Update README.md
Browse files
README.md
CHANGED
|
@@ -61,32 +61,6 @@ We used LightEval for evaluation, with custom tasks for the French benchmarks. T
|
|
| 61 |
| arc-chall-en | 33.62 | 32.17 | <u>35.92</u> |
|
| 62 |
| hellaswag-en | 42.91 | <u>49.56</u> | 46.96 |
|
| 63 |
|
| 64 |
-
## Code Example
|
| 65 |
-
|
| 66 |
-
```python
|
| 67 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 68 |
-
|
| 69 |
-
tokenizer = AutoTokenizer.from_pretrained("kurakurai/Luth-0.6B-Instruct")
|
| 70 |
-
model = AutoModelForCausalLM.from_pretrained("kurakurai/Luth-0.6B-Instruct")
|
| 71 |
-
messages = [
|
| 72 |
-
{"role": "user", "content": "Quelle est la capitale de la France?"},
|
| 73 |
-
]
|
| 74 |
-
inputs = tokenizer.apply_chat_template(
|
| 75 |
-
messages,
|
| 76 |
-
add_generation_prompt=True,
|
| 77 |
-
tokenize=True,
|
| 78 |
-
return_dict=True,
|
| 79 |
-
return_tensors="pt",
|
| 80 |
-
).to(model.device)
|
| 81 |
-
|
| 82 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 83 |
-
print(
|
| 84 |
-
tokenizer.decode(
|
| 85 |
-
outputs[0][inputs["input_ids"].shape[-1] :], skip_special_tokens=True
|
| 86 |
-
)
|
| 87 |
-
)
|
| 88 |
-
```
|
| 89 |
-
|
| 90 |
## Citation
|
| 91 |
|
| 92 |
```bibtex
|
|
|
|
| 61 |
| arc-chall-en | 33.62 | 32.17 | <u>35.92</u> |
|
| 62 |
| hellaswag-en | 42.91 | <u>49.56</u> | 46.96 |
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
## Citation
|
| 65 |
|
| 66 |
```bibtex
|