Text Generation
MLX
Safetensors
English
qwen3
esper
esper-3.1
esper-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-4b
qwen3-4b-thinking-2507
4b
reasoning
code
code-instruct
python
javascript
dev-ops
jenkins
terraform
ansible
docker
kubernetes
helm
grafana
prometheus
shell
bash
azure
aws
gcp
cloud
scripting
powershell
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
mlx-my-repo
8-bit precision
introvoyz041/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx-mlx-8Bit
The Model introvoyz041/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx-mlx-8Bit was converted to MLX format from nightmedia/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx using mlx-lm version 0.28.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("introvoyz041/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx-mlx-8Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 52
Model tree for introvoyz041/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx-mlx-8Bit
Base model
Qwen/Qwen3-4B-Thinking-2507