇铸温度为 $670^{\\circ} \\mathrm{C}$ ,金属与铸型材料的热物性参数见下表: \\begin{tabular}{|c|l|l|l|l|l|l|} \\hline \\multirow{2}{|c|}{{$材料~~~热物性$}} & 导热系数 $\\lambda$ & 比热容$C$ & 密度 $\\rho$ & 热扩散率 ${ }{\\text {a }}$ & 结晶潜热 \\\\ \\hline & $\\mathrm{W} /(\\mathrm{m} \\cdot \\mathrm{K})$ & $\\mathrm{J} /(\\mathrm{kg} \\cdot \\mathrm{K})$ & $\\mathrm{kg} / \\mathrm{m}^3$ & $\\mathrm{m}^2 / \\mathrm{s}$ &$\\mathrm{J} /\\mathrm{kg}$ \\\\ \\hline 纯铝 &$212$ & $1200$ & $2700$ & $6.5 \\times 10^{-5}$ & $3.9 \\times 10^{5}$ \\\\ \\hline 砂型 & $0.739$ & $1840$ & $1600$ & $2.5 \\times 10^{-7}$ & \\\\ \\hline \\end{tabular} 试求:(1)计算不同时刻铸件凝固层厚度$s$,并给出$0-120s$每隔$20s$的厚度值; (2)分别用"平方根定律"及"折算厚度法则"计算铸件的完全凝固时间,并分析差别。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "在平面挤压工艺中,金属坯料通过平行模具间隙发生塑性变形。已知入口厚度为 $H$ ,出口厚度为 $h$ ,满足 $H=2 h$ 。坯料入口水平速度为 $\\dot{u}_0$ ,出口速度为 $\\dot{u}_1=2 \\dot{u}_0$ 。假设材料内部存在一菱形滑移区 $A B C D$ ,其顶点 $O$ 位于中心线上,各边与水平方向均成 $45^{\\circ}$ 夹角(即滑移线方向为 $\\pm 45^{\\circ}$ )。材料的最大剪应力为 $K$ 。 要求:运用上限法,推导该挤压过程中单位面积上的平均流动应力 $p$ 。(提示:需考虑滑移线速度不连续对剪切功率的贡献,并与外力功率平衡。)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "塑料模成型零件的热处理应注意什么?试述用低碳合金渗碳钢制造的塑料模型腔件的制造工艺路线。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "平行砧板间平面压缩变形,已知接触表面摩擦力 $\\tau=\\mu \\sigma_y, \\mu$ 为摩擦系数,最大剪应力为$K$,试用主应力法求 $\\sigma_y$ 分布规律及平均流动应力$P$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "试简述不锈钢焊条药皮发红的原因?有什么解决措施?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "今有塑料制靠背椅(整体件),工作面要求光洁,无划痕,局部有细花皮纹,年产量 45 万件,试选用模具(型腔件)的钢材品种,并提出热处理工艺路线。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "请为下列工作条件下的塑料膜选用材料:\n(1)形状简单,精度要求低,批量不大的塑料膜;\n(2)高耐磨、高精度、型腔复杂的塑料膜;\n(3)大型、复杂、产品批量大的塑料膜注塑膜;\n(4)耐蚀、高精度塑料模具。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "Question: Industrial printer settings: 1) High-resolution mode requires cooling system active (temp <35°C); 2) Duplex printing disabled when paper weight >200gsm; 3) CMYK mode needs 4+ ink cartridges above 15%; 4) Maintenance cycle blocks all functions every 500 pages. Current job: 220gsm cardstock, 3 cartridges at 20% (C/M/Y), temp 32°C, page counter 499. What's possible?\\nA. Single-side CMYK print\\nB. High-res duplex\\nC. Maintenance lockout\\nD. Grayscale high-res", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Synthesis and Processing", "subject_name": "Materials Science"} +{"question": "在一套管式换热器中,用120℃的饱和水蒸气在环隙中冷凝放热,使内管中湍流流动的流量为3000kg/h的苯,从20℃加热到80℃。当流量增加到4500kg/h时,只能从20℃加热到76℃。试计算换热器的传热面积和流量为4500kg/h时的总传热系数K。 计算时,水蒸气冷凝的a值取用8000W/(m²·K)。可忽略管壁热阻及污垢热阻,并可当平壁处理。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Chemical Engineering and Technology", "subject_name": "Chemistry"} +{"question": "现有 16 个处理器, 编号分别为 \\( 0,1, \\cdots, 15 \\), 用一个 \\( N = 16 \\) 的互连网络互连。处理器 \\( i \\) 的输出通道连接互连网络的输入端 \\( i \\), 处理器 \\( i \\) 的输入通道连接互连网络的输出端 \\( i \\)。当该互连网络实现的互连函数分别为 (1) \\( \\mathrm{Cube}_{3} \\) (2) \\( \\mathrm{PM} 2_{+3} \\) (3) \\( \\mathrm{PM} 2_{-0} \\) (4) \\( \\sigma \\) (5) \\( \\sigma(\\sigma) \\) 时, 分别给出与第 13 号处理器所连接的处理器号。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": " Read the following absdiff function written in .c and answer the questions. (3 pts) \n/* C code starts here. */ \nlong absdiff(long x, long y) { \n long result; \n if (x > y) \nresult = x-y; \n else \nresult = y-x; \n return result; \n} \n/* Assembly code starts here. */ \nabsdiff: \n cmpq %rsi, %rdi \n jle .L4 \n movq %rdi, %rax \n subq %rsi, %rax \n.L4: \n movq %rsi, %rax \n subq %rdi, %rax \n ret\n\nsubq [src], [dest] dest = dest - src\n\n(1) X is stored in register: ________________; Y is stored in register: ________________; Return \nvalue is stored in register: ________________. (Write the register name)\n(2) Let x = 0x0000 0000, y = 0x0000 0000. Write the conditional flags after cmpq: \nZF = ________________; SF = ________________; OF = ________________; \n(3) Let x = 0x0000 0001, y = 0x8000 0000. Write the conditional flags after cmpq: \nZF = ________________; SF = ________________; OF = ________________;\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "若干个等待访问磁盘者依次要访问的柱面为 38, 90, 55, 20, 65, 11, 70,假设每移动一个柱面需要 2ms 时间,移动臂当前位于 50 号柱面,磁头正向磁道号减少的方向移动,请按 FCFS, SSTF, SCAN 算法分别计算为完成上述访问总共花费的寻找时间。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "我现在有三个任务,任务1,2,3,任务1输出数据到任务2和任务3,任务2接受任务1的输入,输出数据到任务3,任务3同时接受来自任务1和任务2的输入。所有数据传输都是FIFO模式,请问在什么情况下会发生死锁", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "In this problem, we will look at the Blacklisting Memory Scheduler (BLISS) to reduce unfairness. There are two key aspects of BLISS that you need to know.\n • When the memory controller services consecutive requests from a particular application, this application is blacklisted. We name this non-negative integer the Blacklisting Threshold.\n • The blacklist is cleared periodically every 10000 cycles starting at t = 0. \n\nTo reduce unfairness, memory requests in BLISS are prioritized in the following order:\n • Non-blacklisted applications’ requests\n • Row buffer hit requests\n • Older requests \n\nThe memory system for this problem consists of 2 channels with 2 banks each. Tables 1 and 2 show the memory request stream in the same bank for both applications at different times (t = 0 and t = 10). For both tables, a request on the left-hand side is older than a request on the right-hand side in the same table. The applications do not generate more requests than those shown in Tables 1 and 2. The memory requests are labeled with numbers that represent the row position of the data within the accessed bank. Assume the following for all questions: \n • Arow buffer hit takes 100 cycles. \n • Arow buffer miss (i.e., opening a row in a bank with a closed row buffer) takes 200 cycles. \n • A row buffer conflict (i.e., closing the currently open row and opening another one) takes 250 cycles. \n • All row buffers are closed at time t = 0\n\n| Application A (Channel 0, Bank 0) | | | | | | | | |\n|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|\n| Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4 |\nTable 1: Memory requests of the two applications at t = 0\n\n| Application A (Channel 0, Bank 0) | Row 3 | Row 7 | Row 2 | Row 0 | Row 5 | Row 3 | Row 8 | Row 9 |\n|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|\n| Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4 |\nTable 2: Memory requests of the two applications at t = 10. Note that none of the Application B’s existing requests are serviced yet.\n\n If we use the BLISS scheduler, for what value(s) of η (the Blacklisting Threshold) will\nthe slowdowns of both applications be equal to those obtained with FR-FCFS?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "请求分页管理系统中,假设某���程的页表内容如下表所示: \n|页号 |页框(Page Frame)号 |有效位(存在位) |\n|--|--|--|\n|0 |101H| 1|\n| 1 |---- |0|\n| 2 |254H| 1|\n|3|----|0|\n页面大小为 4KB,一次内存的访问时间是 100ns,一次快表(TLB)的访问时间是 10ns,处\n理一次缺页的平均时间 108 ns(已含更新 TLB 和页表的时间),进程的驻留集大小固定为 2,采用最近最少使用置换算法(LRU)和局部淘汰策略。假设 (1) TLB 初始为空; (2) 地址转换\n时先访问 TLB,若 TLB 未命中,再访问页表(忽略访问页表之后的 TLB 更新时间); (3) 有\n效位为 0 表示页面不在内存,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指 令处重新执行。设有虚地址访问序列 2347H、1565H、08B4H、15B0H,请问: 1) 依次访问上述四个虚地址,各需多少时间?给出计算过程。\n2) 基于上述访问序列,虚地址 1565H和08B4H的物理地址是多少?请说明理由", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "Assume an in-order processor that employs Runahead execution, with the following specifications:\n\n- The processor enters Runahead mode when there is a cache miss.\n- There is no penalty for entering and leaving the Runahead mode.\n- There is a 64KB data cache. The cache block size is 64 bytes.\n- Assume that the instructions are fetched from a separate dedicated memory that has zero access latency, so an instruction fetch never stalls the pipeline.\n- The cache is 4-way set associative and uses the LRU replacement policy.\n- A memory request that hits in the cache is serviced instantaneously.\n- A cache miss is serviced from the main memory after $ X $ cycles.\n- A cache block for the corresponding fetch is allocated _immediately_ when a cache miss happens.\n- The cache replacement policy does _not_ evict the cache block that triggered entry into Runahead mode until after the Runahead mode is exited.\n- The victim for cache eviction is picked at the same time a cache miss occurs, i.e., during cache block allocation.\n- ALU instructions and Branch instructions take one cycle.\n- Assume that the pipeline _never stalls for reasons other than data cache misses_. Assume that the conditional branches are always correctly predicted and the data dependencies do not cause stalls (except for data cache misses).\n\nConsider the following program. Each element of Array A is one byte.\n\n```\nfor(int i=0;i<100;i++){ \\\\ 2 ALU instructions and 1 branch instruction\n int m = A[i*16*1024]+1; \\\\ 1 memory instruction followed by 1 ALU instruction\n ... \\\\ 26 ALU instructions\n}\n```\n\nAfter running this program using the processor specified above, you find that there are 66 data cache hits. What are all the possible values of the cache miss latency X? You can specify all possible values of X as an inequality.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "In this problem, we will look at the Blacklisting Memory Scheduler (BLISS) to reduce unfairness. There are two key aspects of BLISS that you need to know.\n • When the memory controller services consecutive requests from a particular application, this application is blacklisted. We name this non-negative integer the Blacklisting Threshold.\n • The blacklist is cleared periodically every 10000 cycles starting at t = 0. \n\nTo reduce unfairness, memory requests in BLISS are prioritized in the following order:\n • Non-blacklisted applications’ requests\n • Row buffer hit requests\n • Older requests \n\nThe memory system for this problem consists of 2 channels with 2 banks each. Tables 1 and 2 show the memory request stream in the same bank for both applications at different times (t = 0 and t = 10). For both tables, a request on the left-hand side is older than a request on the right-hand side in the same table. The applications do not generate more requests than those shown in Tables 1 and 2. The memory requests are labeled with numbers that represent the row position of the data within the accessed bank. Assume the following for all questions: \n • Arow buffer hit takes 100 cycles. \n • Arow buffer miss (i.e., opening a row in a bank with a closed row buffer) takes 200 cycles. \n • A row buffer conflict (i.e., closing the currently open row and opening another one) takes 250 cycles. \n • All row buffers are closed at time t = 0\n\n| Application A (Channel 0, Bank 0) | | | | | | | | |\n|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|\n| Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4 |\nTable 1: Memory requests of the two applications at t = 0\n\n| Application A (Channel 0, Bank 0) | Row 3 | Row 7 | Row 2 | Row 0 | Row 5 | Row 3 | Row 8 | Row 9 |\n|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|\n| Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4 |\nTable 2: Memory requests of the two applications at t = 10. Note that none of the Application B’s existing requests are serviced yet.\n\nCompute the slowdown of each application using the FR-FCFS scheduling policy after both threads ran to completion. We define:\n\nslowdown = memory latency of the application when run together with other applications / memory latency of the application when run alone", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "Question 1. Choosing a right branch predictor to your baseline processor can speedup the program execution. Now consider two branch predictors: BP1 and BP2. Branches are 10% of all instructions.\nAssume normal CPI is 1, but the branch mispredict penalty is 2 extra stall cycles. Evaluate the program execution time with each branch predictors and answer the questions.\n• BP1: 10% misprediction rate\nOn average, one miss prediction will introduce the cycle time by 15%\n• BP2: 12% misprediction rate\nOn average, one miss prediction will introduce the cycle time by 14%\n1. Which predictor would you choose?\n2. If branches are instead 30% of all instructions, which predictor would you choose?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "设\\(x(t)\\)的傅里叶变换为\\(X(j\\omega)\\),\\(f(t)=\\frac{d^{2}x(t)}{dt^{2}}\\)。 (1) 假定\\(X(j\\omega)= \\begin{cases}1, & |\\omega| < 1 \\\\ 0, & |\\omega| > 1\\end{cases}\\) ,计算\\(\\int_{-\\infty}^{+\\infty}|f(t)|^{2}dt\\); (2) 求\\(f(j\\frac{\\omega}{4})\\)的傅里叶反变换。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "You would like to understand the configuration of the DRAM subsystem of a computer using reverse engineering techniques. Your current knowledge of the particular DRAM subsystem is limited to the following information:\n● The physical memory address is 16 bits.\n● The DRAM subsystem consists of a single channel and 4 banks.\n● The DRAM is byte-addressable.\n● The most-significant 2 bits of the physical memory address determine the bank.\n● The DRAM command bus operates at 500 MHz frequency.\n● The memory controller issues commands to the DRAM in such a way that no command for servicing a later request is issued before issuing a READ command for the current request, which is the oldest request in the request buffer. For example, if there are requests A and B in the request buffer, where A is the older request and the two requests are to different banks, the memory controller does not issue an ACTIVATE command to the bank that B is going to access before issuing a READ command to the bank that A is accessing.