Reranker model trained on Sympathy Documentation
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 on the query-doc, anc-pos-neg and anc-pos-neg-2 datasets using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L6-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Datasets:
- query-doc
- anc-pos-neg
- anc-pos-neg-2
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("emilwin/reranker-ms-marco-sympathy-docs")
# Get scores for pairs of texts
pairs = [
['What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?', '# API\n\nADAF API\n========\n\nAPI for working with the ADAF type.\n\nImport this module like this:\n\n```\nfrom sympathy.api import adaf\n\n```\n\nThe ADAF structure\n------------------\n\nAn ADAF consists of three parts: meta data, results, and timeseries.\n\nMeta data contains information about the data in the ADAF. Stuff like when,\nwhere and how it was measured or what parameter values were used to generated\nit. A general guideline is that the meta data should be enough to (at least in\ntheory) reproduce the data in the ADAF.\n\nResults and timeseries contain the actual data. Results are always scalar\nwhereas the timeseries can have any number of values.\n\nTimeseries can come in several systems and each system can contain several\nrasters. Each raster in turn has one basis and any number of timeseries. So\nfor example an experiment where some signals are sampled at 100Hz and others\nare sampled only once per second would have (at least) two rasters. A basis\ndoesnโt have to be uniform but can have samples only every now and then.\n\n'],
['What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?', '# Node\n\nTable to ADAF\n=============\n\nConvert a Table into an ADAF, placing its content in the specified container.\n\nDocumentation\n-------------\n\nThe target container in the ADAF is specified in the configuration GUI. If the\ntimeseries container is chosen it is necessary to specify the column in the\nTable which will be the time basis signal in the ADAF. You can also specify\nthe name of the system and raster containers.\n\nSee also Working with ADAF for tips about how to use these conversion\nnodes.\n\n'],
['What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?', '# Node\n\nSelect columns in ADAF with structure Table\n===========================================\n\nSelect the columns to keep in ADAF using selection table created by ADAF structure to table\n\nDocumentation\n-------------\n\nUse this node if youโre only interested in some of the data in an ADAF\ne.g. for performance reasons.\n\nThe Table/Tables argument should have four columns, which must be named\nType, System, Raster, and Parameter. These columns hold the names of the\ncorresponding fields in the ADAF/ADAFs.\n\nDefinition\n----------\n\n### Input ports\n\n> **selection**\n> : Type: table\n> ADAF structure selection\n> \n> **data**\n> : Type: adaf\n> ADAF data matched with selection\n\n### Output ports\n\n> **data**\n> : Type: adaf\n> ADAF data after selection\n\n### Configuration\n\n> **Remove selected columns** (complement)\n> : When enabled, the selected columns will be removed. When disabled, the non\\-selected columns will be removed.\n\n### Related nodes\n\n* Select columns in ADAFs with structure Table\n* Select columns in ADAFs with structure Tables\n* ADAF structure to Table\n* Select categories in ADAFs\n\n### Examples\n\nThis node is used in the following example flows:\n\n* SelectColumns.syx\n\n### Implementation\n\n*class* node\\_select\\_adaf\\_columns.SelectColumnsADAFWithTable\\[source]\n\n'],
['What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?', '# Node\n\nSelect categories in ADAFs\n==========================\n\nSelect what catgories to exist in the output ADAFs.\n\nDocumentation\n-------------\n\nA selector of categories in ADAFs can be used to drop parts of ADAFs.\nThe main reason to do this is when the ADAFs contain data that is no longer\nneeded further along a workflow. Dropping the unnecessary data can then be\nused as a way to try to optimize the workflow.\n\nDefinition\n----------\n\n### Input ports\n\n> **port1**\n> : Type: \\[adaf]\n> Input ADAFs\n\n### Output ports\n\n> **port3**\n> : Type: \\[adaf]\n> ADAFs with selected categories\n\n### Configuration\n\n> **Select meta group** (select\\_meta)\n> : Select the meta group for inclusion in the output.\n> \n> **Select specific rasters:** (select\\_rasters)\n> : Select specific rasters for inclusion in the output.\n> \n> **Select result group** (select\\_res)\n> : Select the result group for inclusion in the output.\n\n### Related nodes\n\n* ADAF to Table\n\n### Examples\n\nThis node is used in the following example flows:\n\n* SelectCategoryInADAFs.syx\n\n### Implementation\n\n*class* node\\_category\\_selector.CategorySelectorMultiple\\[source]\n\n'],
['In Sympathy: What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?', '# API\n\nADAF API\n========\n\nAPI for working with the ADAF type.\n\nImport this module like this:\n\n```\nfrom sympathy.api import adaf\n\n```\n\nThe ADAF structure\n------------------\n\nAn ADAF consists of three parts: meta data, results, and timeseries.\n\nMeta data contains information about the data in the ADAF. Stuff like when,\nwhere and how it was measured or what parameter values were used to generated\nit. A general guideline is that the meta data should be enough to (at least in\ntheory) reproduce the data in the ADAF.\n\nResults and timeseries contain the actual data. Results are always scalar\nwhereas the timeseries can have any number of values.\n\nTimeseries can come in several systems and each system can contain several\nrasters. Each raster in turn has one basis and any number of timeseries. So\nfor example an experiment where some signals are sampled at 100Hz and others\nare sampled only once per second would have (at least) two rasters. A basis\ndoesnโt have to be uniform but can have samples only every now and then.\n\n'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?',
[
'# API\n\nADAF API\n========\n\nAPI for working with the ADAF type.\n\nImport this module like this:\n\n```\nfrom sympathy.api import adaf\n\n```\n\nThe ADAF structure\n------------------\n\nAn ADAF consists of three parts: meta data, results, and timeseries.\n\nMeta data contains information about the data in the ADAF. Stuff like when,\nwhere and how it was measured or what parameter values were used to generated\nit. A general guideline is that the meta data should be enough to (at least in\ntheory) reproduce the data in the ADAF.\n\nResults and timeseries contain the actual data. Results are always scalar\nwhereas the timeseries can have any number of values.\n\nTimeseries can come in several systems and each system can contain several\nrasters. Each raster in turn has one basis and any number of timeseries. So\nfor example an experiment where some signals are sampled at 100Hz and others\nare sampled only once per second would have (at least) two rasters. A basis\ndoesnโt have to be uniform but can have samples only every now and then.\n\n',
'# Node\n\nTable to ADAF\n=============\n\nConvert a Table into an ADAF, placing its content in the specified container.\n\nDocumentation\n-------------\n\nThe target container in the ADAF is specified in the configuration GUI. If the\ntimeseries container is chosen it is necessary to specify the column in the\nTable which will be the time basis signal in the ADAF. You can also specify\nthe name of the system and raster containers.\n\nSee also Working with ADAF for tips about how to use these conversion\nnodes.\n\n',
'# Node\n\nSelect columns in ADAF with structure Table\n===========================================\n\nSelect the columns to keep in ADAF using selection table created by ADAF structure to table\n\nDocumentation\n-------------\n\nUse this node if youโre only interested in some of the data in an ADAF\ne.g. for performance reasons.\n\nThe Table/Tables argument should have four columns, which must be named\nType, System, Raster, and Parameter. These columns hold the names of the\ncorresponding fields in the ADAF/ADAFs.\n\nDefinition\n----------\n\n### Input ports\n\n> **selection**\n> : Type: table\n> ADAF structure selection\n> \n> **data**\n> : Type: adaf\n> ADAF data matched with selection\n\n### Output ports\n\n> **data**\n> : Type: adaf\n> ADAF data after selection\n\n### Configuration\n\n> **Remove selected columns** (complement)\n> : When enabled, the selected columns will be removed. When disabled, the non\\-selected columns will be removed.\n\n### Related nodes\n\n* Select columns in ADAFs with structure Table\n* Select columns in ADAFs with structure Tables\n* ADAF structure to Table\n* Select categories in ADAFs\n\n### Examples\n\nThis node is used in the following example flows:\n\n* SelectColumns.syx\n\n### Implementation\n\n*class* node\\_select\\_adaf\\_columns.SelectColumnsADAFWithTable\\[source]\n\n',
'# Node\n\nSelect categories in ADAFs\n==========================\n\nSelect what catgories to exist in the output ADAFs.\n\nDocumentation\n-------------\n\nA selector of categories in ADAFs can be used to drop parts of ADAFs.\nThe main reason to do this is when the ADAFs contain data that is no longer\nneeded further along a workflow. Dropping the unnecessary data can then be\nused as a way to try to optimize the workflow.\n\nDefinition\n----------\n\n### Input ports\n\n> **port1**\n> : Type: \\[adaf]\n> Input ADAFs\n\n### Output ports\n\n> **port3**\n> : Type: \\[adaf]\n> ADAFs with selected categories\n\n### Configuration\n\n> **Select meta group** (select\\_meta)\n> : Select the meta group for inclusion in the output.\n> \n> **Select specific rasters:** (select\\_rasters)\n> : Select specific rasters for inclusion in the output.\n> \n> **Select result group** (select\\_res)\n> : Select the result group for inclusion in the output.\n\n### Related nodes\n\n* ADAF to Table\n\n### Examples\n\nThis node is used in the following example flows:\n\n* SelectCategoryInADAFs.syx\n\n### Implementation\n\n*class* node\\_category\\_selector.CategorySelectorMultiple\\[source]\n\n',
