--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-1b-dutch results: [] --- # wav2vec2-xls-r-1b-dutch This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5441 - Wer: 0.4250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8501 | 0.55 | 100 | 2.9579 | 1.0000 | | 2.8419 | 1.09 | 200 | 2.8602 | 0.9999 | | 2.5211 | 1.64 | 300 | 2.1828 | 0.9998 | | 1.7206 | 2.19 | 400 | 1.2938 | 0.8820 | | 1.4862 | 2.73 | 500 | 1.1201 | 0.8171 | | 1.2637 | 3.28 | 600 | 1.0254 | 0.8137 | | 1.0777 | 3.83 | 700 | 0.8863 | 0.6970 | | 1.1046 | 4.37 | 800 | 0.8367 | 0.6378 | | 0.8848 | 4.92 | 900 | 0.7275 | 0.5733 | | 0.8134 | 5.46 | 1000 | 0.6990 | 0.5406 | | 0.9912 | 6.01 | 1100 | 0.6568 | 0.5436 | | 0.6002 | 6.56 | 1200 | 0.6744 | 0.5144 | | 0.5809 | 7.1 | 1300 | 0.6510 | 0.5122 | | 1.0383 | 7.65 | 1400 | 0.6050 | 0.4985 | | 0.6218 | 8.2 | 1500 | 0.6552 | 0.5096 | | 1.004 | 8.74 | 1600 | 0.6137 | 0.4794 | | 0.8444 | 9.29 | 1700 | 0.5866 | 0.4805 | | 0.9496 | 9.84 | 1800 | 0.5898 | 0.4726 | | 0.7157 | 10.38 | 1900 | 0.5993 | 0.4642 | | 0.6619 | 10.93 | 2000 | 0.5908 | 0.4706 | | 0.4023 | 11.48 | 2100 | 0.6007 | 0.4601 | | 0.6407 | 12.02 | 2200 | 0.5682 | 0.4583 | | 0.3774 | 12.57 | 2300 | 0.5581 | 0.4489 | | 0.5975 | 13.11 | 2400 | 0.5645 | 0.4490 | | 0.5601 | 13.66 | 2500 | 0.5594 | 0.4523 | | 0.5614 | 14.21 | 2600 | 0.5666 | 0.4421 | | 0.3612 | 14.75 | 2700 | 0.5481 | 0.4377 | | 0.3519 | 15.3 | 2800 | 0.5526 | 0.4374 | | 0.325 | 15.85 | 2900 | 0.5244 | 0.4321 | | 0.2626 | 16.39 | 3000 | 0.5340 | 0.4285 | | 0.2425 | 16.94 | 3100 | 0.5495 | 0.4291 | | 0.2306 | 17.49 | 3200 | 0.5369 | 0.4267 | | 0.2374 | 18.03 | 3300 | 0.5379 | 0.4249 | | 0.256 | 18.58 | 3400 | 0.5417 | 0.4248 | | 0.2035 | 19.13 | 3500 | 0.5435 | 0.4251 | | 0.1819 | 19.67 | 3600 | 0.5441 | 0.4250 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.7.0+cu126 - Datasets 2.16.1 - Tokenizers 0.15.2