\nYou realize that you can observe the memory requests that are waiting to be serviced in the request buffer. At a particular point of time, you take the snapshot of the request buffer and you observe the following requests in the request buffer.\nRequests in the request buffer (in descending order of request age, where the oldest request is on the top):\nRead 0x4C80 \nRead 0x0140 \nRead 0x4ECO \nRead 0x8000 \nRead 0xF000 \nRead 0x803F \nRead 0x4E80\n\nAt the same time you take the snapshot of the request buffer, you start probing the DRAM command bus. You observe the DRAM command type and the cycle (relative to the first command) at which the command is seen on the DRAM command bus. The following are the DRAM commands you observe on the DRAM bus while the requests above are serviced.\nCycle 0 -- PRECHARGE \nCycle 6 -- ACTIVATE \nCycle 10 -- READ \nCycle 11 -- READ \nCycle 21 -- PRECHARGE \nCycle 27 -- ACTIVATE \nCycle 31 -- READ \nCycle 32 -- ACTIVATE \nCycle 36 -- READ \nCycle 37 -- READ \nCycle 38 -- READ \nCycle 42 -- PRECHARGE \nCycle 48 -- ACTIVATE \nCycle 52 -- READ\n\nWhat is the status of the banks prior to the execution of any of the the above requests? In other words, which rows from which banks were open immediately prior to issuing the DRAM commands listed above? Fill in the table below indicating whether a bank has an open row, and if there is an open row, specify its address. If there is not enough information to infer the open row address, write unknown.\n\n| | Open or Closed? | Open Row Address |\n|---|---|---|\n| Bank 0 | | |\n| Bank 1 | | |\n| Bank 2 | | |\n| Bank 3 | | |", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "Suppose we have a system with 32 cores that share a physical second-level cache. Assume each coreis running a single single-threaded application, and all 32 cores are concurrently running applicationsAssume that the page size of the architecture is &KB, the block size of the cache is 128 bytes. andthe cache uses LRU replacement. We would like to ensure each application gets a dedicated space inthis shared cache without any interference from other cores, We would like to enforce this using theOS-based page coloring mechanism to partition the cache, as we discussed in lecture. Recall that withpage coloring, the operating system ensures, using virtual memory mechanisms, that the applications donot contend for the same space in the cache.\n\nAssume you would like to design a 32MB shared cache such that the operating system has the abilityto ensure that the cache is partitioned such that no two applications interfere for cache space.\nWhat is the maximum associativity of the 32MB cache such that this is possible?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "Assume an in-order processor that employs Runahead execution, with the following specifications:\n\n- The processor enters Runahead mode when there is a cache miss.\n- There is no penalty for entering and leaving the Runahead mode.\n- There is a 64KB data cache. The cache block size is 64 bytes.\n- Assume that the instructions are fetched from a separate dedicated memory that has zero access latency, so an instruction fetch never stalls the pipeline.\n- The cache is 4-way set associative and uses the LRU replacement policy.\n- A memory request that hits in the cache is serviced instantaneously.\n- A cache miss is serviced from the main memory after $ X $ cycles.\n- A cache block for the corresponding fetch is allocated _immediately_ when a cache miss happens.\n- The cache replacement policy does _not_ evict the cache block that triggered entry into Runahead mode until after the Runahead mode is exited.\n- The victim for cache eviction is picked at the same time a cache miss occurs, i.e., during cache block allocation.\n- ALU instructions and Branch instructions take one cycle.\n- Assume that the pipeline _never stalls for reasons other than data cache misses_. Assume that the conditional branches are always correctly predicted and the data dependencies do not cause stalls (except for data cache misses).\n\nConsider the following program. Each element of Array A is one byte.\n\n```\nfor(int i=0;i<100;i++){ \\\\ 2 ALU instructions and 1 branch instruction\n int m = A[i*16*1024]+1; \\\\ 1 memory instruction followed by 1 ALU instruction\n ... \\\\ 26 ALU instructions\n}\n```\n\nIs it possible that every memory access in the program misses in the cache? If so, what are all possible values of X that will make all memory accesses in the program miss in the cache? If not, why?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "A memory system is composed of eight banks, and each bank contains 32K rows. The row size is 8KB.\nEvery DRAM row refresh is initiated by a command from the memory controller, and it refreshes a single row. Each refresh command keeps the command bus busy for 5~ns.\nWe define command bus utilization as a fraction of the total time during which the command bus is busy due to refresh.\nThe retention time of each row depends on the temperature (T). The rows have different retention times, as shown in the following Table 1:\nTable 1: Retention time\nRetention Time || Number of rows\n(128-T) ms, 0^{\\circ} C\\leq T\\leq 128^{\\circ} || C2^{8} rows\n2*(128-T) ms, 0^{\\circ} C\\leq T\\leq 128^{\\circ} || C2^{16} rows\n4*(128-T) ms, 0^{\\circ} C\\leq T\\leq 128^{\\circ} || Call other rows\n8*(128-T) ms, 0^{\\circ} C\\leq T\\leq 128^{\\circ} || C2^{8} rows\n\nAssume that the memory controller implements an approximate mechanism to reduce refresh rate using Bloom filters, as we discussed in class. For this question we assume the retention times in Table 1 with a constant temperature of 64^{\\circ} C.\nOne Bloom filter is used to represent the set of all rows that require a 64~ms refresh rate.\nThe memory controller's refresh logic is modified so that on every potential refresh of a row (every 64~ms), the refresh logic probes the Bloom filter. If the Bloom filter probe results in a \"hit\" for the row address, then the row is refreshed. Any row that does not hit in the Bloom filter is refreshed at the default rate of once per 128~ms.\n\nThe memory controller performs 2107384 refreshes in total across the channel over a time interval of 1.024 seconds. What is the false positive rate of the Bloom filter?Hint: 2107384=2^{3}*\\left(2^{18}+2^{11}-2^{10}+2^{9}-2^{8}-1\\right)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "在有400个关键码的20阶B树查找,最大需要和________个关键码进行比较。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "给定 $A= 2.6125 \\times 10^1$, $B= 4.150390625 \\times 10^{-1}$。其中A, B都是浮点表达格式(包含1bit 符号位,5bit指数位,10bit尾数位置)。通过浮点计算的对阶,尾数加减,规格化,舍入(舍入操作如IEEE754标准保留3位extra bits, 即guard-bit, round-bit, sticky-bit,并采用就近舍入round-to-nearest),检查溢出这五个步骤,计算 A + B的结果,最后给出最终结果并以$x.y \\times 10^n$的形式表达(x<10)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "find a way to implement AND gate using only IEEE-754 floating-point subtraction. You need to define True and False as 2 fp numbers, then give a procedure that does AND gate calculation. You can use constant fp number in the procedure. {True, False} should be closed under the procedure, in other words, result given by the procedure must be either True or False, for example you can't assume result not equal to True nor False is cast to F", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer System Architecture", "subject_name": "Computer Science"} +{"question": "在植物基因组中,现在流行用ATAC-seq来识别和鉴定顺式调控元件,这是根据染色质的科技型原理。问这种技术来识别调控元件需要注意哪些地方?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何快速鉴定两个近缘基因组的结构变异 ?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n土壤根际微生物的生物量氮与季节变化有如下关联:\n\\begin{tabular}{cc}\n\\hline 月份 & 生物量氮 $\\left(10^{-4} \\mathrm{mg} \\cdot 100 \\mathrm{~g}^{-1}\\right)$ \\\\\n\\hline 5 & 6.57 \\\\\n6 & 7.44 \\\\\n7 & 8.72 \\\\\n8 & 10.68 \\\\\n9 & 11.55 \\\\\n10 & 9.15 \\\\\n11 & 5.87 \\\\\n12 & 4.42 \\\\\n\\hline\n\\end{tabular}\n生物量氮与月份之间存在怎样的回归关系?求出回归方程。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "针对鳞翅目昆虫的棉古毒蛾、春尺蠖以及弘复峻尺蛾,请问是否可以使用翅膀相关基因使用分子钟模型推断这两个物种分歧时间吗?请给出判断并说明原因:", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "用根瘤材料进行DNA测序时,因为其中存在细菌,经常掺入细菌DNA污染,如何避免和解决?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n据说罗布麻有降血压的功能。为了检验服药后的血压值是否与服药前有关,随机抽取 10 名受试者,测其服药前、后的收缩压如下表:\n\\begin{tabular}{ccccccccccc}\n\\hline 受试者 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\\\n\\hline 服药前 $/ \\mathrm{mmHg}$ & 137 & 147 & 161 & 127 & 130 & 134 & 135 & 158 & 147 & 142 \\\\\n服药后 $/ \\mathrm{mmHg}$ & 143 & 138 & 146 & 127 & 120 & 119 & 122 & 172 & 134 & 127 \\\\\n\\hline\n\\end{tabular}\n问服药后的血压值是否与服药前的血压值有关?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "给定一个二代测序文库,比如就说RNA-seq测序,数据拿到以后,与参考基因组进行序列比对,如果唯一比对率10%,而多比对率是80%,可能是什么原因?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何构建全基因组导入系(CSSLs)群体?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何鉴定基因组中的着丝粒区域?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "竞争性等位基因特异性聚合酶链式反应(KASP)是在群体定位中具体的使用方法是什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "利用结构相似性画进化树的优势?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n心脏的冠状窦口直径 $(d)$ 与冠状窦瓣宽 $(w)$ 和窦瓣高 $(h)$ 存在一定关联,下面测量了从新生儿到儿童末期的 6 个年龄组的窦口直径、窦瓣宽和窦瓣高,结果见下表 :\n\\begin{tabular}{lcccccr}\n\\hline & \\multicolumn{6}{c}{ 组 } \\\\\n\\cline { 2 - 7 } & I & II & III & IV & V & VI \\\\\n\\hline 窦口直径 $/ \\mathrm{mm}$ & 3.19 & 4.43 & 4.96 & 5.81 & 6.30 & 7.98 \\\\\n窦瓣宽 $/ \\mathrm{mm}$ & 4.64 & 6.42 & 7.32 & 7.68 & 8.99 & 10.30 \\\\\n窦瓣高 $/ \\mathrm{mm}$ & 1.68 & 3.93 & 4.08 & 4.41 & 4.94 & 5.02 \\\\\n\\hline\n\\end{tabular}\n分别计算窦瓣宽和窦瓣高与突口直径间的相关系数,并检验相关系数的显著性。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "对表型进行全基因组关联定位前,需要对数据进行哪些预处理?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何判断一个基因是否是由转座活动产生的?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "现在研究5mC DNA甲基化的手段有whole genome bisulfite sequencing二代测序技术和Nanopore以及Pacbio三代测序技术,这两个技术分别利用bisulfite处理DNA序列使甲基化保护的Cytosine不会转换,而没有甲基化保护的cytosine会变成U从而识别甲基化了的位点。而三代测序由于没有PCR过程,是实时测序,可以检测到DNA序列上的修饰。目前已经很多工作利用这两种技术开展DNA甲基化研究。但是两种技术由于测序原理以及测序技术差异等原因,在一些应用场景上还是会有不同,你知道都有哪些?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何区分同源多倍体和异源多倍体?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n新疆维吾尔族和哈萨克族男生各100名,他们的立定跳远平均成绩与年龄之间的关系如下表所示:\n\\begin{tabular}{|l|l|l|l|l|l|l|}\n\\hline 年龄/a & 7 & 8 & 9 & 10 & 11 & 12 \\\\\n\\hline 维吾尔族/cm & 124.51 & 132.65 & 138.59 & 143.39 & 151.74 & 160.91 \\\\\n\\hline 哈萨克族/cm & 135.80 & 146.52 & 153.34 & 162.88 & 171.10 & 174.29 \\\\\n\\hline 年龄/a & 13 & 14 & 15 & 16 & 17 & 18 \\\\\n\\hline 维吾尔族/cm & 169.31 & 184.22 & 195.57 & 200.51 & 207.84 & 217.24 \\\\\n\\hline 哈萨克族/cm & 185.88 & 190.24 & 211.21 & 228.63 & 235.07 & 233.65 \\\\\n\\hline\n\\end{tabular}\n分别计算两个民族的成绩与年龄之间的相关系数,并检验两个相关系数的显著性。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,社鼠头骨若干特征的度量值与年龄存在相关性,下表列出了 40 只社鼠的鉴定年龄(a)和头骨 8 个特征的度量值( mm ):\n\\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\n\\hline 序号 & 鉴定年龄 Y & $X_1$ & $X_2$ & $X_3$ & $X_4$ & $X_5$ & $X_6$ & $X_7$ & $X_8$ \\\\\n\\hline 1 & 3 & 34.60 & 33.62 & 31.26 & 16.10 & 5.44 & 8.74 & 6.12 & 6.74 \\\\\n\\hline 2 & 3 & 34.50 & 33.44 & 31.68 & 15.92 & 4.82 & 9.00 & 5.82 & 6.48 \\\\\n\\hline 3 & 4 & 37.36 & 36.36 & 34.28 & 17.46 & 5.48 & 9.96 & 6.08 & 6.72 \\\\\n\\hline 4 & 4 & 36.94 & 35.80 & 34.10 & 17.14 & 5.28 & 9.80 & 5.46 & 6.62 \\\\\n\\hline 5 & 5 & 38.00 & 37.72 & 35.74 & 17.46 & 5.14 & 9.92 & 5.84 & 6.68 \\\\\n\\hline 6 & 5 & 38.30 & 37.44 & 35.64 & 17.08 & 5.14 & 10.26 & 5.72 & 6.90 \\\\\n\\hline 7 & 5 & 39.72 & 39.18 & 36.72 & 17.84 & 5.60 & 10.50 & 5.76 & 6.62 \\\\\n\\hline 8 & 1 & 27.34 & 26.42 & 23.50 & 13.46 & 4.70 & 7.59 & 4.50 & 5.12 \\\\\n\\hline 9 & 4 & 36.78 & 36.36 & 34.52 & 16.48 & 5.36 & 9.44 & 5.96 & 6.78 \\\\\n\\hline 10 & 4 & 37.12 & 36.12 & 34.24 & 16.44 & 5.14 & 9.52 & 5.90 & 6.38 \\\\\n\\hline 11 & 3 & 34.78 & 33.56 & 31.40 & 15.46 & 5.14 & 8.42 & 5.68 & 5.88 \\\\\n\\hline 12 & 2 & 31.38 & 30.86 & 28.56 & 14.54 & 5.08 & 7.82 & 5.78 & 6.00 \\\\\n\\hline 13 & 4 & 36.50 & 35.72 & 33.48 & 16.42 & 5.06 & 8.90 & 5.44 & 6.40 \\\\\n\\hline 14 & 2 & 33.80 & 32.92 & 30.70 & 16.88 & 5.08 & 8.24 & 5.66 & 6.00 \\\\\n\\hline 15 & 2 & 32.28 & 31.14 & 28.50 & 15.38 & 4.88 & 7.68 & 5.60 & 5.38 \\\\\n\\hline 16 & 4 & 37.88 & 37.06 & 34.54 & 16.60 & 5.66 & 9.92 & 5.52 & 6.84 \\\\\n\\hline 17 & 2 & 32.74 & 31.82 & 29.58 & 15.30 & 5.14 & 8.00 & 6.00 & 5.08 \\\\\n\\hline 18 & 1 & 30.00 & 28.56 & 26.18 & 13.92 & 4.98 & 7.12 & 5.10 & 5.12 \\\\\n\\hline 19 & 2 & 33.22 & 32.10 & 29.62 & 15.58 & 4.96 & 8.00 & 5.56 & 5.66 \\\\\n\\hline 20 & 4 & 37.08 & 36.90 & 33.78 & 17.38 & 5.72 & 9.60 & 6.04 & 6.68 \\\\\n\\hline 21 & 3 & 35.32 & 34.32 & 32.18 & 15.70 & 5.00 & 8.88 & 6.02 & 6.46 \\\\\n\\hline 22 & 2 & 32.66 & 31.08 & 28.92 & 15.34 & 4.76 & 7.80 & 5.72 & 5.42 \\\\\n\\hline 23 & 2 & 32.64 & 31.50 & 29.46 & 14.64 & 5.08 & 7.40 & 5.74 & 5.20 \\\\\n\\hline 24 & 2 & 32.68 & 31.50 & 29.18 & 14.94 & 4.76 & 7.86 & 5.82 & 5.68 \\\\\n\\hline 25 & 1 & 30.94 & 30.20 & 27.70 & 14.36 & 5.22 & 7.22 & 5.70 & 4.92 \\\\\n\\hline 26 & 4 & 36.84 & 35.96 & 34.04 & 17.02 & 5.36 & 9.08 & 6.16 & 6.00 \\\\\n\\hline 27 & 5 & 37.58 & 36.88 & 34.44 & 16.72 & 5.46 & 10.00 & 5.60 & 6.36 \\\\\n\\hline 28 & 5 & 37.88 & 37.06 & 34.54 & 16.60 & 5.66 & 9.92 & 5.52 & 6.84 \\\\\n\\hline 29 & 3 & 34.28 & 33.34 & 31.30 & 16.64 & 5.18 & 9.22 & 5.58 & 6.46 \\\\\n\\hline 30 & 3 & 35.80 & 35.00 & 32.70 & 16.64 & 5.82 & 10.00 & 5.68 & 6.00 \\\\\n\\hline 31 & 3 & 34.12 & 33.10 & 31.14 & 15.68 & 5.46 & 9.32 & 5.62 & 6.00 \\\\\n\\hline 32 & 3 & 34.22 & 33.26 & 31.60 & 16.00 & 5.22 & 9.12 & 5.56 & 6.28 \\\\\n\\hline 33 & 4 & 37.54 & 36.80 & 34.62 & 16.44 & 5.24 & 10.00 & 5.74 & 6.70 \\\\\n\\hline 34 & 3 & 33.94 & 33.38 & 31.36 & 16.84 & 5.08 & 8.72 & 5.70 & 6.24 \\\\\n\\hline 35 & 3 & 34.00 & 33.02 & 30.54 & 15.56 & 5.12 & 8.86 & 5.96 & 6.42 \\\\\n\\hline 36 & 2 & 31.54 & 30.46 & 28.04 & 15.20 & 4.92 & 7.78 & 5.46 & 5.68 \\\\\n\\hline 37 & 5 & 38.10 & 37.62 & 34.86 & 17.44 & 5.72 & 10.16 & 6.14 & 7.16 \\\\\n\\hline 38 & 2 & 30.50 & 30.00 & 27.92 & 14.84 & 5.00 & 7.12 & 5.70 & 5.30 \\\\\n\\hline 39 & 2 & 32.26 & 30.82 & 28.62 & 15.30 & 4.94 & 7.82 & 5.50 & 5.46 \\\\\n\\hline 40 & 4 & 37.38 & 36.20 & 34.22 & 16.90 & 5.30 & 9.44 & 5.54 & 6.42 \\\\\n\\hline\n\\end{tabular}\n\n注:$X_1$ :颅全长。 $X_2$ :颅基长。 $X_3$ :基底长。 $X_4$ :颧宽。 $X_5$ :眶间宽。 $X_6$ :齿隙长。$X_7$ :上裂齿长.$X_8$ :门齿孔长。\n在计算完多元回归方程,复相关系数后,给出用逐步回归方法选出的包含 3 个自变量的回归方程。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n4到10月龄胎儿的肝重与肝的 Ca 含量存在以下关系:\n\\begin{tabular}{cccccccc}\n\\hline 肝 重 $/ \\mathrm{g}$ & 6.48 & 13.02 & 24.17 & 44.86 & 58.39 & 75.58 & 86.47 \\\\\n\\hline Ca 含量 $/\\left(\\mu \\mathrm{g} \\cdot \\mathrm{g}^{-1} \\mp\\right.$ 重 $)$ & 1271.0 & 1440.9 & 1016.6 & 663.7 & 516.3 & 535.9 & 492.5 \\\\\n\\hline\n\\end{tabular}\n求钙含量在肝重上的回归方程并检验回归的显著性。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "GWAS的定位方法都有哪些算法,适合哪种表型?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "近缘基因组之间如何提升基因注释质量?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何证明基因组组装中的一段序列是准确的", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n用不同浓度的草甘膦异丙胺盐(除草剂)溶液处理后,中华大蟾蜍心电图的三项指标平均值如下表:\n\\begin{tabular}{|l|l|l|l|}\n\\hline 浓 度 /( $\\mathrm{mL} \\cdot \\mathrm{L}^{-1}$ ) & P 波 /mV & R 波 /mV & $\\mathrm{P}-\\mathrm{R}$ 间期 /ms \\\\\n\\hline 0 & 0.160 & 1.319 & 0.182 \\\\\n\\hline 0.82 & 0.147 & 0.965 & 0.156 \\\\\n\\hline 1.23 & 0.118 & 0.725 & 0.196 \\\\\n\\hline 1.64 & 0.104 & 0.804 & 0.223 \\\\\n\\hline 2.05 & 0.117 & 0.683 & 0.230 \\\\\n\\hline 2.46 & 0.102 & 0.797 & 0.255 \\\\\n\\hline 2.87 & 0.095 & 0.651 & 0.258 \\\\\n\\hline\n\\end{tabular}\n分别计算 P 波, R 波及 $\\mathrm{P}-\\mathrm{R}$ 间期对浓度的回归方程,并检验回归系数的显著性。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n青菜对 ${ }^{14} \\mathrm{CO}_2$ 的富集系数(CF 值)如下:\n\\begin{tabular}{ccc}\n\\hline 时间/d & 菜 心 & 叶 子 \\\\\n\\hline 6 & 24.6 & 13.8 \\\\\n12 & 53.4 & 30.9 \\\\\n18 & 82.0 & 41.9 \\\\\n24 & 100.1 & 63.2 \\\\\n36 & 114.1 & 96.8 \\\\\n48 & 156.4 & 135.6 \\\\\n\\hline\n\\end{tabular}\n以时间为自变量,菜心和叶子分别为因变量,计算回归方程,并比较两者回归系数的差异显著性。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何通过生物信息学手段预测互作基因?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "目前传统序列比对算法的不足在哪里?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "这个是我面试博士后常问的问题,1. 给定一个转录组或者其他二代测序的测序文库,问生成的reads,在进行序列比对的时候,唯一比对率偏低,比如10%左右,问是什么原因?如何检测?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "我们往往用转录组测序来估计基因的表达情况,那现在随着蛋白质质谱技术的进步和价格下降呢,很多人开始直接选择蛋白质组来估计基因表达量。如果我有一个相同材料的RNA-seq和蛋白质组,但是我发现个别基因转录水平很高,但是在蛋白质组里却表达很低,可能是什么原因引起的,如何验证?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "在一项罕见遗传病的研究中,研究人员怀疑疾病相关基因中存在结构变异(Structural Variations, SVs),这些变异可能影响基因功能并导致疾病表型。请设计一项实验以推测基因组中与疾病潜在相关的SVs。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "如何鉴定两个基因组间的同源基因", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,社鼠头骨若干特征的度量值与年龄存在相关性,下表列出了 40 只社鼠的鉴定年龄(a)和头骨 8 个特征的度量值( mm ):\n\\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\n\\hline 序号 & 鉴定年龄 Y & $X_1$ & $X_2$ & $X_3$ & $X_4$ & $X_5$ & $X_6$ & $X_7$ & $X_8$ \\\\\n\\hline 1 & 3 & 34.60 & 33.62 & 31.26 & 16.10 & 5.44 & 8.74 & 6.12 & 6.74 \\\\\n\\hline 2 & 3 & 34.50 & 33.44 & 31.68 & 15.92 & 4.82 & 9.00 & 5.82 & 6.48 \\\\\n\\hline 3 & 4 & 37.36 & 36.36 & 34.28 & 17.46 & 5.48 & 9.96 & 6.08 & 6.72 \\\\\n\\hline 4 & 4 & 36.94 & 35.80 & 34.10 & 17.14 & 5.28 & 9.80 & 5.46 & 6.62 \\\\\n\\hline 5 & 5 & 38.00 & 37.72 & 35.74 & 17.46 & 5.14 & 9.92 & 5.84 & 6.68 \\\\\n\\hline 6 & 5 & 38.30 & 37.44 & 35.64 & 17.08 & 5.14 & 10.26 & 5.72 & 6.90 \\\\\n\\hline 7 & 5 & 39.72 & 39.18 & 36.72 & 17.84 & 5.60 & 10.50 & 5.76 & 6.62 \\\\\n\\hline 8 & 1 & 27.34 & 26.42 & 23.50 & 13.46 & 4.70 & 7.59 & 4.50 & 5.12 \\\\\n\\hline 9 & 4 & 36.78 & 36.36 & 34.52 & 16.48 & 5.36 & 9.44 & 5.96 & 6.78 \\\\\n\\hline 10 & 4 & 37.12 & 36.12 & 34.24 & 16.44 & 5.14 & 9.52 & 5.90 & 6.38 \\\\\n\\hline 11 & 3 & 34.78 & 33.56 & 31.40 & 15.46 & 5.14 & 8.42 & 5.68 & 5.88 \\\\\n\\hline 12 & 2 & 31.38 & 30.86 & 28.56 & 14.54 & 5.08 & 7.82 & 5.78 & 6.00 \\\\\n\\hline 13 & 4 & 36.50 & 35.72 & 33.48 & 16.42 & 5.06 & 8.90 & 5.44 & 6.40 \\\\\n\\hline 14 & 2 & 33.80 & 32.92 & 30.70 & 16.88 & 5.08 & 8.24 & 5.66 & 6.00 \\\\\n\\hline 15 & 2 & 32.28 & 31.14 & 28.50 & 15.38 & 4.88 & 7.68 & 5.60 & 5.38 \\\\\n\\hline 16 & 4 & 37.88 & 37.06 & 34.54 & 16.60 & 5.66 & 9.92 & 5.52 & 6.84 \\\\\n\\hline 17 & 2 & 32.74 & 31.82 & 29.58 & 15.30 & 5.14 & 8.00 & 6.00 & 5.08 \\\\\n\\hline 18 & 1 & 30.00 & 28.56 & 26.18 & 13.92 & 4.98 & 7.12 & 5.10 & 5.12 \\\\\n\\hline 19 & 2 & 33.22 & 32.10 & 29.62 & 15.58 & 4.96 & 8.00 & 5.56 & 5.66 \\\\\n\\hline 20 & 4 & 37.08 & 36.90 & 33.78 & 17.38 & 5.72 & 9.60 & 6.04 & 6.68 \\\\\n\\hline 21 & 3 & 35.32 & 34.32 & 32.18 & 15.70 & 5.00 & 8.88 & 6.02 & 6.46 \\\\\n\\hline 22 & 2 & 32.66 & 31.08 & 28.92 & 15.34 & 4.76 & 7.80 & 5.72 & 5.42 \\\\\n\\hline 23 & 2 & 32.64 & 31.50 & 29.46 & 14.64 & 5.08 & 7.40 & 5.74 & 5.20 \\\\\n\\hline 24 & 2 & 32.68 & 31.50 & 29.18 & 14.94 & 4.76 & 7.86 & 5.82 & 5.68 \\\\\n\\hline 25 & 1 & 30.94 & 30.20 & 27.70 & 14.36 & 5.22 & 7.22 & 5.70 & 4.92 \\\\\n\\hline 26 & 4 & 36.84 & 35.96 & 34.04 & 17.02 & 5.36 & 9.08 & 6.16 & 6.00 \\\\\n\\hline 27 & 5 & 37.58 & 36.88 & 34.44 & 16.72 & 5.46 & 10.00 & 5.60 & 6.36 \\\\\n\\hline 28 & 5 & 37.88 & 37.06 & 34.54 & 16.60 & 5.66 & 9.92 & 5.52 & 6.84 \\\\\n\\hline 29 & 3 & 34.28 & 33.34 & 31.30 & 16.64 & 5.18 & 9.22 & 5.58 & 6.46 \\\\\n\\hline 30 & 3 & 35.80 & 35.00 & 32.70 & 16.64 & 5.82 & 10.00 & 5.68 & 6.00 \\\\\n\\hline 31 & 3 & 34.12 & 33.10 & 31.14 & 15.68 & 5.46 & 9.32 & 5.62 & 6.00 \\\\\n\\hline 32 & 3 & 34.22 & 33.26 & 31.60 & 16.00 & 5.22 & 9.12 & 5.56 & 6.28 \\\\\n\\hline 33 & 4 & 37.54 & 36.80 & 34.62 & 16.44 & 5.24 & 10.00 & 5.74 & 6.70 \\\\\n\\hline 34 & 3 & 33.94 & 33.38 & 31.36 & 16.84 & 5.08 & 8.72 & 5.70 & 6.24 \\\\\n\\hline 35 & 3 & 34.00 & 33.02 & 30.54 & 15.56 & 5.12 & 8.86 & 5.96 & 6.42 \\\\\n\\hline 36 & 2 & 31.54 & 30.46 & 28.04 & 15.20 & 4.92 & 7.78 & 5.46 & 5.68 \\\\\n\\hline 37 & 5 & 38.10 & 37.62 & 34.86 & 17.44 & 5.72 & 10.16 & 6.14 & 7.16 \\\\\n\\hline 38 & 2 & 30.50 & 30.00 & 27.92 & 14.84 & 5.00 & 7.12 & 5.70 & 5.30 \\\\\n\\hline 39 & 2 & 32.26 & 30.82 & 28.62 & 15.30 & 4.94 & 7.82 & 5.50 & 5.46 \\\\\n\\hline 40 & 4 & 37.38 & 36.20 & 34.22 & 16.90 & 5.30 & 9.44 & 5.54 & 6.42 \\\\\n\\hline\n\\end{tabular}\n\n注:$X_1$ :颅全长。 $X_2$ :颅基长。 $X_3$ :基底长。 $X_4$ :颧宽。 $X_5$ :眶间宽。 $X_6$ :齿隙长。$X_7$ :上裂齿长.$X_8$ :门齿孔长。\n计算多元回归方程,复相关系数。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "问一个简单的,HiC测序技术,最开始是用来研究染色体空间互作的技术。那么为什么现在越来越多的人使用HiC来辅助组装基因组呢?这个技术辅助组装基因组可能会引起什么样的错误?或者需要注意的地方?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "判断一个非常重要的蛋白质编码基因在另一个物种中是否存在直系同源基因,你如何做?要求是结果一定要准确。假设给定的基因A,问你在拟南芥中是否存在直系同源基因,存在几个?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "请参考生物信息学的方式(代码)得到解答,\n马鹿下臼齿咀嚼面宽度与年龄之间存在以下关系:\n\\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\n\\hline 序号 & 年龄 /a & \\multicolumn{18}{|c|}{下臼齿咀嚼面宽度/mm} \\\\\n\\hline 1 & 2.5 & 8.65 & 8.90 & 8.30 & 8.80 & & & & & & & & & & & & & & & \\\\\n\\hline 2 & 3.5 & 9.60 & 8.35 & 8.30 & 8.40 & 7.80 & 8.40 & 8.70 & 9.40 & 7.50 & 7.90 & 8.90 \\\\\n\\hline 3 & 4.5 & 10.13 & 9.10 & 8.65 & 10.17 & 10.00 & 9.80 & 10.90 & 9.72 & 9.92 & 9.82 & 10.00 & 10.00 & 10.14 & 10.15 & 10.12 & 8.80 & 10.15 \\\\\n\\hline 4 & 5.5 & 10.75 & 10.68 & 11.68 & 10.30 & 10.22 & 10.00 & 11.90 & 11.85 & 11.90 & 11.85 \\\\\n\\hline 5 & 6.5 & 11.30 & 11.00 & 12.70 & 11.30 & 11.48 & 11.87 & 10.20 & 10.82 & 11.52 & 11.60 & 10.25 \\\\\n\\hline 6 & 7.5 & 10.40 & 11.00 & 12.50 & 13.50 & 9.98 & & & & \\\\\n\\hline 7 & 8.5 & 12.16 & 12.80 & 11.88 & 11.10 & 11.48 & 11.40 & 12.10 & 10.15 & \\\\\n\\hline 8 & 9.5 & 12.72 & 11.68 & 12.80 & 11.35 & 13.33 & & & & \\\\\n\\hline 9 & 13.5 & 12.20 & & & & & & & & \\\\\n\\hline 10 & 17.5 & 14.03 & & & & & & & & \\\\\n\\hline\n\\end{tabular}\n以年龄为自变量,咀嚼面宽度为因变量,计算回归方程。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "全基因组关联分析(Genome-Wide Association Study, GWAS)是一种用于识别与特定性状或疾病相关的遗传变异(通常是单核苷酸多态性,SNP)的研究方法。GWAS通常需要大样本量(数千至百万级个体)以提高统计效力,使用基因芯片或测序技术获取全基因组范围的SNP数据。然而,在GWAS研究时会出现膨胀系数(Genomic Inflation Factor, λ)偏高,请分析可能的原因以及解决方法。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "近缘物种基因组大小差异较大可能是什么原因造成的,该如何验证?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "在缺少基因组注释文件的情况下如何快速鉴定近缘物种的系统发育关系?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Genetics and Bioinformatics", "subject_name": "Biology"} +{"question": "惯性参考系 $S$ 中有一个半径为 $R$ 的固定圆环,一个静质量为 $m$ 的小球初始时刻静止在圆环上某一点,然后对小球施加大小恒定为 $F$ 的切向外力,同时环壁也会对小球反应弹力。真空中的光速为 $c$ 。本题须考虑狭义相对论效应。假设每圈外力做功恰好等于小球静能。 (1)求小球绕行一圈的过程中弹力大小对轨道弧长的平均值; (2)若把圆环换为通径 $2 p$ ,离心率 $e$ 的椭圆环,关于外力做功量的假设仍然成立。求小球绕行一圈的过程中弹力大小对曲率半径线扫过面积 $S$ 的平均值。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一个均匀带电的金属球,半径为R带电量为Q,如果把这个金属球��为两部分,切面距离球中心的最小距离是H,请问这两部分之间的排斥力有多大", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板质量为4kg,木块与木板之间的动摩擦因数为0.2。经过2s以后,物块恰好滑出木板,在这一过程中木板的位移为0.5m,求木板和地面之间的动摩擦因数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "不可伸长轻细绳吊着质量为\\(m_0\\)的摆球(视为质点)在竖直向下的匀强电场\\(E\\)的作用下绕平衡位置小幅摆动,不计摆球重力,球电量为\\(q > 0\\),摆球初始振幅为\\(\\theta_0\\),求以下两种不同情况下的末振幅: (1)摆球质量随时间缓慢减小(不断有质量从摆球上无相对速度地分离),由\\(m_0\\)变为\\(m_1\\),过程中摆球电量\\(q\\)保持不变; (2)空间中有弥散的、静止的小水珠,摆球运动过程中吸收撞击到球上的水珠,其质量随时间缓慢增大,由\\(m_0\\)变为\\(m_2\\) ,过程中摆球电量\\(q\\)保持不变。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "太阳系中均匀分布的尘埃会对行星施加一额外的引力,其表达式为:\\[ \\mathbf F = -mC\\mathbf r \\],其中 \\( m \\) 为行星质量,\\( C \\) 是与引力常数和尘埃密度成正比的常数,\\( \\mathbf r \\) 为太阳指向行星的径矢(两者均视为质点)。该附加力远小于太阳与行星之间的直接引力。行星在此复合力场中作半径为 \\( r_0 \\) 的圆周运动,计算该圆周运动轨道受微小扰动后的径向振动频率$\\omega$( \\( \\tau_0 = 2\\pi r_0^{3/2}\\sqrt{m/k} \\) 为无微扰势时的圆轨道周期)。 \n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": " 在\\( \\frac{1}{r} \\) 势场下的双曲运动中,偏心近点角类比量 \\( F \\) 的定义为: \\[ r = a(e \\cosh F - 1), \\] 其中 \\( a(1 - e) \\) 是近心点距离。请求出类似于Kepler's 方程的表达式,将时间 \\( t \\)(从近心点开始计时)表示为 \\( F \\) 的函数(能量为$E$)。 \n\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一个点电荷质量为m,带电量为q,被从一个很大的固定金属板上方d高度处释放,板上有极小的孔洞可供电荷来回穿过。只考虑静电力,不考虑能量损耗,求电荷在金属板两侧来回运动的周期是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一个无阻尼的质点$m$,受到稳定的方波激励,方波周期为$T$,在前半个周期受力$-\\omega_n^2(1+\\mu)mx$,其中$x$是质点偏离平衡位置的位移;在后半个周期受力$-\\omega_n^2(1-\\mu)mx$。问何时质点的振动会不断被放大", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一桶水底部有一个半径为r的圆形孔,孔被一个质量为m半径为R的球给堵住了,水桶里有高度为h的水,水将球压在孔洞上,球的一部分也从洞下方露出来。假设水始终能没过整个球,请问水的高度要满足什么条件球会从孔洞处浮起?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "有一根水平放置的圆柱杆子,截面半径为$R$,在它上面搭了一个角钢,也就是两个长边相连并短边相互垂直的薄长条,各自的短边宽度均等于圆柱的截面直径$2R$,总质量$2m$。放置时角铁长边与杆子长边一个方向,同时一个长条为水平,一个长条为竖直,求杆子和角铁之间的静摩擦系数要满足什么情况才能让它不掉下来", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "有一根线质量为$\\rho$的重绳子,两端由恒力F拉着伸展开来。此时通过某种操作让这个绳子在一端形成了一个小环,半径为R,已知这个环可以像横波一样传播,让它沿着绳子前进。推导单个绳环携带的动能。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "求在实验室参考系中两个分裂后质点飞出方向之间夹角 \\theta 的取值范围(粒子初始是运动的,速度为V。粒子���裂后在质心系中粒子速度大小分别是v_{10}和v_{20}。最终结果应该用这三个参数表示)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "有一个倾角为$\\alpha$的传送带,传送带由一系列间距为d的水平圆柱滚筒组成,每个质量为m,半径为r,表面粗糙但并非总是和货物无滑动。求一个质量为M的长木板在这个传送带上滑下来的最终速度", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一根均匀的质量为m长度为l的棍子,其两端被两个滑块水平支撑着, 此时缓慢移动两个滑块,使他们最终在棍子的原质心处汇合,搭在上面的棍子会受摩擦力作用滑动。如果静摩擦系数为μ1,动摩擦系数为μ2,动摩擦系数小于等于静摩擦系数,请注意不考虑两端同时发生动摩擦的状况。在此过程中滑块总共做了多少功?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "计算由排斥中心力 \\( f = kr^{-3} \\) 产生的散射现象的微分散射截面$\\sigma(\\theta) d\\Omega$。假设 \\( \\theta/\\pi \\) 的比值为\\( x \\) ,能量为\\( E \\)。 \n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一根长度为L质量为M的薄纸片被盘绕成半径为R的一卷,纸卷一端被系在地上,并以初速度v_0开始水平滚动,忽略弹性和摩擦,求这个纸卷完全展开需要多少时间", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "有一个带正电荷且质量为M的小球被一根线悬空挂起,初始时自然下垂。另外一个带正电的小球从无限远处缓慢移动到前一个小球的初始位置。由静电作用,前一个小球将被推开,并相较于初始位置高了h。求移动过程中做的功。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "在光滑水平桌面上,\\(N\\)个相同的光滑匀质小球均匀排列成一个四分之一圆弧,总质量为\\(M\\)。一个质量为\\(m\\)的光滑匀质球形猪(与圆弧上小球大小相同)从左边以速度\\(v_{0}\\)射向最边上的小球,速度方向与四分之一圆弧边缘的切线平行。假设所有碰撞都是完全弹性的,在适当初始条件下,球形猪与圆弧上所有\\(N\\)个小球依次发生弹性碰撞后最终速度偏转\\(90^{\\circ}\\)径直离去。为方便起见,不考虑圆弧上\\(N\\)个小球彼此之间可能的碰撞。已知\\(e = \\lim\\limits_{n \\to \\infty}(1 + \\frac{1}{n})^{n}\\)。 (1)\\(N\\)很大,直接研究\\(N \\to \\infty\\)的极限情况,为发生题中要求的碰撞情形,\\(M/m\\)需要满足什么条件? (2)\\(M\\)取满足第一问条件的最小值时,球形猪离开四分之一圆弧的速度是多少?(依旧认为\\(N \\to \\infty\\)) (3)若在球形猪撞上第一个小球前,半路出现一只相同大小的球形匀质光滑拦路虎,拦路虎初始静止,等球形猪来撞。则拦路虎的质量\\(m_{T}\\)需要满足什么条件才有可能在合适的碰撞角度下凭一己之力将球形猪的速度方向改变\\(90^{\\circ}\\)且散射后自身的速度大小比球形猪要小?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "这是一个著名的机械悖论装置:两根轨道形成角度 $2 \\beta$ ,固定在一个倾斜平面内,此平面与水平方向的夹角为 $\\theta$ .现在其上对称地放置一个由两个相同的半顶角为 $\\alpha$ 的匀质圆锥体底对底结合形成的刚体,则有时 可以发现,刚体将向上坡方向滚去.已知刚体的最大半径为 $R$ ,重力加速度 $g$ ,假设刚体与轨道间不发生相对滑动. 记刚体与两轨道的接触点为 P ,两个 P 点连线的中点为 $\\mathrm{P}^{\\prime}$ ,以轨道顶点为原点建立直角坐标系 $x y z$ ,这里 $x, y$分别是水平和竖直方向.记 $h$ 为 $\\mathrm{P}_{,} \\mathrm{P}^{\\prime}$ 点的 $y$ 坐标,$q$ 为 $\\mathrm{P}^{\\prime}$ 点到坐标. (1)基本性质.(i)求 P 点到刚体轴线的距离 $r$ ,表示为 $q$ 的函数.并求刚体不掉下轨道的前提下,$q$ 的最大值 $q_{\\max }$ . (ii)若希望刚体能向上坡方向自发滚去,$\\alpha, \\beta, \\theta$ 应满足何条件?