'# API\n\nADAF API\n========\n\nAPI for working with the ADAF type.\n\nImport this module like this:\n\n```\nfrom sympathy.api import adaf\n\n```\n\nThe ADAF structure\n------------------\n\nAn ADAF consists of three parts: meta data, results, and timeseries.\n\nMeta data contains information about the data in the ADAF. Stuff like when,\nwhere and how it was measured or what parameter values were used to generated\nit. A general guideline is that the meta data should be enough to (at least in\ntheory) reproduce the data in the ADAF.\n\nResults and timeseries contain the actual data. Results are always scalar\nwhereas the timeseries can have any number of values.\n\nTimeseries can come in several systems and each system can contain several\nrasters. Each raster in turn has one basis and any number of timeseries. So\nfor example an experiment where some signals are sampled at 100Hz and others\nare sampled only once per second would have (at least) two rasters. A basis\ndoesnโt have to be uniform but can have samples only every now and then.\n\n',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
sydoc-tester - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": false }
| Metric | Value |
|---|---|
| map | 0.3233 (+0.1907) |
| mrr@10 | 0.3233 (+0.2013) |
| ndcg@10 | 0.3488 (+0.1993) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100,NanoNFCorpus_R100andNanoNQ_R100 - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": true }
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|---|---|---|---|
| map | 0.5604 (+0.0708) | 0.3633 (+0.1023) | 0.6359 (+0.2163) |
| mrr@10 | 0.5468 (+0.0693) | 0.5569 (+0.0570) | 0.6529 (+0.2262) |
| ndcg@10 | 0.6088 (+0.0683) | 0.3953 (+0.0703) | 0.6934 (+0.1928) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean - Evaluated with
CrossEncoderNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
| Metric | Value |
|---|---|
| map | 0.5199 (+0.1298) |
| mrr@10 | 0.5855 (+0.1175) |
| ndcg@10 | 0.5658 (+0.1105) |
Training Details
Training Datasets
query-doc
- Dataset: query-doc
- Size: 15,230 training samples
- Columns:
query,document, andlabel - Approximate statistics based on the first 1000 samples:
query document label type string string int details - min: 31 characters
- mean: 150.61 characters
- max: 242 characters
- min: 163 characters
- mean: 1891.69 characters
- max: 12851 characters
- 0: ~74.10%
- 1: ~25.90%
- Samples:
query document label What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?# API
ADAF API
========
API for working with the ADAF type.
Import this module like this:<br>from sympathy.api import adaf<br><br>
The ADAF structure
------------------
An ADAF consists of three parts: meta data, results, and timeseries.
Meta data contains information about the data in the ADAF. Stuff like when,
where and how it was measured or what parameter values were used to generated
it. A general guideline is that the meta data should be enough to (at least in
theory) reproduce the data in the ADAF.
Results and timeseries contain the actual data. Results are always scalar
whereas the timeseries can have any number of values.
Timeseries can come in several systems and each system can contain several
rasters. Each raster in turn has one basis and any number of timeseries. So
for example an experiment where some signals are sampled at 100Hz and others
are sampled only once per second would have (at least) two rasters. A basis
doesnโt have to be uniform but can have samples on...1What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?# Node
Table to ADAF
=============
Convert a Table into an ADAF, placing its content in the specified container.
Documentation
-------------
The target container in the ADAF is specified in the configuration GUI. If the
timeseries container is chosen it is necessary to specify the column in the
Table which will be the time basis signal in the ADAF. You can also specify
the name of the system and raster containers.
See also Working with ADAF for tips about how to use these conversion
nodes.0What are the three primary parts of an ADAF, and how does the meta data differ functionally from the results and timeseries in terms of reproducibility?# Node
Select columns in ADAF with structure Table
===========================================
Select the columns to keep in ADAF using selection table created by ADAF structure to table
Documentation
-------------
Use this node if youโre only interested in some of the data in an ADAF
e.g. for performance reasons.
The Table/Tables argument should have four columns, which must be named
Type, System, Raster, and Parameter. These columns hold the names of the
corresponding fields in the ADAF/ADAFs.
Definition
----------
### Input ports
> selection
> : Type: table
> ADAF structure selection
>
> data
> : Type: adaf
> ADAF data matched with selection
### Output ports
> data
> : Type: adaf
> ADAF data after selection
### Configuration
> Remove selected columns (complement)
> : When enabled, the selected columns will be removed. When disabled, the non-selected columns will be removed.
### Related nodes
* Select columns in ADAFs with structure Table
* Sel...0 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 3 }
anc-pos-neg
- Dataset: anc-pos-neg
- Size: 2,435 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 14 characters
- mean: 158.34 characters
- max: 317 characters
- min: 163 characters
- mean: 2474.63 characters
- max: 20435 characters
- min: 214 characters
- mean: 1745.03 characters
- max: 20435 characters
- Samples:
anchor positive negative - Retrieve the time (t) and signal (y) values of"Voltage"?# API ADAF API
Accessing the data
------------------
Theadaf.ADAFobject has two members calledmetaandrescontaining the meta data and results respectively. Both are sympathy.api.adaf.Groupobjects.
Example of how to usemeta(resis completely analogous):
:<br>>>> from sympathy.api import adaf<br>>>> import numpy as np<br>>>> f = adaf.ADAF()<br>>>> f.meta.create_column(<br>... 'Duration', np.array([3]), {'unit': 'h'})<br>>>> f.meta.create_column(<br>... 'Relative humidity', np.array([63]), {'unit': '%'})<br>>>> print(f.meta['Duration'].value())<br>[3]<br>>>> print(f.meta['Duration'].attr['unit'])<br><br>
Timeseries can be accessed in two different ways. Either via the membersysor via the memberts. Using sys is generally recommended sincetshandles multiple timeseries with the same name across different rasters
poorly.
Example of how to use sys:
: ```
>>> f.sys.create('Measurement system')
>>> f.sys['Measurement system'].create('Raster1')
>>> f.sys['Measurement system']['Raster...# API ADAF API
Class sympathy.api.adaf.Timeseries
----------------------------------
class sympathy.api.adaf.Timeseries(node, data, name: str)
: Class representing a timeseries. The values in the timeseries can be
accessed as a numpy array via the membery. The timeseries is also
connected to a time basis whose values can be accessed as a numpy array
via the propertyt.
The timeseries can also have any number of attributes. The methodssympathy.api.adaf.Timeseries.unit and sympathy.api.adaf.Timeseries.description retrieve those two attributes. To get
all attributes use the method sympathy.api.adaf.Timeseries.get_attributes.
basis() โ sympathy.typeutils.adaf.Column
: Return the timeseries data basis as a sympathy.api.adaf.Column.
description() โ str
: Return the description attribute or an empty string if it is not set.
property dtype*: dtype*
: dtype of timeseries.
get_attributes() โ Dict[str, int \How can you add a custom attribute (e.g.,{'description': 'Indicates system health'}) to a signal named"Status"in a raster, and how would you later retrieve this attribute?# API ADAF API
Accessing the data
------------------
Theadaf.ADAFobject has two members calledmetaandrescontaining the meta data and results respectively. Both are sympathy.api.adaf.Groupobjects.
Example of how to usemeta(resis completely analogous):
:<br>>>> from sympathy.api import adaf<br>>>> import numpy as np<br>>>> f = adaf.ADAF()<br>>>> f.meta.create_column(<br>... 'Duration', np.array([3]), {'unit': 'h'})<br>>>> f.meta.create_column(<br>... 'Relative humidity', np.array([63]), {'unit': '%'})<br>>>> print(f.meta['Duration'].value())<br>[3]<br>>>> print(f.meta['Duration'].attr['unit'])<br><br>
Timeseries can be accessed in two different ways. Either via the membersysor via the memberts. Using sys is generally recommended sincetshandles multiple timeseries with the same name across different rasters
poorly.
Example of how to use sys:
: ```
>>> f.sys.create('Measurement system')
>>> f.sys['Measurement system'].create('Raster1')
>>> f.sys['Measurement system']['Raster...# API ADAF API
Class sympathy.api.adaf.RasterN
-------------------------------
class sympathy.api.adaf.RasterN(record, system: str, name: str)
: Represents a raster with a single time basis and any number of timeseries
columns.
property attr*: Attributes*
: Raster level attributes.
basis_column() โ sympathy.typeutils.adaf.Column
: Return the time basis for this raster. The returned object is of typesympathy.api.adaf.Column.
create_basis(data: ndarray, *attributes: Dict[str, int \How can you add a custom attribute (e.g.,{'description': 'Indicates system health'}) to a signal named"Status"in a raster, and how would you later retrieve this attribute?# API ADAF API
Accessing the data
------------------
Theadaf.ADAFobject has two members calledmetaandrescontaining the meta data and results respectively. Both are sympathy.api.adaf.Groupobjects.