下面均假设此条件满足. (iii)将刚体在轨道顶角 $(x=0)$ 处释放,求刚体滚到 $q=q_{\\max } / 2$ 时绕其自转轴转过的角度 $\\Delta \\varphi$ . (2)动力学问题. (i)写出刚体的动能 $K$ ,用刚体质心的 $x, \\dot{x}$ 表示. (ii)已知 $\\theta=\\pi / 6$ .在刚体刚好可以自发滚上坡的条件下,在 $q=0$ 处给予刚体初始动能 $K$ ,求刚体滚到 $q=q_{\\max } / 2$处所需的时间.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "质量为$m$的质点在指向圆周上某点的有心吸引力$f$作用下作圆周运动,求解该力$f$与距离$r$的关系式(假设吸引力力心在坐标原点,圆周运动半径为$R$,圆心在$(x=R, y=0)$处,角动量$l$为常数)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "转子发动机(Wankel Engine)是由德国人菲加士•汪克尔(Felix Wankel)所发明。他在总结前人工作的基础上,解决了一些关键技术问题,成功研制了第一台转子发动机。转子发动机采用三角转子旋转来控制压缩和排放,与传统的往复活塞式发动机的直线运动迴然不同。 转子发动机的运动特点是:三角转子的中心绕输出轴中心公转的同时,三角转子本身又绕其中心自转。这样使得三角转子顶点的运动轨迹(即汽缸壁的形状)似" 8 "字形。三角转子把汽缸分成三个独立空间,三个空间各自先后完成进气,压缩,做功和排气,三角转子自转一周,发动机点火做功三次。 (1)转子发动机中心齿轮固定在缸体上,其中心为 P ;正三角形 ABC 中心为 0 ,同样也是内齿圈的中心。内齿圈与中心齿轮啮合于 $Q$ ,转子中心半径 $3 r$ 圆柱体内壁只有与中心齿轮接触部分为内齿圈,其余部分光滑。圆弧 AB 圆心为 C ;圆弧 BC 圆心为 A ;圆弧 AC 圆心为 $\\mathrm{B} ; \\mathrm{ABC}$ 三点与缸体外壳接触点密封良好且无相互作用力。传动轴顶部圆柱体半径略小于 $3 r$ ,与转子接触点保持光滑,中心齿轮与传动轴不接触。设 $\\mathrm{AO}=a, \\mathrm{PQ}=$ $20 \\mathrm{P}=2 r$ 。 (1.1)设 $\\theta$ 为 OP 相对 $y$ 轴转过的角度,$\\theta=0$ 时 $\\mathrm{A}, \\mathrm{O}, \\mathrm{P}, \\mathrm{Q}$ 均在 $y$ 轴上。以 $\\theta$ 为参数,在直角坐标系下,写出A点运动轨迹的参数方程 $x(\\theta), y(\\theta)$ ,此即缸体内壁的方程。 (1.2)设缸体内壁深(即转子的高)为 $d$ ,工作室 AB 容积 $V(\\theta)$ 与角度 $\\theta$ 的关系为 $$ V(\\theta)=\\pi r^2 d-\\frac{\\pi a^2 d}{6}+\\frac{\\sqrt{3}}{2} a^2 d-\\frac{9 r a d}{4} \\sin \\left(\\frac{2 \\theta}{3}\\right)-\\frac{3 \\sqrt{3} \\mathrm{rad}}{4} \\cos \\left(\\frac{2 \\theta}{3}\\right) $$ 根据上述表达式,给出 $V$ 的极大值 $V_{+}$,极小值 $V_{-}$,以及对应的 $\\theta$ 的值。 (1.3)设工作室 AB 内气体压强 $P=P(\\theta)$ 。在转子匀速转动时,求出传动轴上的外力矩 $M=$ $M(\\theta)$ 。答案可含 $P(\\theta+\\varphi)$ ,其中 $\\varphi$ 为任意常数。注意一共有三个工作室。 (2)气缸中燃料X燃烧的热化学方程式为 $$ t_1 X(g)+t_2 O_2(g)=t_3 \\mathrm{CO}_2(g)+t_4 \\mathrm{H}_2 O(g) $$ $$ \\Delta H=-H_0(\\mathrm{~J} / \\mathrm{mol}) $$ 其中焓 $H=U+P V, U$ 为内能,负号表示反应放热。本题中 $H_0>0$ 可近似视为常数。设参数 $\\mu=\\frac{t_3+t_4}{t_1+t_2}, h=\\frac{H_0}{t_1+t_2}$ 。 进气口,排气口,点火器坐标分别为 $\\left(-\\frac{\\sqrt{3}}{2} a, \\frac{1}{2} a-r\\right),\\left(-\\frac{\\sqrt{3}}{2} a,-\\frac{1}{2} a+\\right.$ $r),\\left(\\frac{\\sqrt{3}}{2} a, \\frac{1}{2} a-r\\right)$ 。 已知进气口处气体压强为 $P_1$ ,出气口处气体压强为 $P_0$ 。进入气缸的气体均为 $t_1: t_2$ 的温度为 $T_0$ 的 $X-O_2$ 混合气体,等压摩尔热容 $C_{v, m}=\\alpha R$ 。排出的气体均为 $t_3: t_4$ 的 $\\mathrm{CO}_2-\\mathrm{H}_2 \\mathrm{O}(\\mathrm{g})$ 混合气体,等压摩尔热容 $C_{v, m}=\\beta R$ 。全过程中水保持气态,所有气体均为理想气体。 对于 $A B$ 工作室,循环分为如下几个部分: 步骤 1:$\\theta=-5 \\pi / 2$ ,关闭排气口,打开进气口,工作室内气压瞬间变为 $P_1$ ,此时温度分布不均匀; 步骤 2:$\\theta=-\\pi$ ,关闭进气口,工作室内气体已达热力学平衡,此时温度已均匀分布,然后气体绝热压缩; 步骤 3:$\\theta=\\pi / 2$ ,点火,发生反应可视为瞬时完成,反应前后焓不变,然后气体绝热膨胀; 步骤 4:$\\theta=2 \\pi$ ,打开排气口,工作室内气压瞬间变为 $P_0$ ,可视作气体瞬间绝热膨胀; 步骤 5:$\\theta=7 \\pi / 2$ ,关闭排气口,打开进气口,即回到步骤1。 参数:$\\mu=0.937500, h=284.3750 \\mathrm{~kJ} / \\mathrm{mol}, P_0=101325.0 \\mathrm{~Pa}, P_1=70000 \\mathrm{~Pa}, \\alpha=2.53125$ , $$ \\beta=2.76667, V_{+}=900.000 \\mathrm{~mL}, V_{-}=200.000 \\mathrm{~mL}, T_0=320.000 \\mathrm{~K} . $$ 本问答���均保留 6 位有效数字。 (2.1)设 $\\theta=-5 \\pi / 2$ 时工作室 AB 内有摩尔数为 $n_f$(未知),温度为 $T_f$(未知)的 $t_3: t_4$ 的 $\\mathrm{CO}_2-$ $\\mathrm{H}_2 \\mathrm{O}(g)$ 混合气体,$\\theta=-5 \\pi / 2$ 到 $\\theta=-\\pi$ 过程中共有 $n_1=0.0163735 \\mathrm{~mol}$ 混合燃气进入工作室 AB ,且 $\\theta=-\\pi$ 时工作室内气体温度 $T_1$ 。 请利用热力学第一定律求出 $n_f$ 和 $T_1$ 。设 $\\theta=-\\pi$ 时,混合气体满足 $C_{v, m}=\\gamma R$ ,求 $\\gamma$ 的表达式,用 $\\alpha, \\beta, \\mu, h, V_{+}, V_{-}, P_0, P_1, n_1, T_0$ 表示,并代入数值计算 $\\gamma$ 的值。 (2.2)请求出 $\\theta=\\pi / 2$ 点火后气体的温度 $T_2$ ,压强 $P_2$ 表达式,用 $\\alpha, \\beta, \\mu, h, V_{+}, V_{-}, P_0, P_1, n_1, T_0$ ,表示,并代入数值计算 $P_2$ 的值。 (2.3)设 $\\theta=7 \\pi / 2$ 循环结束时,工作室内气体温度仍为 $T_f$ ,求 $n_1$ 满足的方程。此时由于 $T_2, P_2, n_f$ 与 $n_1$ 关系已知,因此可直接用 $T_2, P_0, P_1, P_2, n_f, \\alpha, \\beta$ 表示。 (2.4)求工作室 AB 内气体压强 $P=P(\\theta)$ ,用 $\\alpha, \\beta, \\gamma, \\theta, V_{+}, V_{-}, P_0, P_1, P_2$ 表示。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "本题考虑小球在一类特别的曲面内壁的运动特征,即旋转曲面.对于函数 $\\rho(z)$ ,将其函数绕 $z$ 轴旋转一周,即可得到一个旋转曲面,我们称 $\\rho(z)$ 为此曲面的曲面方程.考虑质量 $m$ 的小球在这样的光滑曲面上的运动,$z$ 轴方向坚直向上,已知重力加速度 $g$ ,约定 $z \\geq 0$ ,假设小球不会离开曲面内壁. (1)曲面运动. 考虑 $\\rho(z)=z \\tan \\theta$ 给出的曲面,这里 $0<\\theta<\\pi / 2$ 是一个常量.小球在曲面内壁做圆周运动. (i)若小球位于 $z=h_0$ 处,求圆周运动速率 $v_0$ . (ii)假如某时刻小球速度突然增大到 $\\sqrt{1+\\alpha} v, \\alpha>0$ 而方向不变,求小球能到达的最大高度 $h^{\\prime}$ .假设小球不会离开锥面内壁。 (iii)当 $\\alpha$ 很小时,求小球 $z$ 方向运动的周期. (2)一般曲面. 现在考虑一般的光滑曲面方程 $\\rho(z)$ .记 $\\rho(0)=\\rho_0>0$ . (i)求曲面方程,使得所有 $z$ 处的圆周运动的速度均为 $v_0$ . (ii)求曲面方程,使得所有 $z$ 处的圆周运动的角速度均为 $\\omega_0$ . (iii)求曲面方程,使得所有 $z$ 处的圆周运动的角动量均为 $L_0$ .此曲面的高度最高为多少? (iv)考虑上问求得的这样一个曲面.对其上圆周运动的粒子给予一个过轴线的竖直平面内,且沿曲面切线(即旋转曲面的母线切线方向)的速度微扰,判断粒子轨道在微扰下的稳定性.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一个半径为R质量为M的星球,在它的表面缓慢地挖出一个宽度为d的窄沟壑,一直向下直到将星球平分为两半,如果挖出来的土被均匀地堆在了星球表面,请从工程所耗的功的角度,求出需要多大的力才能维持这条“沟壑”不坍塌?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "台球桌与台球摩擦系数\\(\\mu\\) ,台球为匀质实心弹性球,桌面边缘简化为比球心高的竖直面,碰撞前台球以\\(v_0\\) 速度垂直于边缘纯滚。 - **(1)**:桌面弹性且光滑,求台球稳定后速度大小\\(v_1\\) 。 - **(2)**:桌面弹性且有摩擦系数\\(\\mu\\) ,求台球飞起方向与\\(x\\)轴夹角。 - **(3)**:台球与桌面竖直方向碰撞恢复系数\\(e = 0\\) ,求台球稳定后速度大小\\(v_2\\) 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "为了把煤块磨成火力发电所需的煤粉,常用的机械是球磨机,其主要部分是一个圆筒,里面装有很多小钢球,圆筒转动带动钢球,使钢球被抛起,砸到圆筒底部的煤块上,把煤块砸碎从而生产出煤粉。记圆筒半径为 $R$ ,转动角速度恒定且为 $\\omega$ 。 (1)设圆筒内壁完全粗糙,问 $\\omega$ 至少为何值才能使紧贴内壁的钢球能随着圆筒转动而始终不脱离圆筒壁;将这个 $\\omega$ 值记为 $\\omega_s$ ; (2)然而,如果以 $\\omega_s$ 转动,钢球不能够被有效抛出,磨煤效果不好,要达到最理想的效果,应使得钢球被抛出后的轨道最高点到落地点的高度差取最大值,考虑到这一点,请计算最理想状态下圆筒角速度 $\\omega_g$ ; (3)用皮带传动的方法牵引球磨机圆筒转动,皮带质量线密度为 $\\rho$ ,两直边上分别有张力 $F_1$ 和 $F_2$ ,并记 $F_0=\\frac{F_1+F_2}{2}$ ,已知工作状态下 $F_0$ 是固定的常量。假定球磨机圆筒外壁足够粗糙,而主动轮外壁与皮带的静摩擦系数为 $\\mu$ ,皮带包住主动轮外壁的圆心角为 $\\theta_0$ ,为避免打滑,又要使主动轮输出的功率最大,问皮带的最佳速度 $v_0$ 是多少。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "长$l$质量为$m$的刚性杆AB水平放在半径$r$的固定半圆柱面上做无滑动摆动。在静平衡时AB杆质心在圆柱面顶点,以接触点与圆心连线和平衡位置与圆心连线的张角$\\theta$为变量,求摆动微分方程(不需要做任何近似)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "1米高的桌面上盘着一条1米长的绳索,让绳索从一端开始从桌子上掉落,拽着越来越多的绳子往下掉,忽略一切摩擦,求经过多长时间这条绳索完全掉在地上?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "一根均匀的柱子(长度2L,质量为M)横放在地上,可以绕其中点水平旋转,有两个人(各自质量为m)站在柱子两端,为了使他们能通过一次同时的斜向跳跃,让柱子旋转,由此互换两人在柱子上的位置,求问柱子和人的质量应满足什么条件。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "太阳系中均匀分布的尘埃会对行星施加一额外的引力,其表达式为\\[ \\mathbf F = -mC\\mathbf r \\],其中 \\( m \\) 为行星质量,\\( C \\) 是与引力常数和尘埃密度成正比的常数,\\( \\mathbf r \\) 为太阳指向行星的径矢(两者均视为质点)。该引力远小于太阳与行星之间的直接引力。计算行星在此复合力场中作半径为 \\( r_0 \\) 的圆周运动的周期$\\tau$(\\( \\tau_0 = 2\\pi r_0^{3/2} \\sqrt{m/k} \\) 为无微扰势时的圆周运动周期)。 \n\n\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "在一个半径为\\(R\\)的光滑的固定的碗里,有一根长度为\\(l\\)的轻质牙签,牙签两头固定有质量为\\(m\\)的光滑小球。开始的时候静止在最低点,牙签沿着\\(x\\)方向。 (1) 回复力(或力矩)、能量、动力学微分方程的判定方法是判定简谐振动常见方法,如果判定某系统回复力(或力矩)为\\(F = - kx\\);或者动、势能表达式为\\(E_{k}+E_{p}=1/2m\\dot{x}^{2}+1/2kx^{2}=\\)常量;或者算得其动力学微分方程为\\(\\ddot{x}+(k/m)x = 0\\),其中\\(m\\)为系统等效质量(或转动惯量),\\(x\\)为坐标(或角度),\\(\\dot{x}\\)为速度(或角速度),\\(\\ddot{x}\\)为加速度(或角加速度),都可以判定系统做简谐振动。其周期为______; (2) 给两个小球一个切向微扰,使得牙签保持在\\(x - z\\)平面内做小振动,则系统的振动周期\\(T_{1}\\)为______。 (3) 给两个小球一个横向微扰,两个质点都获得向\\(y\\)方向的初速度,使得牙签保持方向不变,两个质点在各自保持\\(x\\)坐标不变,在\\(y - z\\)平面内做同步的小振动,则其振动周期\\(T_{2}\\)为______。 (4) 假设\\(l\\ll R\\)(注意只有本小问中成立),初态两个小球静止在的位置,然后给右边的小球一个向\\(y\\)方向的初速度\\(v_{0}\\),同时给左边的小球一个向\\(x\\)方向的初速度\\(v_{0}\\),求解之后两个小球的坐标随时间的变化关系。请将你的结果填在下面横线上______。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Classical Mechanics", "subject_name": "Physics"} +{"question": "比较上贝氏体和下贝氏体的力学性能差异", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "冷时效和温时效在合金性能上有何差别?时效强化的原因是什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "解释奥氏体化过程涉及的几个基本概念:起始晶粒度,实际晶粒度,本质晶粒度,晶粒粗化温度,A1温度,AC1温度,Ar1温度", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "试根据Johnson-Mehl方程求出在等温奥氏体化过程中,转变速率最大时对应的转变量。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "非共析钢中先共析相的析出条件及其形态有哪些?\n2. 如何形成伪共析组织?\n3. 当形成魏氏组织后,对性能有何影响?一旦形成如何清除?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "试述合金固溶之后的时效过程中,过饱和固溶体的脱溶特征。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "请详细说明珠光体向奥氏体转变过程中为什么总是铁素体先消失?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "如何提高合金的蠕变强度?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Metallic Materials", "subject_name": "Materials Science"} +{"question": "如果增大周围氧气的分压,非化学计量化合物 $\\mathrm{Zn} 1+\\mathrm{xO}$ 的密度将发生怎样变化?为什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fundamentals of Materials Science", "subject_name": "Materials Science"} +{"question": "分析堇青石有显著的离子电导,较小的热膨胀系数的原因。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fundamentals of Materials Science", "subject_name": "Materials Science"} +{"question": "晶界有几个自由度?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fundamentals of Materials Science", "subject_name": "Materials Science"} +{"question": "如果增大周围氧气的分压,非化学计量化合物 $\\mathrm{Fe} 1-\\mathrm{xO}$ 的密度将发生怎样变化?为什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fundamentals of Materials Science", "subject_name": "Materials Science"} +{"question": "空气以650m/s的超声速扰流半角$\\delta=18^{circ}$度的楔形物体,激波角为51度,求激波后的流速以及激波的熵增", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fluid Mechanics", "subject_name": "Physics"} +{"question": "有一个半圆柱形的水平水槽,其两端不封死,若有一个无粘性水流(与水槽在同一竖直平面内)在不停地流入水槽,水流与地面呈$\\frac{1}{2}\\pi-\\alpha$,求问水槽两端流出水量的比例。水密度为$\\rho$,入射水流终端横截面为$A$,速度为$v$,左右两端水流横截面积分别为$A_1,A_2$,速度为$v_1,v_2$,忽略过程中的高度变化。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fluid Mechanics", "subject_name": "Physics"} +{"question": "一颗鹅卵石被投入深度为$2\\,\\text{m}$的矩形河道水流中。在$1\\,\\text{s}$内,石头引起的涟漪被带到了下游$7\\,\\text{m}$米处。计算水流的流速$v$。\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fluid Mechanics", "subject_name": "Physics"} +{"question": "流量为 \\(Q=1.5 \\, \\text{m}^3/\\text{s}\\),上游压力为 \\(p_1=3.5 \\, \\text{MPa}\\),计算将塞子保持在输水管出口处所需的力$F$(塞子直径$D_1=0.2\\,\\text{m}$,管道直径$D_2=0.25\\,\\text{m}$,水的密度为$\\rho=1000\\,\\text{kg}/\\text{m}^3$)。\n\n \n\n\n\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Fluid Mechanics", "subject_name": "Physics"} +{"question": "背景:在先天免疫系统中,RIG-I样受体(RLR)家族蛋⽩识别胞质中的病毒RNA,触发下游的线粒体抗病毒信号蛋⽩(MAVS)。MAVS作为信号适配器,招募多个蛋⽩质形成 MAVS信号体,激活转录因⼦IRF3和NF-κB,诱导Ⅰ型和Ⅲ型⼲扰素(IFNS)以及其他抗病毒基因的表达。\n1. MAVS的什么是RNA结合的核⼼区域?\n2. 在先天免疫中关键适配蛋MAVS(mitochondrialantiviral signaling protein)与细胞RNA\n的互作机制中,MAVS 通过⾃⾝中部⽆序结构域与细胞 mRNA 的什么直接结合,从⽽调控\n RIG-I-like receptors(RLRS)下游的抗病毒信号转导?\n3. RNA酶(RNase)处理会破坏什么的稳定性,降低IRF3和NF-κB p65等转录因⼦的什么,表明细胞RNA对MAVS信号⼩体的激活与形成⾄关重要?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Immunology", "subject_name": "Biology"} +{"question": "多年生大豆与一年生大豆在栽培上有何区别。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physiology and Integrative Biology", "subject_name": "Biology"} +{"question": "根据光合作用划分,可以将植物区分为C3,C4和CAM三种光合途径的植物,那由于C4和CAM光和途径的光合作用率高,人们试图改造C3植物成为C4或者CAM途径,你觉得如何开展这项��作?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Physiology and Integrative Biology", "subject_name": "Biology"} +{"question": "**Integrate-and-Fire** 神经元的电压变化满足以下方程:\n\n\\[\n\\tau_m \\frac{dV}{dt} = E_l - V + R_m I_e\n\\]\n\n要构成一个完整的 **Integrate-and-Fire** 模型还需要添加什么? \n当施加一个恒定电流 \\(I_e\\) 足以引发动作电位时,推导出放电间隔(*interspike interval*)的表达式。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Neuroscience and Psychology", "subject_name": "Biology"} +{"question": "Which of the following statements about presynaptic inhibition are correct? (Select any that apply)\n\nA. It causes partial depolarization of the presynaptic membrane\nB. It reduces the amplitude of action potentials in the presynaptic membrane\nC. It decreases neurotransmitter release via the presynaptic membrane\nD. It reduces the amplitude of excitatory postsynaptic potentials (EPSPs) in the postsynaptic membrane\nE. It increases the amplitude of inhibitory postsynaptic potentials (IPSPs) in the postsynaptic membrane", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Neuroscience and Psychology", "subject_name": "Biology"} +{"question": "尽管虎鲸(Orcinus orca)是广泛分布的顶级掠食者,但其捕食抹香鲸(Physeter macrocephalus)的记录极为罕见。这种行为最早由多个独立观测事件证实,例如在北大西洋和西澳近海海域,部分虎鲸群体表现出高度协作的围猎策略,甚至针对母鲸-幼鲸群体进行攻击。与捕食海狮、企鹅、鱼类或小型鲸类相比,抹香鲸具有巨大的体型、强壮的尾击防御能力与社会协作的“圆阵防御”行为。因此,虎鲸成功猎杀抹香鲸的事件通常意味着其具备什么、什么和什么的多重特征支持。这一罕见的行为或可被视作某些虎鲸族群对猎物多样化的响应策略,其演化意义可能包括:对大型猎物利用能力的提升,增强了虎鲸种群对什么变化的适应性;捕食行为的文化继承,可能导致族群间行为分化,并加速什么。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Ecology", "subject_name": "Biology"} +{"question": "白鼻综合征(WNS)由真菌Pseudogymnoascus destructans(Pd)引起,对北美蝙蝠种群造成严重威胁。研究表明,冬眠期间的活动频率可能影响蝙蝠对该病的易感性。本研究在美国东南部,设置了4类共13个冬眠场所,对三色蝙蝠的夜间活动进行了监测,变量包括冬眠场所类型(地上或地下)、Pd状态(阳性或阴性)、什么、什么和冬眠阶段。结果显示,Pd状态与冬眠场所类型并非独立预测因子,但在与其他环境变量交互时,显著影响了蝙蝠的活动模式。尤其在什么的场所中,蝙蝠夜间活动频率随气温升高和冬眠进程推进而上升更快,表明其可能通过增加活动频率来降低感染WNS的风险。然而,这些场所也可能带来如什么等适应代价?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Ecology", "subject_name": "Biology"} +{"question": "寄生螨虫具有极强的适应性和复杂性。狄斯瓦螨(Varroa destructor)原本寄生于中华蜜蜂(Apis cerana),后传播至被广泛用于商业授粉和蜂蜜生产的西方蜜蜂(Apis mellifera)后,严重危害蜜蜂健康状况,导致蜜蜂数量锐减。借助全球蜜蜂贸易,狄斯瓦螨(Varroa destructor)迅速扩散,不仅动摇了养蜂行业,还削弱了传粉生态服务功能,给生物多样性保护带来了严峻挑战。\n1. 研究表明,狄斯瓦螨(Varroa destructor)在20世纪初期发生了宿主跳跃(host jump),并且可以通过外寄生的方式,通过什么穿透蜜蜂坚硬的什么,将病原体直接注入寄主。传统观点认为狄斯瓦螨仅以什么为食,新的研究证明了其需要以什么为食才能产卵,这将导致蜜蜂免疫力降低、病原体流行率显著提高。\n2. 狄斯瓦螨(Varroa destructor)的生命周期分为两个不同的阶段:什么,发生在蜜蜂幼虫巢室内,由雌螨抚养幼螨;什么,通常错误地称为什么,成熟的雌螨移动并以成年蜜蜂为食。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Ecology", "subject_name": "Biology"} +{"question": "有一多肽,其分子量约为 1200 。将其多肽进行如下分析:\n(1)进行氨基酸成分分析可知含有等摩尔的 Leu、Orn、Phe、Pro 和 Val;\n(2)羧肽酶处理时,无游离氨基酸;\n(3)经 DNFB 处理得到 DNP-d-Orn;\n(4)该肽不被胰凝乳蛋白酶水解;\n(5)该肽部分水解得到下列三种二肽,即 Leu-Phe,Pro-Val,Val-Orn。根据以上的实验结果推导出该肽的氨基酸顺序。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "一个多肽可还原为两个肽段,它们的序列如下:链 1 为 Ala-Cys-Phe-Pro-Lys-Arg- Trp-Cys-Arg-Arg-Val-Cys;链 2 为 Cys-Tyr-Cys-Phe-Cys。当用嗜热菌蛋白酶消化原多肽(具有完整的二硫键)时可得下列各肽:\n(1)(Ala、 $\\mathrm{Cys}_2 、 \\mathrm{Val}$ );\n(2)(Arg、 Lys、Phe、Pro);\n(3)$\\left(\\mathrm{Arg}_2 、 \\mathrm{Cys}_2 、 \\mathrm{Trp} 、 \\mathrm{Tyr}\\right)$ ;\n(4)(Cys2、Phe)。试指出在该天然多肽中二硫键的位置。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "甘氨酸在溶剂 A 中的溶解度为在溶剂 B 中的 4 倍,苯丙氨酸在溶剂 A 中的溶解度仅为在溶剂 B 中的两倍。利用在溶剂 A 和 B 之间的逆流分溶方法将甘氨酸和苯丙氨酸分开。在起始溶液中甘氨酸含量为 100 mg ,苯丙氨酸为 81 mg 。\n试回答下列问题:(1)利用由 4 个分溶管组成的逆流分溶系统时,甘氨酸和苯丙氨酸各在哪一号分溶管中含量最高?(2)在这样的管中每种氨基酸各为多少毫克?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "一种蛋白质是由相同亚基组成的四聚体。\n(1)对该分子说出两种可能的对称性。稳定缔合的是哪种类型的相互作用(同种或异种)?(2)假设四聚体,如血红蛋白,是由两个相同的单位(每个单位含 $\\alpha$ 和 $\\beta$ 两种链)组成的。问它的最高对称性是什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "设有一个 $\\mathrm{pH}=6.0$ 的 Ala,Val,Glu,Lys 和 Thr 的混合液,试回答在正极 (+)、负极(—)、原点以及末分开的是什么氨基酸?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "一个十肽的氨基酸分析表明其水解液中存在下列产物:\n\\begin{tabular}{lcccc}\n$\\mathrm{NH}_4{ }^{+}$ & Asp & Glu & Tyr & Arg \\\\\nMet & Pro & Lys & Ser & Phe\n\\end{tabular}\n并观察下列事实:(1)用羧肽酶 A 和 B 处理该十肽无效;(2)胰蛋白酶处理产生两个四肽和游离的 Lys;(3)梭菌蛋白酶处理产生一个四肽和一个六肽;(4)溴化氰处理产生一个八肽和一个二肽,用单字母符号表示其序列为 NP;(5)胰凝乳蛋白酶处理产生两个三肽和一个四肽, N -末端的胰凝乳蛋白酶水解肽段在中性 pH 时携带 -1净电荷,在 pH 12 时携带 -3 净电荷;(6)一轮 Edman 降解给出 PTH-丝氨酸:写出该十肽的氨基酸序列。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "假设某蛋白质经历一个两步折叠的过程:初始结构→中间体→最终结构。已知: (a)该蛋白质的构象空间共有 $2^{100}$ 种;(b)蛋白质折叠过程中共有 $2^{60}$ 种不同的中间体;(c)其中每一种中间体都对应了 $2^{40}$ 种构象。(1) 假设蛋白质折叠过程中的每一步都是遍历这一步中所有可能的构象,并找到能量最低的,且从一个构象转变到另一个构象所需的特征时间为 ${10}^{-10}$秒 ,请估算蛋白质从初始结构开始经历上述步骤折叠到最终结构所需的总时间;(2)分别估算:第一步、第二步中,能量分别至少需要降低多少才能保证蛋白质链不会可逆的返回到前一步的结构", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "在酶活力测定中,如何保证测定的是酶反应初速度?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量 $=209.6$ ;咪唑基 $\\mathrm{pK}_{\\mathrm{a}}=6.0$ )和 $1 \\mathrm{~mol} / \\mathrm{LKOH}$ 配制 1 L pH 6.5 的 $0.2 \\mathrm{~mol} / \\mathrm{L}$ 组氨酸盐缓冲液的方法。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Biophysics and Biochemistry", "subject_name": "Biology"} +{"question": "近年来,乳腺癌的发生机制逐渐显示出不仅仅依赖于上皮细胞内部的遗传突变,更与组织微环境中其他细胞的相互作用密切相关。特别是 BRCA1突变携带者的乳腺组织中,除了上皮细胞明显的增殖和分化异常外,前癌性基质细胞也展示出与正常情况不同的转录组重塑现象。研究利用单细胞RNA测序、原位检测以及体内外功能实验,系统比较了 BRCA1+/mut 与非携带者乳腺样本中上皮及基质细胞的状态和相互间的信号传递。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Cell Biology", "subject_name": "Biology"} +{"question": "在肝癌中,印记基因H19(母源表达)和IGF2(父源表达)常发生“印记丢失”(LOI),导致IGF2双等位基因表达。已知H19的抑制与DNA甲基化转移酶(DNMT1)异常相关。如何证明肝癌细胞中H19的沉默是由于其启动子区超甲基化,而非转录因子缺失?若发现H19启动子区存在“部分甲基化”(即部分细胞完全甲基化,部分未甲基化),请设计实验区分这是克隆性变异还是随机表观遗传噪声。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Cell Biology", "subject_name": "Biology"} +{"question": "Albert writes 2025 numbers $a_1, \\ldots, a_{2025}$ in a circle on a blackboard. Initially, each of the numbers is uniformly and independently sampled at random from the interval $[0,1]$. Then, each second, he simultaneously replaces $a_i$ with $\\max \\left(a_{i-1}, a_i, a_{i+1}\\right)$ for all $i=1,2, \\ldots, 2025$ (where $a_0=a_{2025}$ and $\\left.a_{2026}=a_1\\right)$. Compute the expected value of the number of distinct values remaining after 100 seconds.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Statistics and Operations Research", "subject_name": "Math"} +{"question": "我们把与这种身带新型冠状病毒(称之为患者)有过密切接触的人群称为密切关联者.已知每位密切关联者通过核酸检测被确诊为阳性后的概率为 $p(0 1\n$$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "已知抛物线 $C: x^2=2 p y(p>0)$ 上任意一点 $R$ 满足 $|R F|$ 的最小值为 1 ( $F$ 为焦点). (1)求 $C$ 的方程; (2)过点,$P(t,-1)$ 的直线经过 $F$ 点且与物线交于 $M, ~ N$ 两点,求证:$\\frac{2}{|P F|}=\\frac{1}{|P M|}+\\frac{1}{|P N|}$ ; (3)过 $F$ 作一条倾斜角为 $60^{\\circ}$ 的直线交抛物线于 $A, ~ B$ 两点,过 $A, ~ B$ 分别作抛物线的切线.两条切线交于 $Q$ 点,过 $Q$ 任意作一条直线交抛物线于 $E, ~ H$ ,交直线 $A B$ 于点 $G$ ,则 $|Q G|,|Q E|, ~|Q H|$满足什么关系?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Let $\\triangle A B C$ be an equilateral triangle with side length 6 . Let $P$ be a point inside triangle $\\triangle A B C$ such that $\\angle B P C=120^{\\circ}$. The circle with diameter $\\overline{A P}$ meets the circumcircle of $\\triangle A B C$ again at $X \\neq A$. Given that $A X=5$, compute $X P$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "平面坐标系中,某可写作标准方程的圆锥曲线与曲线$2^x+y^2=\\textcolor{BLUE}{1217}$在第一象限($x,y>0$)存在若干个交点,且交点的横纵坐标均为整数。 令圆为离心率为$0$的圆锥曲线,求这个圆锥曲线的离心率的存在范围。 {\\footnotesize 注:可写作标准方程的圆锥曲线性质如下:它的焦点都在坐标轴上,中心(抛物线则顶点)位于原点。}", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "设 $p$ 是一个大于 2023 的素数。记 $\\mathcal{X}$ 为 $\\mathbb{F}_p$ 线性空间 $\\mathbb{F}_p^{2023}$ 的所有 2000 维子空间组成的集合。找出满足对任意 $V \\in \\mathcal{X}$, $$\\sum_{W \\in \\mathcal{Y}} (V \\cap W) = V$$ 成立的 $\\mathcal{X}$ 的子集 $\\mathcal{Y}$ 的最小可能元素个数", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "将正整数 $1,2, \\cdots, 100$ 填入 $10 \\times 10$ 方格表中,每个小方格恰好填 1 个数,要求每行从左到右 10 个数依次递减,记第 $i$ 行的 10 个数之和为 $S_i(i=1,2, \\cdots, 10)$ .设 $n \\in\\{1,2, \\cdots, 10\\}$ 满足:存在一种填法,使得 $S_1, S_2, \\cdots, S_{10}$ 均大于第 $n$ 列上的 10 个数之和,求 $n$ 的最小值.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "将自然数1,2...1024分入三个递增子列X,Y,Z(可以有空的),满足(1)每个子列的相邻两项奇偶性不同,(2)若XYZ均非空,则恰有其中一个的最小元是偶数,求满足条件的分案总数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Two points are selected independently and uniformly at random inside a regular hexagon. Compute the probability that a line passing through both of the points intersects a pair of opposite edges of the hexagon.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Let $n$ be a positive integer, let $v_0$ be the zero vector in $\\{0, 1\\}^n$, and choose $v_1 \\in \\{0, 1\\}^n$. Define vectors $v_k \\in \\{0, 1\\}^n$ as follows. For $k \\geq 2$, work modulo 2 and let $v_k = v_{k-1} + v_{k-1}^* + v_{k-2}^*$, where $(x_1, \\ldots, x_n)^* = (x_2, \\ldots, x_n, x_1)$. Write $\\Sigma v$ for the sum of the entries of vector $v$. Find the maimum of $\\sum_{k=1}^{2n} \\Sigma v_k $ and for which choices of $v_1$ has the maximum been reached?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "系列问题1:考虑曲面积分 $$\\int_{\\Sigma} \\frac{x \\mathrm{~d} y \\mathrm{~d} z+y \\mathrm{~d} z \\mathrm{~d} x+z \\mathrm{~d} x \\mathrm{~d} y}{\\sqrt{\\left(x^{2}+y^{2}+z^{2}\\right)^{3}}}=\\int_{\\Sigma} \\frac{x \\hat{\\mathbf{i}}+y \\hat{\\mathbf{j}}+z \\hat{\\mathbf{k}}}{\\sqrt{\\left(x^{2}+y^{2}+z^{2}\\right)^{3}}} \\cdot \\mathbf{n} \\mathrm{d} \\sigma$$ 此处 $\\Sigma$ 为曲面 $$ 1-\\frac{z}{7}=\\frac{(x-2)^{2}}{25}+\\frac{(y-1)^{2}}{16} \\quad(z \\geqslant 0)$$ 利用 Gauss-Ostrogradskii 公式,计算上述曲面积分", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "A square of side length 1 is dissected into two congruent pentagons. Compute the least upper bound of the perimeter of one of these pentagons.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "设 $a_1, a_2, \\cdots, a_n$ 为 $n$ 个两两不同的正整数且 $a_1 a_2 \\cdots a_n$ 恰有 4048 个质因数.如果 $a_1, a_2, \\cdots, a_n$ 中任意多个数相乘均不是一个整数的 4049 次方,求 $n$ 的最大值.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "evaluate $$\\sum_{j=0}^{2020} \\sum_{k=\\lfloor j/2 \\rfloor}^j \\binom{2022}{2k+1} \\binom{1011}{2k-j}.$$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Compute the number of ways to arrange the numbers $1,2,3,4,5,6$, and 7 around a circle such that the product of every pair of adjacent numbers on the circle is at most 20. (Rotations and reflections count as different arrangements.)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "设双曲线 $C: \\frac{x^2}{2}-y^2=1$ ,直线 $l: y=x+m$ 与 $C$ 交于 $A, B$ 两点. (1)求 $m$ 的取值范围; (2)已知 $C$ 上存在异于 $A, B$ 的 $P, Q$ 两点,使得 $\\overrightarrow{P A} \\cdot \\overrightarrow{P B}=\\overrightarrow{Q A} \\cdot \\overrightarrow{Q B}=t$ . (i)当 $t=4$ 时,求 $P, Q$ 到点 $(-2 m,-m)$ 的距离(用含 $m$ 的代数式表示); (ii)当 $t=2$ 时,记原点到直线 $P Q$ 的距离为 $d$ ,若直线 $P Q$ 经过点 $(-m, m)$ ,求 $d$ 的取值范围.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "有一只生活在n维超立方体上的蚂蚁,每天都想着锻炼身体,它也特别有好奇心,它每天都要确定一条与之前爬行路线不同的新路线,可是它的体力有限,每天最多能爬行n条边,因此每条路线既要在它体力承受范围内,也要保证它能顺利返回家,请问在它的这种锻炼方式下,它最多能锻炼多少天?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "数列\\(\\{ a_{n}\\}_{n\\in\\mathbf{N}}\\)满足\\(a_{0}=\\alpha\\),\\(a_{1}=\\beta\\),\\(a_{2}=\\gamma\\),且\\(\\forall n\\geq3\\),\\(a_{n - 3}\\),\\(a_{n - 1}a_{n - 2}\\),\\(a_{n}\\)构成等差数列。若\\((\\alpha,\\beta,\\gamma)=(1,2,2)\\),求\\(\\{ a_{n}\\}\\)的通项公式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "已知集合 $M_n=\\left\\{x \\in \\mathrm{~N}^* \\mid x \\leq 2 n\\right\\}(n \\in \\mathbf{N}, n \\geq 4)$ ,若存在数阵 $T=\\left[\\begin{array}{llll}a_1 & a_2 & \\cdots & a_n \\\\ b_1 & b_2 & \\cdots & b_n\\end{array}\\right]$ 满足:①$\\left\\{a_1, a_2, \\cdots, a_n\\right\\} \\cup\\left\\{b_1, b_2, \\cdots, b_n\\right\\}=M_n$ ; ②$a_k-b_k=k(k=1,2, \\cdots, n)$ . 则称集合 $M_n$ 为"好集合",并称数阵 $T$ 为 $M_n$ 的一个"好数阵". \n\n(1)已知数阵 $T=\\left[\\begin{array}{llll}x & y & z & 6 \\\\ 7 & w & 1 & 2\\end{array}\\right]$ 是 $M_4$ 的一个"好数阵",试写出 $x, y, z, w$ 的值; \n\n(2)若集合 $M_n$ 为"好集合",求集合 $M_n$ 的"好数阵"必有奇数个还是偶数个 \n(3)判断 $M_n(n=5,6)$ 是否为"好集合"", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "设三元函数 $f(x, y, z)$ 连续,且 $\\int_0^1 \\mathrm{~d} x \\int_0^{\\sqrt{1-x^2}} \\mathrm{~d} y \\int_{\\frac{1}{4}\\left(x^2+y^2\\right)}^{\\frac{1}{4}} f(x, y, z) \\mathrm{d} z=\\iiint_{\\Omega} f(x, y, z) \\mathrm{d} V$ .在积分区域 $\\Omega$ 的边界曲面 $S$ 上求一点 $P\\left(x_0, y_0, z_0\\right)$ ,使 $S$ 在点 $P$ 处的切平面 $\\pi$ 经过点 $Q_1(1,-1,-1)$ 和 $Q_2(3,0,2)$ .", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Compute the number of ways to arrange 3 copies of each of the 26 lowercase letters of the English alphabet such that for any two distinct letters $x_1$ and $x_2$, the number of $x_2$ 's between the first and second occurrences of $x_1$ equals the number of $x_2$ 's between the second and third occurrences of $x_1$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "考虑\\hat{sp}(4)_3的permutation invariant, 其含有affine extension并且具有第二低的quantum dimension的有限的权的集合为 \\{\\omega_1,3\\omega_1,\\omega_1+2\\omega_2,\\omega_2,2\\omega_2\\}, 请找出这个集合中唯一存在的两种保证modular T变换下不变的permutation形式。请给出详细的推导过程和具体结论。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "已知椭圆 \\frac{x^2}{4} +\\frac{y^2}{3} = \\lambda, F是其左焦点,A,B是椭圆上的两个点并且 FA=5,FB=8,求直线AB的斜率k的取值范围。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "A plane $\\mathcal{P}$ intersects a rectangular prism at a hexagon which has side lengths $45,66,63,55,54$, and 77, in that order. Compute the distance from the center of the rectangular prism to $\\mathcal{P}$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Right triangle $\\triangle D E F$ with $\\angle D=90^{\\circ}$ and $\\angle F=30^{\\circ}$ is inscribed in equilateral triangle $\\triangle A B C$ such that $D, E$, and $F$ lie on segments $\\overline{B C}, \\overline{C A}$, and $\\overline{A B}$, respectively. Given that $B D=7$ and $D C=4$, compute $D E$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Given that $x, y$, and $z$ are positive real numbers such that $$ x^{\\log _2(y z)}=2^8 \\cdot 3^4, \\quad y^{\\log _2(z x)}=2^9 \\cdot 3^6, \\quad \\text { and } \\quad z^{\\log _2(x y)}=2^5 \\cdot 3^{10}, $$ compute the smallest possible value of $x y z$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Sophie is at $(0,0)$ on a coordinate grid and would like to get to $(3,3)$. If Sophie is at $(x, y)$, in a single step she can move to one of $(x+1, y),(x, y+1),(x-1, y+1)$, or $(x+1, y-1)$. She cannot revisit any points along her path, and neither her $x$-coordinate nor her $y$-coordinate can ever be less than 0 or greater than 3. Compute the number of ways for Sophie to reach $(3,3)$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "求二次型\n\t\\[f(x_1, x_2, \\dots, x_n) = \\sum_{i=1}^{n} \\sum_{j=1}^{n} |i - j| \\, x_i x_j \\] 的标准型.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "A parallelogram $P$ can be folded over a straight line so that the resulting shape is a regular pentagon with side length 1 . Compute the perimeter of $P$.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Compute the number of ways to pick two rectangles in a $5 \\times 5$ grid of squares such that the edges of the rectangles lie on the lines of the grid and the rectangles do not overlap at their interiors, edges, or vertices. The order in which the rectangles are chosen does not matter.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "Let $q$ be an odd prime, and let $F_q$ be the field with $q$ elements. Define permutations $\\rho$, $\\sigma$, and $\\tau$ of $F_q$ by \\[ \\rho(x) = x + 1, \\quad \\sigma(x) = x^{q-2}, \\] and \\[ \\tau(x) = -x^{q-2}. \\] (a) Compute the group generated by permutations $\\rho$ and $\\sigma$. (b) Compute the group generated by permutations $\\rho$ and $\\tau$ .", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "设$F=\\mathbb{Q}$,$E=\\mathbb{Q}(\\sqrt[5]{4},\\xi_5)$���求Galois群$G=\\text{Gal}(E/F)$,以及$G$的所有子群和$F$与$E$之间的对应子域。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Algebra and Geometry", "subject_name": "Math"} +{"question": "求解方程\n $$\n \\frac{\\mathrm{d} x}{\\mathrm{d} t}(t^2+x^2+3)=2t\\left(2x-\\frac{t^2}{x}\\right)\n $$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Differential Equations and Dynamical Systems", "subject_name": "Math"} +{"question": "若$a,b,c \\in \\mathbb{R}$, 平面自治系统 $dx/dt=ax+by+x^3y, dy/dt=cx+y^2$具有连续的首次积分$f(x,y)=C$,且其一次近似系统的系数矩阵行列式不等于$0$,计算该系统奇点$(0,0)$所有可能的类型.