Example of how to usemeta(resis completely analogous):
:<br>>>> from sympathy.api import adaf<br>>>> import numpy as np<br>>>> f = adaf.ADAF()<br>>>> f.meta.create_column(<br>... 'Duration', np.array([3]), {'unit': 'h'})<br>>>> f.meta.create_column(<br>... 'Relative humidity', np.array([63]), {'unit': '%'})<br>>>> print(f.meta['Duration'].value())<br>[3]<br>>>> print(f.meta['Duration'].attr['unit'])<br><br>
Timeseries can be accessed in two different ways. Either via the membersysor via the memberts. Using sys is generally recommended sincetshandles multiple timeseries with the same name across different rasters
poorly.
Example of how to use sys:
: ```
>>> f.sys.create('Measurement system')
>>> f.sys['Measurement system'].create('Raster1')
>>> f.sys['Measurement system']['Raster...# API ADAF API
Class sympathy.api.adaf.Timeseries
----------------------------------
class sympathy.api.adaf.Timeseries(node, data, name: str)
: Class representing a timeseries. The values in the timeseries can be
accessed as a numpy array via the membery. The timeseries is also
connected to a time basis whose values can be accessed as a numpy array
via the propertyt.
The timeseries can also have any number of attributes. The methodssympathy.api.adaf.Timeseries.unit and sympathy.api.adaf.Timeseries.description retrieve those two attributes. To get
all attributes use the method sympathy.api.adaf.Timeseries.get_attributes.
basis() โ sympathy.typeutils.adaf.Column
: Return the timeseries data basis as a sympathy.api.adaf.Column.
description() โ str
: Return the description attribute or an empty string if it is not set.
property dtype*: dtype*
: dtype of timeseries.
get_attributes() โ Dict[str, int \ - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 32 }
anc-pos-neg-2
- Dataset: anc-pos-neg-2
- Size: 1,219 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 0 characters
- mean: 89.95 characters
- max: 143 characters
- min: 496 characters
- mean: 1890.31 characters
- max: 7315 characters
- min: 160 characters
- mean: 2026.14 characters
- max: 12851 characters
- Samples:
anchor positive negative Is it possible to run a Node.js script or environment from within a Python program?# Nodes in python
Working with nodes
------------------
Nodes store the changes made during configure and when the parameters are
changed. They produce a list of data elements when executed and expect a list of
data elements as input, this makes it possible to easily connect the data
between nodes. Note that the ordering of inputs and outputs is important and
should match the declaration order in the node definition.
The code example below demonstrates how to use the result produced by one node as
input for another.<br>random_table = library.node('Random Table')<br>rt_output = random_table.execute()<br><br>item_to_list = library.node('Item to List')<br>itl_output = item_to_list.execute(rt_output)<br><br>assert itl_output[0][0].equal_to(rt_output[0])<br><br>
The code example below demonstrates how to use the result produced by multiple
nodes as input for another.
```
random_table0 = library.node('Random Table')
rt_output0 = random_table.execute()
random_table1 = library.node('Random Table')
rt_outpu...
Nodes
=====
A node is defined as a Python class which inherits fromsympathy.api.node.Node. All node definitions should be in files with
filenames matchingnode_*.pyand be placed in the nodes folder of a node
library. See Libraries for information about where to put nodes in your
library. Nodes can be placed in subfolders and multiple nodes can be defined in
the same file.
Node definition
---------------
The following class variables make up the definition of a node.
Note
The fieldsnameandnodeidare needed to generate the node. If any
of these two are missing any attempt at creating this node stops immediately
without any error message. This can be a good way of e.g. creating a
superclass for multiple node classes.name
: Required.
The name of the node, is what the user will rely on to identify the node. It
will show in the library view and in the nodeโs tooltip. It will also be used
as the default label of any instance of the node in a flow.
Try to keep the ...Is it possible to run a Node.js script or environment from within a Python program?# Nodes in python
Working with nodes
------------------
Nodes store the changes made during configure and when the parameters are
changed. They produce a list of data elements when executed and expect a list of
data elements as input, this makes it possible to easily connect the data
between nodes. Note that the ordering of inputs and outputs is important and
should match the declaration order in the node definition.
The code example below demonstrates how to use the result produced by one node as
input for another.<br>random_table = library.node('Random Table')<br>rt_output = random_table.execute()<br><br>item_to_list = library.node('Item to List')<br>itl_output = item_to_list.execute(rt_output)<br><br>assert itl_output[0][0].equal_to(rt_output[0])<br><br>
The code example below demonstrates how to use the result produced by multiple
nodes as input for another.
```
random_table0 = library.node('Random Table')
rt_output0 = random_table.execute()
random_table1 = library.node('Random Table')
rt_outpu...# Nodes in python
Reference
---------
exception sympathy.app.interactive.InteractiveNotNodeError[source]
class sympathy.app.interactive.SyiLibrary(context, library, name_library, paths)[source]
: A library of nodes that can be configured and executed in Python code.
Should not be instantiated directly. Instead call sympathy.app.interactive.load_library.
node(nid, fuzzy_names=True) โ sympathy.app.interactive.SyiNode[source]
: Attempt to find nid in the library.
Argument nid can be either a node id or a node name. If no matching
node can be found a KeyError is raised.
If fuzzy_names is True (the default) and nid doesnโt match any
node exactly, it is used as a pattern that the node name must match.
The characters of the pattern must appear in the node name in the same
order as in the pattern, but must not be of the same case, and may have
other characters in between them. If multiple nodes match the pattern a
KeyError is raised.
nodeids() ...Is it possible to run a Node.js script or environment from within a Python program?# Nodes in python
Working with nodes
------------------
Nodes store the changes made during configure and when the parameters are
changed. They produce a list of data elements when executed and expect a list of
data elements as input, this makes it possible to easily connect the data
between nodes. Note that the ordering of inputs and outputs is important and
should match the declaration order in the node definition.
The code example below demonstrates how to use the result produced by one node as
input for another.<br>random_table = library.node('Random Table')<br>rt_output = random_table.execute()<br><br>item_to_list = library.node('Item to List')<br>itl_output = item_to_list.execute(rt_output)<br><br>assert itl_output[0][0].equal_to(rt_output[0])<br><br>
The code example below demonstrates how to use the result produced by multiple
nodes as input for another.
```
random_table0 = library.node('Random Table')
rt_output0 = random_table.execute()
random_table1 = library.node('Random Table')
rt_outpu...# API
Datasource API
==============
API for working with the Datasource type.