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Differential Equations and Dynamical Systems", "subject_name": "Math"} +{"question": "试用二维双层位势求解边值问题\n\n$$\n\\left\\{\\begin{array}{l}\n\\Delta_2 u=0, r B; A --> C; B --> C; C --> D; ``` $P(A)$ | $+a$ | $0.5$ | | $-a$ | $0.5$ | $P(B|A)$ | $+a$ | $+b$ | $0.5$ | | $+a$ | $-b$ | $0.5$ | | $-a$ | $+b$ | $0.2$ | | $-a$ | $-b$ | $0.8$ | $P(C|A,B)$ | $+a$ | $+b$ | $+c$ | $0.8$ | | $+a$ | $+b$ | $-c$ | $0.2$ | | $+a$ | $-b$ | $+c$ | $0.6$ | | $+a$ | $-b$ | $-c$ | $0.4$ | | $-a$ | $+b$ | $+c$ | $0.2$ | | $-a$ | $+b$ | $-c$ | $0.8$ | | $-a$ | $-b$ | $+c$ | $0.1$ | | $-a$ | $-b$ | $-c$ | $0.9$ | $P(D|C)$ | $+c$ | $+d$ | $0.4$ | | $+c$ | $-d$ | $0.6$ | | $-c$ | $+d$ | $0.2$ | | $-c$ | $-d$ | $0.8$ | Instead of sampling, we now wish to use variable elimination to calculate $P(+a | +d)$. We start with the factorized representation of the joint probability:", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "(0,0,5)(0,1,BLANK)(0,2,S)(0,3,BLANK)(0,4,BLANK)(0,5,10)\n (1,3,0)(1,4,0)\n\nConsider the above gridworld. An agent is currently on grid cell S, and would like to collect the rewards that lie on both sides of it. If the agent is on a numbered square, its only available action is to Exit, and when it exits it gets reward equal to the number on the square. On any other (non-numbered) square, its available actions are to move East and West. Note that North and South are never available actions.\n\nIf the agent is in a square with an adjacent square downward, it does not always move successfully: when the agent is in one of these squares and takes a move action, it will only succeed with probability p. With probability 1 - p, the move action will fail and the agent will instead move downwards. If the agent is not in a square with an adjacent space below, it will always move successfully.\n\nFor what range of values of $p$ in terms of $\\gamma$ is $\\pi_{East}$ the optimal policy?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "You are trying to plan a road trip from city A to city B. You are given an undirected graph of roads of the entire country, together with the distance along each road between any city X and any city Y: length(X,Y) (For the rest of this question, \"shortest path\" is always in terms of length, not number of edges). You would like to run a search algorithm to find the shortest way to get from A to B (assume no ties). Suppose C is the capital, and thus you know the shortest paths from city C to every other city, and you would like to be able to use this information. Let pathopt(X→Y) denote the shortest path from X to Y and let cost(X,Y) denote the cost of the shortest path between cities X and Y. Let [path(X→Y),path(Y→Z)] denote the concatenation. Suppose the distance along any edge is 1. You decide to initialize the queue with A, plus a list of all cities X, with path(A→X)=[pathopt(A→C),pathopt(C→X)]. You run BFS with this initial queue (sorted in order of path length). Which of the following is correct? (Select all that apply) A You always expand the exact same nodes as you would have if you ran standard BFS. B You might expand a different set of nodes, but still find the shortest path. C You might expand a different set of nodes, and find the sub - optimal path.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "We define the value of public information $V_{A}^{\\text{Pub}}(X)$ of a random variable $X$ to a player A as the difference in player A's expected utility after the outcome of $X$ becomes a public information, such that everyone has access to the outcome of $X$ and is aware that all other players also have access to $X$. Let $a = V_{Alice}^{\\text{Pub}}(E)$ be the value of public information of $E$ to Alice. Suppose David will publicly announce the outcome of $E$ if anyone (either Alice or Bob) pays him $b$ dollars ($b>0$), and will make no announcement otherwise. Which of the following statements are True? A The value of public information of $E$ to Bob is $V_{Bob}^{\\text{Pub}}(E)=-a$. B If $b < a$, then Alice should pay David $b$ dollars. C If $b>a$, then Bob should pay David $b$ dollars. D If $b < -a$, then Bob should pay David $b$ dollars. E If $b > -a$, then Alice should pay David $b$ dollars. F There exists some value $b>0$ such that both Alice and Bob should pay David $b$ dollars. G There exists some value $b > 0$ such that neither Alice nor Bob should pay David $b$ dollars.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "Soft-Margin Linear SVM. Given the following dataset in 1-d space (Figure 1), which consists of 4 positive data points {0,1,2,3} and 3 negative data points {−3,−2,−1}. Suppose that we want to learn a soft-margin linear SVM for this data set. Remember that the soft-margin linear SVM can be formalized as the following constrained quadratic optimization problem. In this formulation, C is the regularization parameter, which balances the size of margin (i.e., smaller $w^tw$) vs. the violation of the margin (i.e., smaller $\\sum_{i=1}^{m}\\epsilon_i$).\n\n$$\\begin{align*}\n &\\underset{\\{w,b\\}}{\\text{argmin}}\\ \\frac{1}{2}w^tw+C\\sum_{i=1}^{m}\\epsilon_i\\\\\n &\\text{Subject to } : y_i(w^tx_i+b)\\geq1-\\epsilon_i\\\\\n &\\epsilon_i\\geq0\\ \\forall i\n\\end{align*}$$\n\nFigure 1: Dataset (1D Visualization)\n---[−]---[−]---[−]---[+]---[+]---[+]---[+]---> \n -3 -2 -1 0 1 2 3 \n\nKey:\n[−] = Negative data points\n[+] = Positive data points\n\nif C=0, which means that we only care the size of the margin, how manysupport vectors do we have?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "Consider running a single iteration of AdaBoost on three sample points, starting with uniform weights on the sample points. All the ground - truth labels and predictions are either +1 or -1. In the table below, some values have been omitted. What is $X_1$'s updated weight? | True Label | Classifier Prediction | Initial Weight | Updated Weight | | ---- | ---- | ---- | ---- | | $X_1$ | -1 | -1 | ? | | $X_2$ | ? | +1 | $\\frac{1}{3}$ | $\\frac{\\sqrt{2}}{3}$ | | $X_3$ | ? | ? | $\\frac{1}{3}$ | $\\frac{\\sqrt{2}}{6}$ |", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "Decipher the following cipher text:\n\nYaef, ylw foz tb emse mvq wuwqi ohfwiao hpslg af Rcwshx ozd Nujvavo awra rsjx htaa bt efr cze rtxi – jxgfs nb Mmyaumtr Kjqwmsdy nvi snxf tif owenx hte sqwwl zfmsf qx edksmdl owsobbs. Svvhi zbg penbm, xzxfq cnv gi wosz lrax xzhishg wk vwoweiao tv kndblrujrlbbs tum Refbtqsgw. Gyl B qanfqiij bh mly bmi ehfq nrkjwktfk atinr lh gfagm ylw ycxlbenry xlbrraxpq: Mvq bnang lacggub wyfgwzg gpwsmzv fhr Ufraysetb – bmel xqanbung hkcpupbnsf, tbp tum xxjnqfuem tj khquegg tj wosdy uqxxgkwoay musua bqcraxejbzk aeqxmfz hteemkvgf\n\nTips:\n- The cipher text is encoded using a Vigenère cipher.\n- Key: manifesto\n- Key mode: repeating\n\nPlease maintain case and punctuation and output the deciphered text in a \\boxed{}.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "假设进行伯努利实验,后验概率为 $P(\\theta \\mid y)$ ,其中变量 $y \\in\\{0,1\\}$ 表示实验可能的结果,变量 $\\theta$ 表示结果为 1 的概率。再假设先验概率 $P(\\theta)$ 遵循 Beta 分布 $B(\\alpha, \\beta)$ ,其中 $\\alpha=1, \\beta=1$ ;似然函数 $P(y \\mid \\theta)$ 遵循二项分布 $\\operatorname{Bin}(n, k, \\theta)$ ,其中 $n=10, k=4$ ,即实验进行 10 次其中结果为 1 的次数为 4。试用 Metropolis-Hastings算法求后验概率分布 $P(\\theta \\mid y) \\propto P(\\theta) P(y \\mid \\theta)$ 的均值和方差。(提示:可采用 Metropolis 选择,即假设建议分布是对称的。)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "(0,0,5)(0,1,BLANK)(0,2,S)(0,3,BLANK)(0,4,BLANK)(0,5,10)\n (1,3,0)(1,4,0)\n\nConsider the above gridworld. An agent is currently on grid cell S, and would like to collect the rewards that lie on both sides of it. If the agent is on a numbered square, its only available action is to Exit, and when it exits it gets reward equal to the number on the square. On any other (non-numbered) square, its available actions are to move East and West. Note that North and South are never available actions.\n\nIf the agent is in a square with an adjacent square downward, it does not always move successfully: when the agent is in one of these squares and takes a move action, it will only succeed with probability p. With probability 1 - p, the move action will fail and the agent will instead move downwards. If the agent is not in a square with an adjacent space below, it will always move successfully.\n\nFor what range of values of $p$ in terms of $\\gamma$ is it optimal for the agent to go West (left) from the start state ($S$)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "You’ve landed a great job with Green Giant Consulting (GGC), managing an analytical team that is building its data science skill set. GGC is proposing a data science project to TelCo, the nation’s second-largest provider of wireless communication services, to help address their customer churn problem. Your team has prepared the following proposal, and you are reviewing it before presenting it to TelCo. Churn Reduction via Targeted Incentives — A GGC Proposal We propose that TelCo test its ability to control its customer churn via an analysis of churn prediction. The key idea is that TelCo can use data on customer behavior to predict when customers will leave, and then target these customers with special incentives to remain with TelCo. We propose the following modeling problem, which can be carried out using data already in TelCo’s possession. We will model the probability that a customer will (or will not) leave within 90 days of contract expiration, with the understanding that there is a separate problem of retaining customers who are continuing their service month-to-month, long after contract expiration. We believe that predicting churn in this 90-day window is an appropriate starting point, and the lessons learned may apply to other churn-prediction cases as well. The model will be built on a database of historical cases of customers who have left the company. Churn probability will be predicted based on data 45 days prior to contract expiration, in order for TelCo to have sufficient lead time to affect customer behavior with an incentive offer. We will model churn probability by building an ensemble of trees (random forest) model, which is known to have high accuracy for a wide variety of estimation problems. We estimate that we will be able to identify 70% of the customers who will leave within the 90-day time window. We will verify this by running the model on the database to verify that indeed the model can reach this level of accuracy. Through interactions with TelCo stakeholders, we understand that it is very important that the V.P. of Customer Retention sign off on any new customer retention procedures, and she has indicated that she will base her decision on her own assessment that the procedure used for identifying customers makes sense and on the opinions about the procedure from selected firm experts in customer retention. Therefore, we will give the V.P. and the experts access to the model, so that they can verify that it will operate effectively and appropriately. We propose that every week, the model be run to estimate the probabilities of churn of the customers whose contracts expire in 45 days (give or take a week). The customers will be ranked based on these probabilities, and the top N will be selected to receive the current incentive, with N based on the cost of the incentive and the weekly retention budget. Select all true statements. Group of answer choices: A.The V.P. of Customer Retention and other firm experts should not be involved in the evaluation of the model because it may introduce subjectivity and delays. B.An issue with the proposal is that a model for churn prediction cannot be built using only historical cases of customers who have left the company. C.The data-driven strategy proposed, “running the model on the database to verify that indeed the model can reach this level of accuracy,” ensures that the model’s predictions will generalize. D.Selecting the top N customers most likely to churn based on the cost of the incentive and the weekly retention budget is an appropriate targeting strategy to minimize monetary losses due to churn. E.The evaluation metric proposed in the proposal (identifying 70% of the customers who will leave) is appropriate for assessing the potential success of the solution.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Artificial Intelligence", "subject_name": "Computer Science"} +{"question": "可控震源和爆炸源产生的地震波形的初至拾取有什么区别?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Solid Earth Geophysics", "subject_name": "Earth Science"} +{"question": "偏移算法通常归为哪三类?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Solid Earth Geophysics", "subject_name": "Earth Science"} +{"question": "工业界中勘探地震中剩余静校正的处理流程", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Solid Earth Geophysics", "subject_name": "Earth Science"} +{"question": "将爆炸震源沿着反射界面放置,同样在测线上的每一个共中心点上都放一个检波器,使震源在同一时刻全部爆炸,激发出的地震波向上传播被地表检波器接收,这种实验描述的地质模型称为()。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Solid Earth Geophysics", "subject_name": "Earth Science"} +{"question": "某冬日,冷空气流经暖洋面,在移经300千米的距离中,平均厚度为1013—900百帕的混合气层,气温升高10度,设平均风速为15米/秒,在混合层内无凝结,辐射通量也不计,试问来自洋面的感热通量为多少(瓦/米2)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Marine Science", "subject_name": "Earth Science"} +{"question": "Within a shallow water system with constant density and hydrostatic balance, derive the vertical velocity as a function of top height (h), bottom topography (η_B), and vertical level (z).", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Marine Science", "subject_name": "Earth Science"} +{"question": "某冬日,冷空气流经暖洋面,在移经 300 千米的距离中,平均厚度为 1013–900 百帕的混合气层,气温升高 10 ℃,设平均风速为 15 米/秒,在混合层内无凝结,辐射通量也不计,试问来自洋面的感热通量为多少(瓦/米²)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Marine Science", "subject_name": "Earth Science"} +{"question": "根据电子衍射的基本公式指出其中 $\\mathrm{L} \\boldsymbol{\\lambda}$ 的物理意义。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "某立方晶系晶体德拜花样中部分高角度线条数据如表所列。求其点阵常数(准确到 4 位有效数字)。 $\\boldsymbol{\\lambda}=0.154 \\mathrm{~nm}$ 。 \\begin{tabular}{|l|l|} \\hline $\\mathrm{H}^2+\\mathrm{K}^2+\\mathrm{L}^2$ & $\\operatorname{Sin}^2 \\boldsymbol{\\theta}$ \\\\ \\hline 38 & 0.9114 \\\\ \\hline 40 & 0.9563 \\\\ \\hline 41 & 0.9761 \\\\ \\hline 42 & 0.9980 \\\\ \\hline \\end{tabular}", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "一块淬火 + 低温回火的碳钢,经金相检验证明其中不含碳化物,后在衍射仪上用 $FeK\\boldsymbol{\\alpha}$照射,分析出 $\\gamma$ 相含 $1 \\%$ 碳, $\\boldsymbol{\\alpha}$ 相含碳极低,又测得 $\\gamma220$ 线条的累积强度为$5.40$ , $\\boldsymbol{\\alpha} 211$ 线条的累积强度为$51.2$ ,假定测试时室温为 $31^{\\circ} \\mathrm{C}$ ,钢中所含奥氏体的体积百分数为多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "以铅为接收体,使用 $\\mathrm{MoK}_\\alpha, ~ \\mathrm{RhK}_\\alpha, ~ \\mathrm{AgK}_\\alpha \\mathrm{X}$ 射线画图。(铅关于上述$X$ 射线的质量接收系数分别为 $122.8,84.13,66.14 \\mathrm{~cm}^2 / \\mathrm{g}$ )。由曲线求出铅对应于管电压为$30 kV$条件下所发出的最短波长时质量接收系数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "$\\mathrm{A}-\\mathrm{TiO}_2$(锐铁矿)与 $\\mathrm{R} — \\mathrm{TiO}_2$(��红石)混合物衍射花样中两相最强线强度比 $\\mathrm{I}_{\\mathrm{A}-\\mathrm{Ti} 0_2}$/$\\mathrm{I}_{\\mathrm{R}-\\mathrm{Ti} 0_2}=1.5$ 。计算两相各自的质量分数。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "B2和BCC的晶体结构能否根据TEM <111>轴的衍射图进行区分?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "一对标准直齿圆柱齿轮传动参数见下表。试: 1)比较哪个齿轮易疲劳点蚀;哪个齿轮易弯曲疲劳折断? 2)若载荷系数 $K=1.3$ ,按齿根弯曲疲劳强度计算,该齿轮传动允许传递的最大转矩 $\\mathrm{T}_1$ 等于多少? \\begin{tabular}{|c|c|c|c|c|c|c|c|} \\hline 齿轮 & $\\mathrm{m} / \\mathrm{mm}$ & Z & $\\mathrm{b} / \\mathrm{mm}$ & $Y_{F a}$ & $Y_{s a}$ & {$\\left[\\sigma_F\\right]$} & {$\\left[\\sigma_H\\right]$} \\\\ \\hline 1 & 3 & 17 & 60 & 2.97 & 1.52 & 390 & 500 \\\\ \\hline 2 & 3 & 45 & 55 & 2.35 & 1.68 & 370 & 470 \\\\ \\hline \\end{tabular}", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Testing and Analysis Technology", "subject_name": "Materials Science"} +{"question": "求解氢原子或类氢离子的薛定谔方程,得到不同能级的能量关系式如下:\nE_n=-13.6 Z^2/n^2 (eV)\n其中Z为核电荷数,n为主量子数,取值为正整数。对于多电子原子,可采用单电子近似:即对某个电子而言,将其他电子之间的排斥作用近似看成这些电子屏蔽了原子的部分核电荷,该电子感应到的有效核电荷Z*=Z-σ,并称为屏蔽常数。相应地,上述能级公式中Z变为Z*。由此可近似计算某个电子的能量。合理利用电离能数据,可以计算屏蔽常数。实验测得Li原子的第一、二、三电离能分别为:I1=5.392 eV;I2=75.638 eV;I3=122.451 eV\n(1) 估算Li原子中1s电子之间的屏蔽常数σ1\n(2) 估算1s电子对2s电子的屏蔽常数σ2。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Theoretical and Computational Chemistry", "subject_name": "Chemistry"} +{"question": "对于水分子的6-31基组的全电子Gaussian计算,总共有多少Gaussian轨道?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Theoretical and Computational Chemistry", "subject_name": "Chemistry"} +{"question": "对于乙烷分子的6-311基组的全电子Gaussian计算,总共有多少Gaussian函数?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Theoretical and Computational Chemistry", "subject_name": "Chemistry"} +{"question": "对于乙烷分子的6-31+G*基组的全电子Gaussian计算,总共有多少个基函数?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Theoretical and Computational Chemistry", "subject_name": "Chemistry"} +{"question": "$\\left(45^{\\circ} /-45^{\\circ}\\right)$ ,层合板受 $\\sigma_x$ 作用(拉伸)。计算说明$45^{\\circ}$ 层沿主方向的应力应变与层合板的应力 $\\sigma_x$ ,应变 $\\varepsilon_x, \\varepsilon_y , \\tau_{12}$ 之间的关系", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "现需一 T300/QY8911 层合板,要求层合板面内拉伸弹性模量 $E_y^0=60 \\mathrm{GPa}$ ,拉伸强度 $\\sigma_{x t}>600 \\mathrm{MPa}$ ,试确定各定向单层比例。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "考虑共有八层的 $\\left(0^{\\circ} / 45^{\\circ} /-45^{\\circ} / 90^{\\circ}\\right)$ 。碳/环氧准各向同性板,受 $N_x$ 拉伸作用,温度变化 $\\Delta T=-100{ }^{\\circ} \\mathrm{C}$ 。单层板厚度为 $t / 8$ ,层合板的厚度 $t=1.0 \\mathrm{~mm}$ 。单层板性能参数为 $\\alpha_1=-0.3 \\times 10^{-6} \\mathrm{~K}^{-1}, \\alpha_2=28.0 \\times 10^{-6} \\mathrm{~K}^{-1} 。 E_1=140 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.3, X_{\\mathrm{t}}$ $=1500 \\mathrm{MPa}, X_{\\mathrm{c}}=1200 \\mathrm{MPa}, Y_{\\mathrm{t}}=50 \\mathrm{MPa}, Y_{\\mathrm{c}}=250 \\mathrm{MPa}, S=70 \\mathrm{MPa}$ 。求极限载荷。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "已知三层层合板。受载荷 $N_x=N$ ,其余载荷皆为零。外层厚度 $t_1$ ,内层厚度 $t_2=10 t_1$ ,正交铺设比 $m=0.2$ 。玻璃/环氧单层板性能:$E_1=5.40 \\times 10^4 \\mathrm{MPa}, E_2=1.80 \\times10^4 \\mathrm{MPa}, \\nu_{21}=0.25, G_{12}=8.80 \\times 10^3 \\mathrm{MPa}, X_{\\mathrm{t}}=X_{\\mathrm{c}}=1.05 \\times 10^3 \\mathrm{MPa}, Y_{\\mathrm{t}}=2.80 \\times 10 \\mathrm{MPa}$ , $Y_{\\mathrm{c}}=14.0 \\times 10 \\mathrm{MPa}, S=4.2 \\times 10 \\mathrm{MPa}$ 。求开始发生破坏的"屈服"强度值 $\\left(N_x / t\\right)_1$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "两端简支对称层合梁和两端固定梁,其承受均布载荷作用。求一端固定、一端简支梁的最大位移。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "已知 $\\mathrm{T} 800 / 3630$ 单层板的材料常数为 $E_1=167 \\mathrm{GPa}, E_2=9 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.34, \\mu_{23}=0.55, S_{44}=2\\left(1+\\mu_{23}\\right) / E_2, S_{55}=S_{66}$ $=1 / G_{12}$ ,分别求$H_{\\mathrm{I}}, H_{\\text {II }}, H_{\\text {III }}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "分析单层板纤维在有外载情形下的残余应力。纤维和基体厚度分别记为\n$t_{\\mathrm{f}}, t_{\\mathrm{m}}$ 。结果用模量、A、温度、N、$\\alpha$等复合材料性能常数表示", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "考虑 $\\left[0^{\\circ} / 45^{\\circ} /-45^{\\circ} / 90^{\\circ}\\right]$ 。层合板,单层板性能指标为 $E_1=140 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.3, t_{\\mathrm{p}}=0.125 \\mathrm{~mm}, X_{\\mathrm{t}}=1500 \\mathrm{MPa}, X_{\\mathrm{c}}=1200 \\mathrm{MPa}, Y_{\\mathrm{t}}=50 \\mathrm{MPa}, Y_{\\mathrm{c}}=250 \\mathrm{MPa},S=70 \\mathrm{MPa}$ 。按完全破坏假定,求层合板强度。层合板受剪切和 $x$ 方向拉伸作用,考虑以下工况:$k=N_{x y} / N_x=0.6$。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "计算 $\\left(0^{\\circ} / \\pm 45^{\\circ} / 90^{\\circ}\\right)_{2 \\mathrm{~s}}$ 和 $\\left(0^{\\circ} / 90^{\\circ}\\right)_{4 \\mathrm{~s}}$ 两种带孔层合板的应力集中系数。单层板性能参数为:$E_L=147.5 \\mathrm{GPa}, G_{L T}=5.3 \\mathrm{GPa}, E_T=11.0 \\mathrm{GPa}, \\mu_{L T}=0.29$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "考虑四边简支对称正交层合板 $\\left[0^{\\circ} / 90^{\\circ}\\right]_s, a=0.5 \\mathrm{~m}, b=0.25 \\mathrm{~m}$ ,四条边分别用数字 $1,2,3,4$ 表示,板的总厚度 $t=0.005 \\mathrm{~m}$ ,承受横向均布载荷作用,$p_0=10 \\mathrm{~N} / \\mathrm{m}^2$ ,单层板的弹性常数如下:$E_1=148 \\mathrm{GPa}, E_2=E_3=10.5 \\mathrm{GPa}, G_{12}=G_{23}=G_{13}=5.61 \\mathrm{GPa}, \\mu_{12}=\\mu_{23}=\\mu_{13}=0.3$ 。计算板内最大弯曲变形和最大应力。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "已知某半无限大板状铸钢件的热物性参数为:导热系数 $\\lambda=46.5 \\mathrm{~W} /(\\mathrm{m} \\cdot \\mathrm{K})$ ,比热容 $\\mathrm{C}=460.5 \\mathrm{~J} /(\\mathrm{kg} \\cdot \\mathrm{K})$ ,密度 $\\rho=7850 \\mathrm{~kg} / \\mathrm{m}^3$ ,取浇铸温度为 $1570^{\\circ} \\mathrm{C}$ ,铸型的初始温度为 $20^{\\circ} \\mathrm{C}$ 。分析比较该铸件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后 $0.02 \\mathrm{~h} 、 0.2 \\mathrm{~h}$ 时刻的温度分布状况。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "考虑两种特殊的反对称层合板:$\\left(0^{\\circ} / 0^{\\circ} / 90^{\\circ} / 90^{\\circ}\\right)$ 层合板 $\\mathrm{A},\\left(0^{\\circ} / 90^{\\circ} / 0^{\\circ} / 90^{\\circ}\\right)$ 层合板 B。单层板厚度为 0.125 mm ,弹性常数为:$E_1=$ $140 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.3$ 。比较其耦合刚度系数 $B_{11}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "计算带孔单层板分别受 1 方向拉伸作用和 2 方向拉伸作用时的应力集中系数。单层板性能参数为:$E_L=147.5 \\mathrm{GPa}, G_{LT}=5.3 \\mathrm{GPa}, E_T=11.0 \\mathrm{GPa}, \\mu_{L T}=0.29$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向复合材料层合板 $a=100 \\mathrm{~cm}, b=50 \\mathrm{~cm}$ ,厚 $t=2 \\mathrm{~mm}$ ,材料常数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.32, G_{x y}=5 \\mathrm{GPa}$ 。受 $p=p_0$ 面外载荷作用,四周简支,比较 $W_{11}, W_{13}$ 和 $W_{31}$ 的相对大小。若板的材料为各向同性材料,其结果又如何?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "$\\left(45^{\\circ} /-45^{\\circ}\\right)$ ,层合板受 $x$ 方向拉伸作用。计算 $45^{\\circ}$ 层应力分量 $\\sigma_x, \\sigma_y$ 和 $\\tau_{x y}$ 与 $x$ 方向正应变的比值。已知单层板的弹性常数如下:$E_1=138.1 \\mathrm{GPa}, E_2=14.5 \\mathrm{GPa}, G_{12}=5.87 \\mathrm{GPa}$ , $\\mu_{12}=0.21$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "四边简支 $\\left[0^{\\circ} / 90^{\\circ}\\right]_{\\mathrm{s}}$ 对称正交层合板,$a=0.5 \\mathrm{~m}, b=0.25 \\mathrm{~m}, t=0.005$ m ,承受均匀分布横向力,$p_0=10 \\mathrm{~N} / \\mathrm{m}^2$ 。求最大弯曲变形和板内的最大应力。单层板弹性常数如下:$E_1=148 \\mathrm{GPa}, E_2=10.5 \\mathrm{GPa}, G_{12}=5.61 \\mathrm{GPa}, \\mu_{12}=0.3$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "交织纤维单层板 $X_{\\mathrm{t}}=X_{\\mathrm{c}}=600 \\mathrm{MPa}, Y_{\\mathrm{t}}=Y_{\\mathrm{c}}=550 \\mathrm{MPa}, S=90 \\mathrm{MPa}$ ,受偏轴拉伸作用。利用 Tsai-Hill 准则,求不同偏轴角度下的拉伸强度(计算出0到90度每隔十度的值)", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "计算 $\\left(0^{\\circ} / 90^{\\circ}\\right) s$ 碳/环氧层合板在 $M_x=10 \\mathrm{~N} \\cdot \\mathrm{~mm} / \\mathrm{mm}$ 作用下的应变。单层厚度 $t_{\\mathrm{p}}=0.125 \\mathrm{~mm}$ 。材料的力学性能参数为:$E_1=200 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, \\mu_{12}=0.25$,$G_{12}=5 \\mathrm{GPa}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "计算 $\\left(0^{\\circ} / 90^{\\circ}\\right) s$ 碳/环氧层合板在 $M_x=10 \\mathrm{~N} \\cdot \\mathrm{~mm} / \\mathrm{mm}$ 作用下的应力。单层厚度 $t_{\\mathrm{p}}=0.125 \\mathrm{~mm}$ 。材料的力学性能参数为:$E_1=200 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, \\mu_{12}=0.25$,$G_{12}=5 \\mathrm{GPa}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向层合板材料性能参数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.3, G_{x y}=5 \\mathrm{GPa}$ 。板厚 $t=5 \\mathrm{~mm}, a=b=50 \\mathrm{~cm}$ ,四周简支,受横向均布载荷 $p_0=25 \\mathrm{~N} / \\mathrm{m}^2$ 作用。,正方形板 $x, y$ 方向受等值压缩载荷作用,求临界屈曲载荷。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向层合板材料性能参数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.3, G_{x y}=5 \\mathrm{GPa}$ 。板厚 $t=5 \\mathrm{~mm}, a=b=50 \\mathrm{~cm}$ ,四周简支,受横向均布载荷 $p_0=25 \\mathrm{~N} / \\mathrm{m}^2$ 作用。现在板子$x$ 方向受压缩载荷作用,求临界屈曲载荷。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "一块边长为 $a$ 的正方形单层板,材料为碳纤维增强双马来酰亚胺树脂基复合材料,厚度 $h=6 \\mathrm{~mm}$ ,紧密地夹在两块刚度无限大的刚性板之间,在压力 $P=3 \\mathrm{kN}$ 作用下,试求在纵向和横向挤压两种情况下,单层板在压力 $P$ 方向的变形量 $\\Delta a$ ,并比较哪一种情况变形小。已知复合材料柔量分量为:$S_{11}=7.407(\\mathrm{TPa})^{-1}, S_{22}=113.6(\\mathrm{TPa})^{-1}, S_{12}=$ $-2.444(\\mathrm{TPa})^{-1}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "碳/环氧单层板的厚度为 0.125 mm ,弹性常数为:$E_1=$ $140 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.3$ 。计算 $\\left(45^{\\circ} /-45^{\\circ}\\right)$ 层合板的弯曲刚度系数。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "试求用 $\\left[ \\pm 45^{\\circ}\\right]_{\\mathrm{s}}$ 的斜交对称层合板作单轴拉伸实验时,测定面内剪切弹性模量的公式", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "无限大基体中有一椭球型夹杂,基体和��杂的剪切、体积模量及泊松比分别用 $G_0, K_0, \\nu_0$ 和 $G_1, K_1, \\nu_1$ 表示。分析当基体是环氧树脂( $E_0=4 \\mathrm{GPa}, \\nu_0=0.33$ )、夹杂是陶瓷材料( $E_1=400 \\mathrm{GPa}, \\nu_1=0.2$ ),且远处受到宏观单向应力作用时 $\\sigma_{11} \\neq 0$(夹杂的旋转轴为 $x_1$ ),夹杂中应力 $\\left\\langle\\sigma_{11}\\right\\rangle_1 / \\bar{\\sigma}_{11},\\left\\langle\\sigma_{22}\\right\\rangle_1 / \\bar{\\sigma}_{11}$随夹杂长细比的变化。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "均匀无限大介质 $\\boldsymbol{C}_0$ 中有一椭球型夹杂,其弹性模量为 $\\boldsymbol{C}_1$ 。设基体和夹杂的热膨胀系数分别为 $\\boldsymbol{\\alpha}_0$ 和 $\\boldsymbol{\\alpha}_1$ ,试求当温度均匀发生变化 $\\Delta \\theta$ 时,在椭球夹杂内所引起的应力。如果基体和夹杂的剪切、体积模量和热膨胀系数分别为 $G_0, K_0, \\alpha_0$ 和 $G_1, K_1, \\alpha_1$ ,给出球型夹杂内应力的具体表达式。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "推导 $(\\mathrm{M} 1 / \\mathrm{M} 2)_s$ 对称双金属梁的拉伸和弯曲刚度表达式,各单层厚度 $t / 4$ 。由此计算 (铝/钢),层合板的工程弹性常数。已知单层板厚度为 0.125 mm ,钢和铝的弹性模量分别为 $200 \\mathrm{GPa}, 70 \\mathrm{GPa}$ ,泊松比均为 $0.3$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "沿双排紧固件排列方向承受剪切载荷的连接接头,根据下述已知参数校核接头强度,并确定连接区层合板的厚度。已知紧固件为 $115 \\mathrm{~s}, ~ 100{ }^{\\circ} \\mathrm{C}$ 沉头钛合金高锁蝶栓,外排孔横向间距$36 \\mathrm{~mm}$、纵向间距$25 \\mathrm{~mm}$,公称直径 $d=6 \\mathrm{~mm}$ ,单剪强度为 $15 \\mathrm{kN}$ ;基本层合板材料为 $\\mathrm{T} 300 / 5222$(碳/环氧),层合板厚度 $t_0=4.08 \\mathrm{~mm}$ ,固化后单层厚度为 $0.12 \\mathrm{~mm}$ ,共 $34$ 层,铺层方案为[ $\\pm 45 / 0 /$ $\\left.\\mp 45 / \\pm 45 / 0 / 45_2 /-45_2 / 0 / 90 / 0 / \\mp 45\\right]_{\\mathrm{s}}$ ,承受剪切载荷 $q=700 \\mathrm{~N} / \\mathrm{mm}$ ,方向与 $0^{\\circ}$ 层纤维方向一致。该层合板受载孔处的许用面内前切强度值 $[\\tau]=120 \\mathrm{MPa}$ ,许用挤压强度值 $\\left[\\sigma_{\\mathrm{br}}\\right]= 385 \\mathrm{MPa}$ 。内排螺栓孔与外排螺栓孔承载按 $57: 43$ 分配。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "试给出 $[0 / 90]_{\\frac{N}{2}}$( $N$ 为偶数)矩形叠层板在横向分布载荷 $p(x, y)$ 作用下的弯曲问题的解", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向层合板材料性能参数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.3, G_{x y}=5 \\mathrm{GPa}$ 。板厚 $t=5 \\mathrm{~mm}, a=b=50 \\mathrm{~cm}$ ,四周简支,受横向均布载荷 $p_0=25 \\mathrm{~N} / \\mathrm{m}^2$ 作用,求板的最大应力。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "碳/环氧交织纤维复合材料单层板,沿材料主轴方向的弹性常数为 $E_1=70 \\mathrm{GPa}, E_2$ $=70 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.1$ 。加载方向与纤维方向成 $\\theta$ 角,求 $E_x, E_y, G_{x y}, \\mu_{x y}, \\mu_{y x}, m_x, m_y$等参数在0到90度每间隔10度的值。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "求 $\\left(0^{\\circ} / 90^{\\circ}\\right)$ ,层合板在 $N_x$ 作用和温度变化 $\\Delta T=-100{ }^{\\circ} \\mathrm{C}$ 条件下的极限应力 $N_x / t$ 。各单层板厚度是 $t / 4$ ,层合板的厚度是 $t$ 。若忽略温度变化的影响,极限应力又为多少?用分别求解外加载荷以及温度变化引起的应力,通过扣除残余应力贡献的方法,确定极限应力。已知: $$ \\begin{gathered} E_1=60 \\mathrm{GPa}, \\quad E_2=20 \\mathrm{GPa}, \\quad \\mu_{12}=0.25, \\quad G_{12}=10 \\mathrm{GPa} \\\\ \\alpha_1=-6 \\times 10^{-6} \\mathrm{~K}^{-1}, \\quad \\alpha_2=20 \\times 10^{-6} \\mathrm{~K}^{-1} \\\\ X_{\\mathrm{t}}=X_{\\mathrm{c}}=1000 \\mathrm{MPa}, \\quad Y_{\\mathrm{t}}=50 \\mathrm{MPa}, \\quad Y_{\\mathrm{c}}=150 \\mathrm{MPa}, \\quad S=50 \\mathrm{MPa} \\end{gathered} $$", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "水平放置的矩形单层板, y 轴竖直方向,与 1 轴 2 轴成$\\theta$ 。