Import this module like this:<br>from sympathy.api import datasource<br><br>
Classdatasource.Datasource
-----------------------------
class sympathy.api.datasource.Datasource(*filename: str \ - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 32 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0001num_train_epochs: 10warmup_ratio: 0.1dataloader_num_workers: 4load_best_model_at_end: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | sydoc-tester_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.2780 (+0.1285) | 0.6686 (+0.1282) | 0.3930 (+0.0680) | 0.7599 (+0.2592) | 0.6072 (+0.1518) |
| 0.0167 | 1 | 1.1888 | - | - | - | - | - |
| 0.0333 | 2 | 1.8501 | - | - | - | - | - |
| 0.05 | 3 | 3.0206 | - | - | - | - | - |
| 0.0667 | 4 | 1.5729 | - | - | - | - | - |
| 0.0833 | 5 | 1.8201 | - | - | - | - | - |
| 0.1 | 6 | 2.7519 | - | - | - | - | - |
| 0.1167 | 7 | 1.7264 | - | - | - | - | - |
| 0.1333 | 8 | 1.9018 | - | - | - | - | - |
| 0.15 | 9 | 2.5682 | - | - | - | - | - |
| 0.1667 | 10 | 2.6998 | - | - | - | - | - |
| 0.1833 | 11 | 2.0299 | - | - | - | - | - |
| 0.2 | 12 | 2.7956 | - | - | - | - | - |
| 0.2167 | 13 | 0.6817 | - | - | - | - | - |
| 0.2333 | 14 | 1.838 | - | - | - | - | - |
| 0.25 | 15 | 2.2811 | - | - | - | - | - |
| 0.2667 | 16 | 1.3663 | - | - | - | - | - |
| 0.2833 | 17 | 2.0837 | - | - | - | - | - |
| 0.3 | 18 | 2.4574 | - | - | - | - | - |
| 0.3167 | 19 | 0.23 | - | - | - | - | - |
| 0.3333 | 20 | 1.8395 | - | - | - | - | - |
| 0.35 | 21 | 2.4167 | - | - | - | - | - |
| 0.3667 | 22 | 0.6286 | - | - | - | - | - |
| 0.3833 | 23 | 1.8573 | - | - | - | - | - |
| 0.4 | 24 | 2.3595 | - | - | - | - | - |
| 0.4167 | 25 | 0.5143 | - | - | - | - | - |
| 0.4333 | 26 | 1.4291 | - | - | - | - | - |
| 0.45 | 27 | 2.0018 | - | - | - | - | - |
| 0.4667 | 28 | 0.1993 | - | - | - | - | - |
| 0.4833 | 29 | 1.7079 | - | - | - | - | - |
| 0.5 | 30 | 1.9053 | - | - | - | - | - |
| 0.5167 | 31 | 0.6029 | - | - | - | - | - |
| 0.5333 | 32 | 1.4611 | - | - | - | - | - |
| 0.55 | 33 | 2.0044 | - | - | - | - | - |
| 0.5667 | 34 | 0.4241 | - | - | - | - | - |
| 0.5833 | 35 | 2.071 | - | - | - | - | - |
| 0.6 | 36 | 2.0503 | - | - | - | - | - |
| 0.6167 | 37 | 1.0458 | - | - | - | - | - |
| 0.6333 | 38 | 1.5994 | - | - | - | - | - |
| 0.65 | 39 | 1.868 | - | - | - | - | - |
| 0.6667 | 40 | 0.5284 | - | - | - | - | - |
| 0.6833 | 41 | 1.3488 | - | - | - | - | - |
| 0.7 | 42 | 1.9041 | - | - | - | - | - |
| 0.7167 | 43 | 0.5827 | - | - | - | - | - |
| 0.7333 | 44 | 1.3666 | - | - | - | - | - |
| 0.75 | 45 | 2.1058 | - | - | - | - | - |
| 0.7667 | 46 | 0.6255 | - | - | - | - | - |
| 0.7833 | 47 | 1.0372 | - | - | - | - | - |
| 0.8 | 48 | 2.2852 | - | - | - | - | - |
| 0.8167 | 49 | 0.5618 | - | - | - | - | - |
| 0.8333 | 50 | 1.1474 | - | - | - | - | - |
| 0.85 | 51 | 2.1265 | - | - | - | - | - |
| 0.8667 | 52 | 0.4827 | - | - | - | - | - |
| 0.8833 | 53 | 1.2651 | - | - | - | - | - |
| 0.9 | 54 | 1.8336 | - | - | - | - | - |
| 0.9167 | 55 | 0.7961 | - | - | - | - | - |
| 0.9333 | 56 | 1.0884 | - | - | - | - | - |
| 0.95 | 57 | 1.6975 | - | - | - | - | - |
| 0.9667 | 58 | 0.5475 | - | - | - | - | - |
| 0.9833 | 59 | 0.8953 | - | - | - | - | - |
| 1.0 | 60 | 1.8382 | 0.2914 (+0.1420) | 0.6658 (+0.1254) | 0.4003 (+0.0752) | 0.7547 (+0.2540) | 0.6069 (+0.1516) |
| 1.0167 | 61 | 0.5987 | - | - | - | - | - |
| 1.0333 | 62 | 1.0246 | - | - | - | - | - |
| 1.05 | 63 | 1.6712 | - | - | - | - | - |
| 1.0667 | 64 | 0.4722 | - | - | - | - | - |
| 1.0833 | 65 | 1.1193 | - | - | - | - | - |
| 1.1 | 66 | 1.5013 | - | - | - | - | - |
| 1.1167 | 67 | 0.5394 | - | - | - | - | - |
| 1.1333 | 68 | 1.1887 | - | - | - | - | - |
| 1.15 | 69 | 1.7034 | - | - | - | - | - |
| 1.1667 | 70 | 0.4565 | - | - | - | - | - |
| 1.1833 | 71 | 1.2703 | - | - | - | - | - |
| 1.2 | 72 | 1.753 | - | - | - | - | - |
| 1.2167 | 73 | 0.3727 | - | - | - | - | - |
| 1.2333 | 74 | 0.8781 | - | - | - | - | - |
| 1.25 | 75 | 1.6562 | - | - | - | - | - |
| 1.2667 | 76 | 0.7796 | - | - | - | - | - |
| 1.2833 | 77 | 1.0529 | - | - | - | - | - |
| 1.3 | 78 | 1.5911 | - | - | - | - | - |
| 1.3167 | 79 | 0.3978 | - | - | - | - | - |
| 1.3333 | 80 | 0.8815 | - | - | - | - | - |
| 1.35 | 81 | 1.6555 | - | - | - | - | - |
| 1.3667 | 82 | 0.4231 | - | - | - | - | - |
| 1.3833 | 83 | 0.8421 | - | - | - | - | - |
| 1.4 | 84 | 1.78 | - | - | - | - | - |
| 1.4167 | 85 | 0.4604 | - | - | - | - | - |
| 1.4333 | 86 | 1.4535 | - | - | - | - | - |
| 1.45 | 87 | 1.5948 | - | - | - | - | - |
| 1.4667 | 88 | 1.0813 | - | - | - | - | - |
| 1.4833 | 89 | 0.9153 | - | - | - | - | - |
| 1.5 | 90 | 1.3446 | - | - | - | - | - |
| 1.5167 | 91 | 0.8085 | - | - | - | - | - |
| 1.5333 | 92 | 0.8611 | - | - | - | - | - |
| 1.55 | 93 | 2.0656 | - | - | - | - | - |
| 1.5667 | 94 | 0.8703 | - | - | - | - | - |
| 1.5833 | 95 | 1.0746 | - | - | - | - | - |
| 1.6 | 96 | 1.8937 | - | - | - | - | - |
| 1.6167 | 97 | 0.3555 | - | - | - | - | - |
| 1.6333 | 98 | 0.9181 | - | - | - | - | - |
| 1.65 | 99 | 1.666 | - | - | - | - | - |
| 1.6667 | 100 | 0.5811 | - | - | - | - | - |
| 1.6833 | 101 | 0.8751 | - | - | - | - | - |
| 1.7 | 102 | 1.4337 | - | - | - | - | - |
| 1.7167 | 103 | 0.5711 | - | - | - | - | - |
| 1.7333 | 104 | 0.8895 | - | - | - | - | - |
| 1.75 | 105 | 1.5261 | - | - | - | - | - |
| 1.7667 | 106 | 0.4124 | - | - | - | - | - |
| 1.7833 | 107 | 1.0844 | - | - | - | - | - |
| 1.8 | 108 | 1.3582 | - | - | - | - | - |
| 1.8167 | 109 | 0.6696 | - | - | - | - | - |
| 1.8333 | 110 | 1.014 | - | - | - | - | - |
| 1.85 | 111 | 1.8169 | - | - | - | - | - |
| 1.8667 | 112 | 0.4394 | - | - | - | - | - |
| 1.8833 | 113 | 0.8345 | - | - | - | - | - |
| 1.9 | 114 | 1.3999 | - | - | - | - | - |
| 1.9167 | 115 | 0.1797 | - | - | - | - | - |
| 1.9333 | 116 | 0.8217 | - | - | - | - | - |
| 1.95 | 117 | 1.2372 | - | - | - | - | - |
| 1.9667 | 118 | 0.3477 | - | - | - | - | - |
| 1.9833 | 119 | 0.9426 | - | - | - | - | - |
| 2.0 | 120 | 0.7439 | 0.3266 (+0.1771) | 0.6720 (+0.1315) | 0.4090 (+0.0840) | 0.7295 (+0.2289) | 0.6035 (+0.1482) |
| 2.0167 | 121 | 0.5735 | - | - | - | - | - |
| 2.0333 | 122 | 1.0874 | - | - | - | - | - |
| 2.05 | 123 | 1.5375 | - | - | - | - | - |
| 2.0667 | 124 | 0.4699 | - | - | - | - | - |
| 2.0833 | 125 | 0.6828 | - | - | - | - | - |
| 2.1 | 126 | 1.1029 | - | - | - | - | - |
| 2.1167 | 127 | 0.2952 | - | - | - | - | - |
| 2.1333 | 128 | 0.7866 | - | - | - | - | - |
| 2.15 | 129 | 1.1173 | - | - | - | - | - |
| 2.1667 | 130 | 0.4053 | - | - | - | - | - |
| 2.1833 | 131 | 0.8136 | - | - | - | - | - |
| 2.2 | 132 | 1.1145 | - | - | - | - | - |
| 2.2167 | 133 | 0.2084 | - | - | - | - | - |
| 2.2333 | 134 | 0.6429 | - | - | - | - | - |
| 2.25 | 135 | 1.0727 | - | - | - | - | - |
| 2.2667 | 136 | 0.2806 | - | - | - | - | - |
| 2.2833 | 137 | 0.7038 | - | - | - | - | - |
| 2.3 | 138 | 1.3219 | - | - | - | - | - |
| 2.3167 | 139 | 0.3426 | - | - | - | - | - |
| 2.3333 | 140 | 0.939 | - | - | - | - | - |
| 2.35 | 141 | 1.3082 | - | - | - | - | - |
| 2.3667 | 142 | 0.4325 | - | - | - | - | - |
| 2.3833 | 143 | 0.8041 | - | - | - | - | - |
| 2.4 | 144 | 1.2372 | - | - | - | - | - |
| 2.4167 | 145 | 0.3477 | - | - | - | - | - |
| 2.4333 | 146 | 0.6534 | - | - | - | - | - |
| 2.45 | 147 | 0.9268 | - | - | - | - | - |
| 2.4667 | 148 | 0.1559 | - | - | - | - | - |
| 2.4833 | 149 | 0.8769 | - | - | - | - | - |
| 2.5 | 150 | 0.8099 | - | - | - | - | - |
| 2.5167 | 151 | 0.1916 | - | - | - | - | - |
| 2.5333 | 152 | 0.9749 | - | - | - | - | - |
| 2.55 | 153 | 0.8685 | - | - | - | - | - |
| 2.5667 | 154 | 0.4233 | - | - | - | - | - |
| 2.5833 | 155 | 0.7877 | - | - | - | - | - |
| 2.6 | 156 | 1.0647 | - | - | - | - | - |
| 2.6167 | 157 | 0.3441 | - | - | - | - | - |
| 2.6333 | 158 | 0.8019 | - | - | - | - | - |
| 2.65 | 159 | 0.8691 | - | - | - | - | - |
| 2.6667 | 160 | 0.2585 | - | - | - | - | - |
| 2.6833 | 161 | 0.7472 | - | - | - | - | - |
| 2.7 | 162 | 0.8618 | - | - | - | - | - |
| 2.7167 | 163 | 0.2301 | - | - | - | - | - |
| 2.7333 | 164 | 0.6078 | - | - | - | - | - |
| 2.75 | 165 | 0.8942 | - | - | - | - | - |
| 2.7667 | 166 | 0.3613 | - | - | - | - | - |
| 2.7833 | 167 | 0.6139 | - | - | - | - | - |
| 2.8 | 168 | 0.8171 | - | - | - | - | - |
| 2.8167 | 169 | 0.2423 | - | - | - | - | - |
| 2.8333 | 170 | 0.7126 | - | - | - | - | - |
| 2.85 | 171 | 0.8464 | - | - | - | - | - |
| 2.8667 | 172 | 0.2323 | - | - | - | - | - |
| 2.8833 | 173 | 0.5863 | - | - | - | - | - |
| 2.9 | 174 | 0.9001 | - | - | - | - | - |
| 2.9167 | 175 | 0.3677 | - | - | - | - | - |
| 2.9333 | 176 | 0.6953 | - | - | - | - | - |
| 2.95 | 177 | 0.816 | - | - | - | - | - |
| 2.9667 | 178 | 0.1606 | - | - | - | - | - |
| 2.9833 | 179 | 0.4495 | - | - | - | - | - |
| 3.0 | 180 | 0.5979 | 0.3271 (+0.1777) | 0.6738 (+0.1333) | 0.4114 (+0.0864) | 0.7131 (+0.2125) | 0.5994 (+0.1441) |
| 3.0167 | 181 | 0.2455 | - | - | - | - | - |
| 3.0333 | 182 | 0.8384 | - | - | - | - | - |
| 3.05 | 183 | 0.7267 | - | - | - | - | - |
| 3.0667 | 184 | 0.8089 | - | - | - | - | - |
| 3.0833 | 185 | 0.5904 | - | - | - | - | - |
| 3.1 | 186 | 0.6173 | - | - | - | - | - |
| 3.1167 | 187 | 0.3746 | - | - | - | - | - |
| 3.1333 | 188 | 0.4729 | - | - | - | - | - |
| 3.15 | 189 | 0.7779 | - | - | - | - | - |
| 3.1667 | 190 | 0.323 | - | - | - | - | - |
| 3.1833 | 191 | 0.5322 | - | - | - | - | - |
| 3.2 | 192 | 0.6053 | - | - | - | - | - |
| 3.2167 | 193 | 0.4589 | - | - | - | - | - |
| 3.2333 | 194 | 0.5053 | - | - | - | - | - |
| 3.25 | 195 | 0.7136 | - | - | - | - | - |
| 3.2667 | 196 | 0.296 | - | - | - | - | - |
| 3.2833 | 197 | 0.631 | - | - | - | - | - |
| 3.3 | 198 | 0.8061 | - | - | - | - | - |
| 3.3167 | 199 | 0.2414 | - | - | - | - | - |
| 3.3333 | 200 | 0.6171 | - | - | - | - | - |
| 3.35 | 201 | 0.5376 | - | - | - | - | - |
| 3.3667 | 202 | 0.5552 | - | - | - | - | - |
| 3.3833 | 203 | 0.6648 | - | - | - | - | - |
| 3.4 | 204 | 0.7012 | - | - | - | - | - |
| 3.4167 | 205 | 0.4025 | - | - | - | - | - |
| 3.4333 | 206 | 0.5783 | - | - | - | - | - |
| 3.45 | 207 | 0.4234 | - | - | - | - | - |
| 3.4667 | 208 | 0.5073 | - | - | - | - | - |
| 3.4833 | 209 | 0.6345 | - | - | - | - | - |
| 3.5 | 210 | 0.6181 | - | - | - | - | - |
| 3.5167 | 211 | 0.2886 | - | - | - | - | - |
| 3.5333 | 212 | 0.4679 | - | - | - | - | - |
| 3.55 | 213 | 0.3889 | - | - | - | - | - |
| 3.5667 | 214 | 0.2376 | - | - | - | - | - |
| 3.5833 | 215 | 0.7177 | - | - | - | - | - |
| 3.6 | 216 | 0.4891 | - | - | - | - | - |
| 3.6167 | 217 | 0.3411 | - | - | - | - | - |
| 3.6333 | 218 | 0.8069 | - | - | - | - | - |
| 3.65 | 219 | 0.8119 | - | - | - | - | - |
| 3.6667 | 220 | 0.4792 | - | - | - | - | - |
| 3.6833 | 221 | 0.8323 | - | - | - | - | - |
| 3.7 | 222 | 0.7516 | - | - | - | - | - |
| 3.7167 | 223 | 0.2906 | - | - | - | - | - |
| 3.7333 | 224 | 0.5762 | - | - | - | - | - |
| 3.75 | 225 | 0.6405 | - | - | - | - | - |
| 3.7667 | 226 | 0.1347 | - | - | - | - | - |
| 3.7833 | 227 | 0.4869 | - | - | - | - | - |
| 3.8 | 228 | 0.5139 | - | - | - | - | - |
| 3.8167 | 229 | 0.2649 | - | - | - | - | - |
| 3.8333 | 230 | 0.7511 | - | - | - | - | - |
| 3.85 | 231 | 0.552 | - | - | - | - | - |
| 3.8667 | 232 | 0.2641 | - | - | - | - | - |
| 3.8833 | 233 | 0.3692 | - | - | - | - | - |
| 3.9 | 234 | 0.6599 | - | - | - | - | - |
| 3.9167 | 235 | 0.9202 | - | - | - | - | - |
| 3.9333 | 236 | 0.6013 | - | - | - | - | - |
| 3.95 | 237 | 0.6525 | - | - | - | - | - |
| 3.9667 | 238 | 0.3979 | - | - | - | - | - |
| 3.9833 | 239 | 0.5321 | - | - | - | - | - |
| 4.0 | 240 | 0.0005 | 0.3370 (+0.1876) | 0.6507 (+0.1103) | 0.4011 (+0.0760) | 0.6923 (+0.1917) | 0.5814 (+0.1260) |
| 4.0167 | 241 | 0.1341 | - | - | - | - | - |