单层板受水平$\\sigma_x$ 作用,\n$$\n\\begin{aligned}\n& E_1=140 \\mathrm{GPa}, E_2=10 \\mathrm{GPa}, G_{12}=5 \\mathrm{GPa}, \\mu_{12}=0.3, X_{\\mathrm{t}}=1500 \\mathrm{MPa}, X_{\\mathrm{c}}=1200 \\\\\n& \\mathrm{MPa}, Y_{\\mathrm{t}}=50 \\mathrm{MPa}, Y_{\\mathrm{c}}=250 \\mathrm{MPa}, S=70 \\mathrm{MPa} \\text { 。 }\n\\end{aligned}\n$$\n按 Tsai-Hill 准则和 Tsai-Wu 准则,求出临界值相对 $\\theta$ 的变化规律。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "碳/环氧复合材料单层板偏轴角度为 $45^{\\circ}$ ,受正剪切作用,分别利用 Tsai-Hill 准则,最大应力准则,Tsai-Wu 准则求单层板的极限剪应力。强度指标 $X_{\\mathrm{t}}=1725 \\mathrm{MPa}, X_{\\mathrm{c}}=1350 \\mathrm{MPa}$ , $Y_{\\mathrm{t}}=40 \\mathrm{MPa}, Y_{\\mathrm{c}}=275 \\mathrm{MPa}, S=95 \\mathrm{MPa}$ 。若偏轴角度为 $30^{\\circ}$ ,其他条件不变,结果又如何?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "分析复合材料单层非主方向的拉伸特性。已知应力状态为 $\\sigma_{\\mathrm{x}}<0, \\sigma_{\\mathrm{y}}=\\tau_{\\mathrm{xy}}=0,0^{\\circ}<\\theta<90^{\\circ}$ 。 表示其应力状态和变形形状。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "两端简支对称层合梁和两端固定梁,其承受均布载荷作用。求两端固定梁的最大位移。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "$\\left(0^{\\circ} / 90^{\\circ}\\right)$ 非对称正交层合板总厚度为 $t$ ,求温度变化 $\\Delta T=-100{ }^{\\circ} \\mathrm{C}$ 时,不同线膨胀系数下层合板内的残余应力。设单层板性能参数如下:\n\n$$\nQ=\\left[\\begin{array}{ccc}\n140.9 & 3.0 & 0 \\\\\n3.0 & 10.1 & 0 \\\\\n0 & 0 & 5.0\n\\end{array}\\right] \\mathrm{GPa}\n$$\n\n已知:$\\alpha_1=-6.0 \\times 10^{-6} \\mathrm{~K}^{-1}, \\alpha_2=20.0 \\times 10^{-6} \\mathrm{~K}^{-1}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "$v_{\\mathrm{f}}$ 为 $41.99 \\%$ 时的 $E_2=9.15 \\mathrm{GPa}, G_{12}= 3.31 \\mathrm{GPa}$。试确定应力分配系数 $\\eta_2$ 和 $\\eta_{12}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向层合板材料性能参数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.3, G_{x y}=5 \\mathrm{GPa}$ 。板厚 $t=5 \\mathrm{~mm}, a=b=50 \\mathrm{~cm}$ ,四周简支,受横向均布载荷 $p_0=25 \\mathrm{~N} / \\mathrm{m}^2$ 作用。现在板子$y$ 方向受压缩载荷作用,求临界屈曲载荷。\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "单向层合板材料性能参数为 $E_x=140 \\mathrm{GPa}, E_y=10 \\mathrm{GPa}, \\mu_{x y}=0.3, G_{x y}=5 \\mathrm{GPa}$ 。板厚 $t=5 \\mathrm{~mm}, a=b=50 \\mathrm{~cm}$ ,四周简支,受横向均布载荷 $p_0=25 \\mathrm{~N} / \\mathrm{m}^2$ 作用。板子在(1)$x$ 方向受压缩载荷作用。(2)$y$ 方向受压缩载荷作用。两种情况下均可以求临界屈曲载荷。现在将单向层合板换为$\\left(90^{\\circ} / 0^{\\circ}\\right) \\mathrm{s}$ 层合板,总的厚度和其他条件不变,则结果如何变化?\n", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Composite Materials", "subject_name": "Materials Science"} +{"question": "在\\(140^{\\circ}C\\)的\\(\\theta\\)条件下,计算分子量\\(\\overline{M}=10^{7}g/mol\\)的聚乙烯的均方末端距,并将数值与相同分子量的聚乙烯伸直链长度作比较。 ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "在四氢呋喃中用萘钠引发 MMA 进行阴离子聚合,反应开始时萘钠浓度为$2.0×10^{-3}\\ mol\\cdot L^{-1}$,单体浓度为$3.0\\ mol\\cdot L^{-1}$,已知经过 200 s 有 80%的单体转化为聚合物,试计算$k_p$和聚合物的数均聚合度。当聚合进行到 300 s 时,所得聚合物的数均聚合度又是多少(假定聚合过程中阴离子浓度不变)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "从对苯二甲酸(\\(1mol\\))和乙二醇(\\(1mol\\))聚酯化反应体系中,共分出水\\(18g\\),求产物的平均分子量和反应程度,设平衡常数\\(K = 4\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "一根橡胶带,尺寸为\\(1cm×1cm×10cm\\),在\\(25^{\\circ}C\\)、\\(1.5×10^{4}Pa\\)应力下单轴拉伸至长度达\\(25cm\\)。①已知网络功能度\\(\\phi = 4\\),试计算交联点的密度\\(\\mu/V_{0}\\)。②若试样在\\(25^{\\circ}C\\)条件下单轴拉伸到长度为\\(15cm\\)时,需要多大的应力\\(\\sigma\\)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "背景:设计一种用于软骨修复的明胶-甲基丙烯酰(GeIMA)水凝胶支架,需同时满足: - 压缩模量 E \\geq 10 \\mathrm{kPa} (满足软骨力学需求) - 溶胀率 S R \\leq 3 (防止过度膨胀破坏结构) 已知 GelMA 的模量与交联密度 \\nu 的关系为 E=3 \\nu k T ,其中 k T=4.1 \\times 10^{-21} \\mathrm{~J} (室温)。溶胀率公式为 S R=\\left(\\frac{Q}{Q_{0}}\\right)^{3 / 5} ,其中 Q 为平衡时的体积膨胀比,与交联密度成反比 Q \\propto 1 / \\nu 。 问题:1.计算满足 E \\geq 10 \\mathrm{kPa} 所需的最小交联密度 \\nu_{\\mathrm{min}} 。 2.若初始溶胀率 S R_{0}=4 (对应 \\nu=\\nu_{\\min } ),需如何调整交联密度使 S R \\leq 3 且 E \\geq 10 \\mathrm{kPa} ?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "尼龙 - 1010是根据1010盐中过量的癸二酸控制相对分子质量的。如果要求合成尼龙 - 1010的分子量为\\(2×10^{4}\\),尼龙 - 1010盐的酸值(以\\(mg\\ KOH/g\\ 1010盐\\)计算)应是多少? ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "MMA加入\\(0.26\\%\\)(质量分数)的过氧化物于\\(50^{\\circ}C\\)下聚合,当转化率小于\\(5\\%\\)时所得的聚合物的平均聚合度为\\(6600\\)。试判断链终止的主要方式,并指出判断的依据。当转化率为\\(30\\%\\)时,瞬间生成的聚合物的平均聚合度为\\(27500\\)。试问这时链终止的主要方式是什么?(已知在\\(30\\%\\)转化率下聚合反应速率是聚合初期速率的\\(5\\)倍。\\(50^{\\circ}C\\)下\\(C_{I}=2×10^{-4}\\),\\(C_{M}=0.15×10^{-4}\\),MMA在\\(50^{\\circ}C\\)下的密度为\\(0.930g·mL^{-1}\\) 。 ) ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "在苯中配成浓度为$2.5\\ mol\\cdot L^{-1}$的甲基丙烯酸甲酯(MMA),$0.01\\ mol\\cdot L^{-1}$的过氧化二苯甲酰溶液,加热至 70℃,测得聚合反应的最初引发速率为$9.4×10^{-10}\\ mol\\cdot L^{-1}\\cdot s^{-1}$,聚合反应速率为$3.15×10^{-6}\\ mol\\cdot L^{-1}\\cdot s^{-1}$,甲基丙烯酸甲酯相对分子质量为 100,试计算$k_p/k_t^{1/2}$及数均相对分子质量(设不考虑链转移反应,全部为歧化终止)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "计算苯乙烯本体聚合的聚合速率\\(R_{p}\\)和聚苯乙烯的平均聚合度\\(\\overline{X}_{n}\\) 。\n已知:聚合温度为\\(60^{\\circ}C\\),\\(k_{p}=176L·mol^{-1}·s^{-1}\\),\\(k_{t}=3.6×10^{7}L·mol^{-1}·s^{-1}\\) ,\\(\\rho = 1.1×10^{12}\\)分子·\\(mL^{-1}·s^{-1}\\),\\(60^{\\circ}C\\)苯乙烯的密度为\\(0.887g·mL^{-1}\\) 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "两种聚乙烯试样,其片晶厚度\\(l\\)分别为\\(30nm\\)和\\(15nm\\),熔点分别为\\(T_{m,1}=131.2^{\\circ}C\\),\\(T_{m,2}=121.2^{\\circ}C\\),假设折叠表面的表面自由能\\(\\sigma_{c}=93mJ/m^{2}\\),晶体的密度\\(\\rho_{c}=1.00×10^{3}kg/m^{3}\\),其无限厚的晶体熔融时单位质量的焓增\\(\\Delta h = 2.55×10^{5}J/kg\\),试确定平衡熔融温度\\(T_{m}^{0}\\)。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "苯乙烯在\\(60^{\\circ}C\\)以过氧化二叔丁基为引发剂,苯为溶剂进行聚合。当苯乙烯的浓度为\\(1mol·L^{-1}\\),引发剂浓度为\\(0.01mol·L^{-1}\\)时,引发剂分解和形成聚合物的初速率分别为\\(4×10^{-11}mol·L^{-1}·s^{-1}\\)和\\(1.5×10^{-7}mol·L^{-1}·s^{-1}\\) 。试根据计算判断在低转化率下,在上述聚合反应链终止的主要方式,以及每一个由过氧化物引发的链自由基平均转移几次后失去活性��已知在该温度下\\(C_{M}=8.0×10^{-5}\\),\\(C_{I}=3.2×10^{-4}\\),\\(C_{S}=2.3×10^{-6}\\),\\(60^{\\circ}C\\)苯乙烯(相对分子质量为104)的密度为\\(0.887g·mL^{-1}\\),苯(相对分子质量78)的密度为\\(0.839g·mL^{-1}\\),设苯乙烯体系为理想溶液)。\n按上述条件制备的聚苯乙烯相对分子质量很高,常加入正丁硫醇(\\(C_{S}=21\\))调节,问加入多少才能制得相对分子质量为8.5万的聚合物? ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "以萘锂为引发剂、THF为溶剂合成线型聚苯乙烯,单体浓度为\\(10\\%\\)(\\(g\\)苯乙烯每毫升聚合液)。聚合液总体积为\\(1040mL\\),萘锂溶液的浓度为\\(0.5mol·L^{-1}\\),单体转化率为\\(100\\%\\),\\(\\overline{M}_{n}=10000\\)。需加入多少毫升的萘锂溶液? ", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "将一块橡胶试片一端夹紧,另一端加上负荷,使之自由振动。已知振动周期为\\(0.60s\\),振幅每一周期减少\\(5\\%\\),试计算:①橡胶试片在该频率(或振幅)下的对数减量\\((\\Delta)\\)和损耗角正切\\((\\tan\\delta)\\);②假若\\(\\Delta = 0.02\\),问多少周期后试样的振动振幅将减少到起始值的一半?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "将$1.0×10^{-3}\\ mol$萘钠溶于四氢呋喃中,然后迅速加入 2.0 mol 苯乙烯,溶液的总体积为 1 L,假设单体立即均匀混合,反应 2000 s 时已有一半单体聚合,求:(1) 反应 2000 s 和 4000 s 时的聚合度;(2) 聚合度达 3000 时需要的时间。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Organic Polymer Materials", "subject_name": "Materials Science"} +{"question": "在 $20^{\\circ} \\mathrm{C}$ 下水的密度 $\\rho$ $=998.2 \\mathrm{~kg} / \\mathrm{m^3}$ ,表面张力为 $72.8 * 10^{-3} \\mathrm{N} / \\mathrm{m}$ ,若水滴半径为 $10^{-6} \\mathrm{cm}$ ,求水的过饱和度。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Surfaces and Interfaces", "subject_name": "Materials Science"} +{"question": "在 293 K 时,某聚合物溶解在 $\\mathrm{CCl}_4$(l)中,得到聚合物不同浓度 $c$ 时的渗透压(以 $\\mathrm{CCl}_4$(l)液柱上升的高度表示)数据如下:\n\\begin{tabular}{c|c|c|c|c}\n\\hline 浓度 $c /\\left(\\mathrm{g} \\cdot \\mathrm{dm}^{-3}\\right)$ & 2.0 & 4.0 & 6.0 & 8.0 \\\\\n\\hline$\\Delta h / \\mathrm{cm}$ & 0.40 & 1.00 & 1.80 & 2.80 \\\\\n\\hline\n\\end{tabular}\n已知 293 K 时,溶液的密度 $\\rho=1594 \\mathrm{~kg} \\cdot \\mathrm{~m}^{-3}$ ,计算聚合物的数均摩尔质量 $\\bar{M}_{\\mathrm{n}}$ 。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Surfaces and Interfaces", "subject_name": "Materials Science"} +{"question": "请说明药粉在两种不互溶的液体 $\\alpha$ 和 $\\beta$ 中分布有哪些可能状态?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Surfaces and Interfaces", "subject_name": "Materials Science"} +{"question": "373 K 时,水的 $\\gamma=0.0589 \\mathrm{~N} \\mathrm{~m}^{-1}, \\Delta_{\\mathrm{vap}} \\mathrm{H}_{\\mathrm{m}}=40656 \\mathrm{~J} \\mathrm{~mol}^{-1}, \\rho=958.4 \\mathrm{~kg} \\mathrm{~m}^{-3}$ ,求 $\\mathrm{R}^{\\prime}=$ $0.5 \\times 10^{-7} \\mathrm{~m}$ 的气泡内的蒸气压=?在外压为 1 atm 下能否蒸发出 $\\mathrm{R}^{\\prime}=0.5 \\times 10^{-7} \\mathrm{~m}$ 的气泡?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Material Surfaces and Interfaces", "subject_name": "Materials Science"} +{"question": "有一段河流,宽度为5m,水深2.5m,目前被一个水坝阻隔,某天在水坝处突然排泄下了400kg污染物质,污染物质向下游扩散,扩散系数为800cm2/s,求2小时后,下游100米处的污染浓度值?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "某滨海城市在夏季迎来了一场大规模暴雨。该区域经历了以下一系列变化: 在暴雨发生的前4周,城市区内气温连续高于常年同期均值5°C,空气湿度下降20%,导致土壤水分严重流失,城市绿地的植物大面积枯萎。 该期间,市政部门加紧实施海绵城市建设,新增了占地总面积15%的透水铺装,但由于预算限制,大部分透水铺装位于市中心地带,外围地区基本未改造。 暴雨发生当天,降水量达到220mm,持续时间为6小时,且主要集中在前2小时内(前2小时降水量占总量的70%)。 城市总体土地利用结��如下: 中心城区(50%面积):高密度商业建筑,不透水率达95%; 外围新区(30%面积):中密度住宅区,部分透水铺装覆盖,平均不透水率为70%; 公共绿地及湿地公园(20%面积):受干旱影响,植被枯萎率达到60%,导致绿地的实际拦截能力下降一半。 土壤类型分布: 城市中心与新区:壤土; 公共绿地:砂质壤土。 此外, 城市排水系统额定最大处理能力为每小时流量相当于20mm降雨, 排水系统因老化,估算在极端暴雨时只剩80%的有效排水效率。 暴雨发生前一天,有一次短时阵雨,累计降水量4mm,但由于气温高、风速大,该阵雨在6小时内完全蒸发,无实际影响。 假设气候变化趋势加剧,未来5年该城市降水强度继续增加15%, 如果城市不进一步升级排水系统,哪两个因素会最先导致城市内涝系统性失效?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "在一片浅水湖泊中,有一块水体发生了黑臭污染,从湖面上看,该污染呈边长为10m的正方形,正向水域四周扩散。已知污染物浓度为500mg/L,扩散系数为500cm2/s,不考虑降解,问1h后,距离污染中心横向距离30m处的污染物浓度是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "硬水中 Ca²⁺ = 1.4 mmol/L,Mg²⁺ = 0.9 mmol/L,水量 Q = 100 m³/d,经 NaR 树脂软化后,含盐量如何变化?每日变化量为多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "在一无限宽水域,流速为0.5m/s,水深h=2m,有一排污口,排污量q0=1.2m3/s,排污浓度100mg/L,糙率系数n=0.02,αy=0.5,求下游150m处的污染带宽度及该断面最大浓度值是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "有一很宽的河流,河流水深3.0m,流速0.5m/s,河道底坡比降0.0002,在河岸边有一个排污口,污水排放浓度为100mg/L,排污流量为2.0m3/s,不考虑污染物质降解作用,横向扩散系数Ey=0.6hu*,河道水质本底浓度为3mg/L,求:排污形成的边界浓度为8mg/L的污染带的最大长度与最大宽度是多少?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "一条小型河道,水深2.5m,宽50m,河道的水面比降I=1.38×10-5,河道断面平均流速为0.15m/s,且αy=0.4,分别计算污染源在河中心和岸边排放时;到达对岸和充分混合的距离。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Hydrology", "subject_name": "Earth Science"} +{"question": "已知\\(a,b,c\\)为正实数,则代数式\\(\\frac{a}{b + 3c}+\\frac{b}{8c + 4a}+\\frac{9c}{3a + 2b}\\)的最小值为?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computational Mathematics", "subject_name": "Math"} +{"question": "考虑一个将牛顿法、割线法组合在一起的求解函数 $f(x)$ 的零点 $x^{*}$ 的算法。我们用 $f\\left(x_{k}\\right), f^{\\prime}\\left(x_{k}\\right), f\\left(x_{k-1}\\right)$ 这些信息来构造一个二次插值多项式 $p_{k}(x)$ ,用 $p_{k}(x)$ 的零点来作为 $x_{k+1}$ 。假定 $$ x^{*}0 ,\\, f^{\\prime \\prime}(x)>0 $$ (a) 二次多项式 $p_{k}(x)$ 有两个零点,为了保证算法的收敛性,应该选择哪一个作为 $x_{k+1}$ ?写出迭代公式。 (b)假定算法收敛于 $x^{*}, f^{\\prime}\\left(x^{*}\\right) f^{\\prime \\prime}\\left(x^{*}\\right) \\neq 0$ ,计算收敛阶。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computational Mathematics", "subject_name": "Math"} +{"question": "设一均匀的长为 $l$ 的圆柱形细杆,中心轴线为 $x$ 轴的区间 $[0, l]$ ,截面圆的半径为 $r$ ,杆的密度,比热和热传导系数分别为 $\\rho, c$ 和 $k$ ,设杆的外界环境的温度只是时间 $t$ 的函数 $f(t)$ ,杆的表面(包括侧面和两底面)和环境的热交换系数为 $h$ ,杆上各点的初始温度为 $\\varphi(x)$ ,试列出杆的温度分布 $u(x, t)$ 所满足的定解问题.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Interdisciplinary Mathematics", "subject_name": "Math"} +{"question": "考虑中位势场\n\n$$\nU(r)=\\frac{k}{r^2}, \\quad k=\\text { 常数 }\n$$\n\n\n和粒子运动的对应方程\n\n$$\nm \\frac{\\mathrm{~d}^2 x^i}{\\mathrm{~d} t^2}=2 k \\frac{x^i}{r^4}, \\quad i=1,2,3\n$$\n\n\n伴随时间平移和空间变量的旋转变换,这些方程容许由\n\n$$\nX_5=2 t \\frac{\\partial}{\\partial t}+x^1 \\frac{\\partial}{\\partial x^1}+x^2 \\frac{\\partial}{\\partial x^2}+x^3 \\frac{\\partial}{\\partial x^3}\n$$\n\n\n和\n\n$$\nX_6=t^2 \\frac{\\partial}{\\partial t}+t\\left(x^1 \\frac{\\partial}{\\partial x^1}+x^2 \\frac{\\partial}{\\partial x^2}+x^3 \\frac{\\partial}{\\partial x^3}\\right)\n$$\n\n分别生成的伸缩或射影变换.检查诺特定理对对称 $X_5, X_6$ 的适用性并求相应的守恒定律 $T_5, T_6$ .", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Interdisciplinary Mathematics", "subject_name": "Math"} +{"question": "饮用水地下水源H₂S的浓度为4 mg/L。如果水样品在20°C和1atm封闭容器中,一些H₂S从水中逸出进入上部空气,与空气达到一个平衡。测得封闭容器内空气中H₂S的最终分压为75 ppm,计算水中H₂S的最终平衡浓度是多少?用mol/L和mg/L表示。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geochemistry", "subject_name": "Earth Science"} +{"question": "某有毒物质在水中的溶解度为 0.03 mg/L,分子量为 200,求该毒物在鱼体内的生物富集因子(即鱼体内浓度是水中浓度的多少倍)?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geochemistry", "subject_name": "Earth Science"} +{"question": "开采某铁矿床,已知条件如下:矿块工业储量,Q=84,000t;矿块工业储量品位,α=60%;从该矿块采出的矿石量,T=80,000t;采出矿石品位,α'=57%;混入废石品位,α''=15%。\n试求:(1)废石混入率;(2)矿石回采率;(3)矿石贫化率;(4)金属回收率。", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geology", "subject_name": "Earth Science"} +{"question": "根据深度变化引起岩石物性物态的变化和相应产出的构造,可将构造层次划分为几种,分别是什么?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geology", "subject_name": "Earth Science"} +{"question": "已知中型铜铅锌多金属矿床,以Cu为当量的综合品位为7.29%,实际保有工业矿石储量为450万吨。按设计,该矿山的年生产能力为15万吨矿石量,采矿总损失率为8.2%,总贫化率为7.6%。\n试求:(1)矿床金属量为多少?(2)该矿床实际保有年限是多少年?", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Geology", "subject_name": "Earth Science"} +{"question": "Describe the main differences between the conventional container packaging method and the graph partitioning technique for web archiving. Include the implications of these differences on user experience during web browsing.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer Software", "subject_name": "Computer Science"} +{"question": "Describe the process of creating an efficient query execution plan for accessing distributed web data sources. Discuss at least three factors that influence the performance of such a plan.", "answer_ideas": [""], "refined_standard_answer": [""], "sub_subject_name": "Computer Software", "subject_name": "Computer Science"}