| 4.0333 | 242 | 0.5269 | - | - | - | - | - |
| 4.05 | 243 | 0.6917 | - | - | - | - | - |
| 4.0667 | 244 | 0.437 | - | - | - | - | - |
| 4.0833 | 245 | 0.5446 | - | - | - | - | - |
| 4.1 | 246 | 0.5892 | - | - | - | - | - |
| 4.1167 | 247 | 0.2742 | - | - | - | - | - |
| 4.1333 | 248 | 0.5049 | - | - | - | - | - |
| 4.15 | 249 | 0.7015 | - | - | - | - | - |
| 4.1667 | 250 | 0.2648 | - | - | - | - | - |
| 4.1833 | 251 | 0.5977 | - | - | - | - | - |
| 4.2 | 252 | 0.8432 | - | - | - | - | - |
| 4.2167 | 253 | 0.281 | - | - | - | - | - |
| 4.2333 | 254 | 0.5203 | - | - | - | - | - |
| 4.25 | 255 | 0.6649 | - | - | - | - | - |
| 4.2667 | 256 | 0.1843 | - | - | - | - | - |
| 4.2833 | 257 | 0.4616 | - | - | - | - | - |
| 4.3 | 258 | 0.3689 | - | - | - | - | - |
| 4.3167 | 259 | 0.2484 | - | - | - | - | - |
| 4.3333 | 260 | 0.4718 | - | - | - | - | - |
| 4.35 | 261 | 0.5886 | - | - | - | - | - |
| 4.3667 | 262 | 0.1984 | - | - | - | - | - |
| 4.3833 | 263 | 0.6351 | - | - | - | - | - |
| 4.4 | 264 | 0.4616 | - | - | - | - | - |
| 4.4167 | 265 | 0.3106 | - | - | - | - | - |
| 4.4333 | 266 | 0.5568 | - | - | - | - | - |
| 4.45 | 267 | 0.3814 | - | - | - | - | - |
| 4.4667 | 268 | 0.2351 | - | - | - | - | - |
| 4.4833 | 269 | 0.548 | - | - | - | - | - |
| 4.5 | 270 | 0.5559 | - | - | - | - | - |
| 4.5167 | 271 | 0.2272 | - | - | - | - | - |
| 4.5333 | 272 | 0.5367 | - | - | - | - | - |
| 4.55 | 273 | 0.4771 | - | - | - | - | - |
| 4.5667 | 274 | 0.5025 | - | - | - | - | - |
| 4.5833 | 275 | 0.4496 | - | - | - | - | - |
| 4.6 | 276 | 0.3119 | - | - | - | - | - |
| 4.6167 | 277 | 0.1054 | - | - | - | - | - |
| 4.6333 | 278 | 0.5954 | - | - | - | - | - |
| 4.65 | 279 | 0.5023 | - | - | - | - | - |
| 4.6667 | 280 | 0.1567 | - | - | - | - | - |
| 4.6833 | 281 | 0.5903 | - | - | - | - | - |
| 4.7 | 282 | 0.5529 | - | - | - | - | - |
| 4.7167 | 283 | 0.5897 | - | - | - | - | - |
| 4.7333 | 284 | 0.4256 | - | - | - | - | - |
| 4.75 | 285 | 0.3928 | - | - | - | - | - |
| 4.7667 | 286 | 0.2755 | - | - | - | - | - |
| 4.7833 | 287 | 0.5036 | - | - | - | - | - |
| 4.8 | 288 | 0.464 | - | - | - | - | - |
| 4.8167 | 289 | 0.1169 | - | - | - | - | - |
| 4.8333 | 290 | 0.6028 | - | - | - | - | - |
| 4.85 | 291 | 0.2327 | - | - | - | - | - |
| 4.8667 | 292 | 0.6823 | - | - | - | - | - |
| 4.8833 | 293 | 0.5122 | - | - | - | - | - |
| 4.9 | 294 | 0.4079 | - | - | - | - | - |
| 4.9167 | 295 | 0.4138 | - | - | - | - | - |
| 4.9333 | 296 | 0.6886 | - | - | - | - | - |
| 4.95 | 297 | 0.2706 | - | - | - | - | - |
| 4.9667 | 298 | 0.2255 | - | - | - | - | - |
| 4.9833 | 299 | 0.4051 | - | - | - | - | - |
| 5.0 | 300 | 0.4815 | 0.3403 (+0.1909) | 0.6408 (+0.1003) | 0.4042 (+0.0791) | 0.7126 (+0.2119) | 0.5858 (+0.1305) |
| 5.0167 | 301 | 0.1022 | - | - | - | - | - |
| 5.0333 | 302 | 0.3965 | - | - | - | - | - |
| 5.05 | 303 | 0.3549 | - | - | - | - | - |
| 5.0667 | 304 | 0.4604 | - | - | - | - | - |
| 5.0833 | 305 | 0.4974 | - | - | - | - | - |
| 5.1 | 306 | 0.5253 | - | - | - | - | - |
| 5.1167 | 307 | 0.1403 | - | - | - | - | - |
| 5.1333 | 308 | 0.554 | - | - | - | - | - |
| 5.15 | 309 | 0.4808 | - | - | - | - | - |
| 5.1667 | 310 | 0.3776 | - | - | - | - | - |
| 5.1833 | 311 | 0.5058 | - | - | - | - | - |
| 5.2 | 312 | 0.5046 | - | - | - | - | - |
| 5.2167 | 313 | 0.0419 | - | - | - | - | - |
| 5.2333 | 314 | 0.5171 | - | - | - | - | - |
| 5.25 | 315 | 0.2989 | - | - | - | - | - |
| 5.2667 | 316 | 0.1901 | - | - | - | - | - |
| 5.2833 | 317 | 0.4728 | - | - | - | - | - |
| 5.3 | 318 | 0.5452 | - | - | - | - | - |
| 5.3167 | 319 | 0.3045 | - | - | - | - | - |
| 5.3333 | 320 | 0.4575 | - | - | - | - | - |
| 5.35 | 321 | 0.4383 | - | - | - | - | - |
| 5.3667 | 322 | 0.367 | - | - | - | - | - |
| 5.3833 | 323 | 0.6289 | - | - | - | - | - |
| 5.4 | 324 | 0.5697 | - | - | - | - | - |
| 5.4167 | 325 | 0.3275 | - | - | - | - | - |
| 5.4333 | 326 | 0.6355 | - | - | - | - | - |
| 5.45 | 327 | 0.2026 | - | - | - | - | - |
| 5.4667 | 328 | 0.3994 | - | - | - | - | - |
| 5.4833 | 329 | 0.6455 | - | - | - | - | - |
| 5.5 | 330 | 0.293 | - | - | - | - | - |
| 5.5167 | 331 | 0.6003 | - | - | - | - | - |
| 5.5333 | 332 | 0.46 | - | - | - | - | - |
| 5.55 | 333 | 0.291 | - | - | - | - | - |
| 5.5667 | 334 | 0.2577 | - | - | - | - | - |
| 5.5833 | 335 | 0.4286 | - | - | - | - | - |
| 5.6 | 336 | 0.5138 | - | - | - | - | - |
| 5.6167 | 337 | 0.4342 | - | - | - | - | - |
| 5.6333 | 338 | 0.7158 | - | - | - | - | - |
| 5.65 | 339 | 0.3723 | - | - | - | - | - |
| 5.6667 | 340 | 0.3464 | - | - | - | - | - |
| 5.6833 | 341 | 0.5797 | - | - | - | - | - |
| 5.7 | 342 | 0.3321 | - | - | - | - | - |
| 5.7167 | 343 | 0.4743 | - | - | - | - | - |
| 5.7333 | 344 | 0.4901 | - | - | - | - | - |
| 5.75 | 345 | 0.4753 | - | - | - | - | - |
| 5.7667 | 346 | 0.4173 | - | - | - | - | - |
| 5.7833 | 347 | 0.291 | - | - | - | - | - |
| 5.8 | 348 | 0.2717 | - | - | - | - | - |
| 5.8167 | 349 | 0.237 | - | - | - | - | - |
| 5.8333 | 350 | 0.5443 | - | - | - | - | - |
| 5.85 | 351 | 0.3157 | - | - | - | - | - |
| 5.8667 | 352 | 0.1993 | - | - | - | - | - |
| 5.8833 | 353 | 0.4968 | - | - | - | - | - |
| 5.9 | 354 | 0.4172 | - | - | - | - | - |
| 5.9167 | 355 | 0.1981 | - | - | - | - | - |
| 5.9333 | 356 | 0.4192 | - | - | - | - | - |
| 5.95 | 357 | 0.3236 | - | - | - | - | - |
| 5.9667 | 358 | 0.3602 | - | - | - | - | - |
| 5.9833 | 359 | 0.4311 | - | - | - | - | - |
| 6.0 | 360 | 0.4171 | 0.3336 (+0.1842) | 0.6444 (+0.1040) | 0.4074 (+0.0824) | 0.7000 (+0.1994) | 0.5840 (+0.1286) |
| 6.0167 | 361 | 0.2868 | - | - | - | - | - |
| 6.0333 | 362 | 0.5633 | - | - | - | - | - |
| 6.05 | 363 | 0.4367 | - | - | - | - | - |
| 6.0667 | 364 | 0.4977 | - | - | - | - | - |
| 6.0833 | 365 | 0.6418 | - | - | - | - | - |
| 6.1 | 366 | 0.2547 | - | - | - | - | - |
| 6.1167 | 367 | 0.3511 | - | - | - | - | - |
| 6.1333 | 368 | 0.5132 | - | - | - | - | - |
| 6.15 | 369 | 0.3701 | - | - | - | - | - |
| 6.1667 | 370 | 0.2419 | - | - | - | - | - |
| 6.1833 | 371 | 0.3204 | - | - | - | - | - |
| 6.2 | 372 | 0.3631 | - | - | - | - | - |
| 6.2167 | 373 | 0.3157 | - | - | - | - | - |
| 6.2333 | 374 | 0.5016 | - | - | - | - | - |
| 6.25 | 375 | 0.297 | - | - | - | - | - |
| 6.2667 | 376 | 0.4432 | - | - | - | - | - |
| 6.2833 | 377 | 0.345 | - | - | - | - | - |
| 6.3 | 378 | 0.3711 | - | - | - | - | - |
| 6.3167 | 379 | 0.5635 | - | - | - | - | - |
| 6.3333 | 380 | 0.3848 | - | - | - | - | - |
| 6.35 | 381 | 0.1937 | - | - | - | - | - |
| 6.3667 | 382 | 0.1609 | - | - | - | - | - |
| 6.3833 | 383 | 0.4873 | - | - | - | - | - |
| 6.4 | 384 | 0.3656 | - | - | - | - | - |
| 6.4167 | 385 | 0.0947 | - | - | - | - | - |
| 6.4333 | 386 | 0.3603 | - | - | - | - | - |
| 6.45 | 387 | 0.4195 | - | - | - | - | - |
| 6.4667 | 388 | 0.2649 | - | - | - | - | - |
| 6.4833 | 389 | 0.3971 | - | - | - | - | - |
| 6.5 | 390 | 0.2258 | - | - | - | - | - |
| 6.5167 | 391 | 0.1702 | - | - | - | - | - |
| 6.5333 | 392 | 0.3994 | - | - | - | - | - |
| 6.55 | 393 | 0.3631 | - | - | - | - | - |
| 6.5667 | 394 | 0.1625 | - | - | - | - | - |
| 6.5833 | 395 | 0.375 | - | - | - | - | - |
| 6.6 | 396 | 0.3067 | - | - | - | - | - |
| 6.6167 | 397 | 0.116 | - | - | - | - | - |
| 6.6333 | 398 | 0.3915 | - | - | - | - | - |
| 6.65 | 399 | 0.2512 | - | - | - | - | - |
| 6.6667 | 400 | 0.5099 | - | - | - | - | - |
| 6.6833 | 401 | 0.3622 | - | - | - | - | - |
| 6.7 | 402 | 0.2473 | - | - | - | - | - |
| 6.7167 | 403 | 0.3713 | - | - | - | - | - |
| 6.7333 | 404 | 0.4604 | - | - | - | - | - |
| 6.75 | 405 | 0.4876 | - | - | - | - | - |
| 6.7667 | 406 | 0.0745 | - | - | - | - | - |
| 6.7833 | 407 | 0.4345 | - | - | - | - | - |
| 6.8 | 408 | 0.3579 | - | - | - | - | - |
| 6.8167 | 409 | 0.2141 | - | - | - | - | - |
| 6.8333 | 410 | 0.5035 | - | - | - | - | - |
| 6.85 | 411 | 0.2538 | - | - | - | - | - |
| 6.8667 | 412 | 0.329 | - | - | - | - | - |
| 6.8833 | 413 | 0.338 | - | - | - | - | - |
| 6.9 | 414 | 0.4243 | - | - | - | - | - |
| 6.9167 | 415 | 0.3974 | - | - | - | - | - |
| 6.9333 | 416 | 0.486 | - | - | - | - | - |
| 6.95 | 417 | 0.1896 | - | - | - | - | - |
| 6.9667 | 418 | 0.2265 | - | - | - | - | - |
| 6.9833 | 419 | 0.4796 | - | - | - | - | - |
| 7.0 | 420 | 0.7441 | 0.3388 (+0.1894) | 0.6231 (+0.0827) | 0.3935 (+0.0684) | 0.6922 (+0.1916) | 0.5696 (+0.1142) |
| 7.0167 | 421 | 0.0353 | - | - | - | - | - |
| 7.0333 | 422 | 0.5483 | - | - | - | - | - |
| 7.05 | 423 | 0.4845 | - | - | - | - | - |
| 7.0667 | 424 | 0.4536 | - | - | - | - | - |
| 7.0833 | 425 | 0.3831 | - | - | - | - | - |
| 7.1 | 426 | 0.297 | - | - | - | - | - |
| 7.1167 | 427 | 0.1597 | - | - | - | - | - |
| 7.1333 | 428 | 0.5623 | - | - | - | - | - |
| 7.15 | 429 | 0.2996 | - | - | - | - | - |
| 7.1667 | 430 | 0.2648 | - | - | - | - | - |
| 7.1833 | 431 | 0.4407 | - | - | - | - | - |
| 7.2 | 432 | 0.2885 | - | - | - | - | - |
| 7.2167 | 433 | 0.2438 | - | - | - | - | - |
| 7.2333 | 434 | 0.4212 | - | - | - | - | - |
| 7.25 | 435 | 0.3673 | - | - | - | - | - |
| 7.2667 | 436 | 0.3299 | - | - | - | - | - |
| 7.2833 | 437 | 0.402 | - | - | - | - | - |
| 7.3 | 438 | 0.2375 | - | - | - | - | - |
| 7.3167 | 439 | 0.329 | - | - | - | - | - |
| 7.3333 | 440 | 0.5249 | - | - | - | - | - |
| 7.35 | 441 | 0.3656 | - | - | - | - | - |
| 7.3667 | 442 | 0.3228 | - | - | - | - | - |
| 7.3833 | 443 | 0.4069 | - | - | - | - | - |
| 7.4 | 444 | 0.37 | - | - | - | - | - |
| 7.4167 | 445 | 0.2823 | - | - | - | - | - |
| 7.4333 | 446 | 0.4723 | - | - | - | - | - |
| 7.45 | 447 | 0.2711 | - | - | - | - | - |
| 7.4667 | 448 | 0.0393 | - | - | - | - | - |
| 7.4833 | 449 | 0.5585 | - | - | - | - | - |
| 7.5 | 450 | 0.2636 | - | - | - | - | - |
| 7.5167 | 451 | 0.1146 | - | - | - | - | - |
| 7.5333 | 452 | 0.4453 | - | - | - | - | - |
| 7.55 | 453 | 0.3957 | - | - | - | - | - |
| 7.5667 | 454 | 0.5111 | - | - | - | - | - |
| 7.5833 | 455 | 0.3581 | - | - | - | - | - |
| 7.6 | 456 | 0.2948 | - | - | - | - | - |
| 7.6167 | 457 | 0.0755 | - | - | - | - | - |
| 7.6333 | 458 | 0.3249 | - | - | - | - | - |
| 7.65 | 459 | 0.4024 | - | - | - | - | - |
| 7.6667 | 460 | 0.1671 | - | - | - | - | - |
| 7.6833 | 461 | 0.4869 | - | - | - | - | - |
| 7.7 | 462 | 0.1798 | - | - | - | - | - |
| 7.7167 | 463 | 0.3332 | - | - | - | - | - |
| 7.7333 | 464 | 0.4123 | - | - | - | - | - |
| 7.75 | 465 | 0.2245 | - | - | - | - | - |
| 7.7667 | 466 | 0.3406 | - | - | - | - | - |
| 7.7833 | 467 | 0.3521 | - | - | - | - | - |
| 7.8 | 468 | 0.2257 | - | - | - | - | - |
| 7.8167 | 469 | 0.3469 | - | - | - | - | - |
| 7.8333 | 470 | 0.3765 | - | - | - | - | - |
| 7.85 | 471 | 0.2123 | - | - | - | - | - |
| 7.8667 | 472 | 0.4465 | - | - | - | - | - |
| 7.8833 | 473 | 0.3888 | - | - | - | - | - |
| 7.9 | 474 | 0.2459 | - | - | - | - | - |
| 7.9167 | 475 | 0.7323 | - | - | - | - | - |
| 7.9333 | 476 | 0.3495 | - | - | - | - | - |
| 7.95 | 477 | 0.2518 | - | - | - | - | - |
| 7.9667 | 478 | 0.1534 | - | - | - | - | - |
| 7.9833 | 479 | 0.2959 | - | - | - | - | - |
| 8.0 | 480 | 0.07 | 0.3409 (+0.1915) | 0.6194 (+0.0790) | 0.3933 (+0.0682) | 0.6939 (+0.1933) | 0.5689 (+0.1135) |
| 8.0167 | 481 | 0.5044 | - | - | - | - | - |
| 8.0333 | 482 | 0.3476 | - | - | - | - | - |
| 8.05 | 483 | 0.254 | - | - | - | - | - |
| 8.0667 | 484 | 0.2724 | - | - | - | - | - |
| 8.0833 | 485 | 0.4188 | - | - | - | - | - |
| 8.1 | 486 | 0.1158 | - | - | - | - | - |
| 8.1167 | 487 | 0.1707 | - | - | - | - | - |
| 8.1333 | 488 | 0.3424 | - | - | - | - | - |
| 8.15 | 489 | 0.3508 | - | - | - | - | - |
| 8.1667 | 490 | 0.1103 | - | - | - | - | - |
| 8.1833 | 491 | 0.4909 | - | - | - | - | - |
| 8.2 | 492 | 0.1988 | - | - | - | - | - |
| 8.2167 | 493 | 0.1158 | - | - | - | - | - |
| 8.2333 | 494 | 0.4486 | - | - | - | - | - |
| 8.25 | 495 | 0.2352 | - | - | - | - | - |
| 8.2667 | 496 | 0.0265 | - | - | - | - | - |
| 8.2833 | 497 | 0.3565 | - | - | - | - | - |
| 8.3 | 498 | 0.4176 | - | - | - | - | - |
| 8.3167 | 499 | 0.1988 | - | - | - | - | - |
| 8.3333 | 500 | 0.5012 | - | - | - | - | - |
| 8.35 | 501 | 0.2685 | - | - | - | - | - |
| 8.3667 | 502 | 0.8838 | - | - | - | - | - |
| 8.3833 | 503 | 0.2845 | - | - | - | - | - |
| 8.4 | 504 | 0.172 | - | - | - | - | - |
| 8.4167 | 505 | 0.1257 | - | - | - | - | - |
| 8.4333 | 506 | 0.4394 | - | - | - | - | - |
| 8.45 | 507 | 0.3462 | - | - | - | - | - |
| 8.4667 | 508 | 0.1913 | - | - | - | - | - |
| 8.4833 | 509 | 0.3712 | - | - | - | - | - |
| 8.5 | 510 | 0.3224 | - | - | - | - | - |
| 8.5167 | 511 | 0.4246 | - | - | - | - | - |
| 8.5333 | 512 | 0.3068 | - | - | - | - | - |
| 8.55 | 513 | 0.3086 | - | - | - | - | - |
| 8.5667 | 514 | 0.5934 | - | - | - | - | - |
| 8.5833 | 515 | 0.3877 | - | - | - | - | - |
| 8.6 | 516 | 0.2269 | - | - | - | - | - |
| 8.6167 | 517 | 0.0762 | - | - | - | - | - |
| 8.6333 | 518 | 0.4297 | - | - | - | - | - |
| 8.65 | 519 | 0.3039 | - | - | - | - | - |
| 8.6667 | 520 | 0.112 | - | - | - | - | - |
| 8.6833 | 521 | 0.5505 | - | - | - | - | - |
| 8.7 | 522 | 0.2615 | - | - | - | - | - |
| 8.7167 | 523 | 0.3927 | - | - | - | - | - |
| 8.7333 | 524 | 0.5144 | - | - | - | - | - |
| 8.75 | 525 | 0.2332 | - | - | - | - | - |
| 8.7667 | 526 | 0.1296 | - | - | - | - | - |
| 8.7833 | 527 | 0.3209 | - | - | - | - | - |
| 8.8 | 528 | 0.2175 | - | - | - | - | - |
| 8.8167 | 529 | 0.1195 | - | - | - | - | - |
| 8.8333 | 530 | 0.5232 | - | - | - | - | - |
| 8.85 | 531 | 0.2233 | - | - | - | - | - |
| 8.8667 | 532 | 0.5163 | - | - | - | - | - |
| 8.8833 | 533 | 0.3405 | - | - | - | - | - |
| 8.9 | 534 | 0.2303 | - | - | - | - | - |
| 8.9167 | 535 | 0.3043 | - | - | - | - | - |
| 8.9333 | 536 | 0.5338 | - | - | - | - | - |
| 8.95 | 537 | 0.1804 | - | - | - | - | - |
| 8.9667 | 538 | 0.5183 | - | - | - | - | - |
| 8.9833 | 539 | 0.2846 | - | - | - | - | - |
| 9.0 | 540 | 0.0954 | 0.3488 (+0.1993) | 0.6088 (+0.0683) | 0.3953 (+0.0703) | 0.6934 (+0.1928) | 0.5658 (+0.1105) |
| 9.0167 | 541 | 0.4875 | - | - | - | - | - |
| 9.0333 | 542 | 0.3688 | - | - | - | - | - |
| 9.05 | 543 | 0.3237 | - | - | - | - | - |
| 9.0667 | 544 | 0.0898 | - | - | - | - | - |
| 9.0833 | 545 | 0.2571 | - | - | - | - | - |
| 9.1 | 546 | 0.3119 | - | - | - | - | - |
| 9.1167 | 547 | 0.2481 | - | - | - | - | - |
| 9.1333 | 548 | 0.2996 | - | - | - | - | - |
| 9.15 | 549 | 0.4057 | - | - | - | - | - |
| 9.1667 | 550 | 0.4908 | - | - | - | - | - |
| 9.1833 | 551 | 0.585 | - | - | - | - | - |
| 9.2 | 552 | 0.2549 | - | - | - | - | - |
| 9.2167 | 553 | 0.0969 | - | - | - | - | - |
| 9.2333 | 554 | 0.4962 | - | - | - | - | - |
| 9.25 | 555 | 0.5536 | - | - | - | - | - |
| 9.2667 | 556 | 0.3017 | - | - | - | - | - |
| 9.2833 | 557 | 0.3386 | - | - | - | - | - |
| 9.3 | 558 | 0.1268 | - | - | - | - | - |
| 9.3167 | 559 | 0.2953 | - | - | - | - | - |
| 9.3333 | 560 | 0.4083 | - | - | - | - | - |
| 9.35 | 561 | 0.2145 | - | - | - | - | - |
| 9.3667 | 562 | 0.3205 | - | - | - | - | - |
| 9.3833 | 563 | 0.3553 | - | - | - | - | - |
| 9.4 | 564 | 0.2183 | - | - | - | - | - |
| 9.4167 | 565 | 0.2132 | - | - | - | - | - |
| 9.4333 | 566 | 0.4707 | - | - | - | - | - |
| 9.45 | 567 | 0.3248 | - | - | - | - | - |
| 9.4667 | 568 | 0.635 | - | - | - | - | - |
| 9.4833 | 569 | 0.3263 | - | - | - | - | - |
| 9.5 | 570 | 0.2805 | - | - | - | - | - |
| 9.5167 | 571 | 0.0421 | - | - | - | - | - |
| 9.5333 | 572 | 0.4996 | - | - | - | - | - |
| 9.55 | 573 | 0.2134 | - | - | - | - | - |
| 9.5667 | 574 | 0.0383 | - | - | - | - | - |
| 9.5833 | 575 | 0.5026 | - | - | - | - | - |
| 9.6 | 576 | 0.2033 | - | - | - | - | - |
| 9.6167 | 577 | 0.147 | - | - | - | - | - |
| 9.6333 | 578 | 0.381 | - | - | - | - | - |
| 9.65 | 579 | 0.2251 | - | - | - | - | - |
| 9.6667 | 580 | 0.2874 | - | - | - | - | - |
| 9.6833 | 581 | 0.3673 | - | - | - | - | - |
| 9.7 | 582 | 0.1544 | - | - | - | - | - |
| 9.7167 | 583 | 0.3899 | - | - | - | - | - |
| 9.7333 | 584 | 0.3182 | - | - | - | - | - |
| 9.75 | 585 | 0.3009 | - | - | - | - | - |
| 9.7667 | 586 | 0.0267 | - | - | - | - | - |
| 9.7833 | 587 | 0.3682 | - | - | - | - | - |
| 9.8 | 588 | 0.2009 | - | - | - | - | - |
| 9.8167 | 589 | 0.1356 | - | - | - | - | - |
| 9.8333 | 590 | 0.5001 | - | - | - | - | - |
| 9.85 | 591 | 0.1517 | - | - | - | - | - |
| 9.8667 | 592 | 0.2848 | - | - | - | - | - |
| 9.8833 | 593 | 0.3336 | - | - | - | - | - |
| 9.9 | 594 | 0.2787 | - | - | - | - | - |
| 9.9167 | 595 | 0.3367 | - | - | - | - | - |
| 9.9333 | 596 | 0.3952 | - | - | - | - | - |
| 9.95 | 597 | 0.2262 | - | - | - | - | - |
| 9.9667 | 598 | 0.355 | - | - | - | - | - |
| 9.9833 | 599 | 0.4903 | - | - | - | - | - |
| 10.0 | 600 | 0.0002 | 0.3435 (+0.1941) | 0.6074 (+0.0669) | 0.4011 (+0.0760) | 0.6901 (+0.1894) | 0.5662 (+0.1108) |
| -1 | -1 | - | 0.3488 (+0.1993) | 0.6088 (+0.0683) | 0.3953 (+0.0703) | 0.6934 (+0.1928) | 0.5658 (+0.1105) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.2
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.7.0+cu126
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for emilwin/reranker-ms-marco-sympathy-docs
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Quantized
cross-encoder/ms-marco-MiniLM-L6-v2
Evaluation results
- Map on sydoc testerself-reported0.323
- Mrr@10 on sydoc testerself-reported0.323
- Ndcg@10 on sydoc testerself-reported0.349
- Map on NanoMSMARCO R100self-reported0.560
- Mrr@10 on NanoMSMARCO R100self-reported0.547
- Ndcg@10 on NanoMSMARCO R100self-reported0.609
- Map on NanoNFCorpus R100self-reported0.363
- Mrr@10 on NanoNFCorpus R100self-reported0.557
- Ndcg@10 on NanoNFCorpus R100self-reported0.395
- Map on NanoNQ R100self-reported0.636