ljamesdatascience commited on
Commit
e18b6ce
·
1 Parent(s): 3cd9631

add model weights

Browse files
Files changed (2) hide show
  1. README.md +43 -0
  2. best.pt +3 -0
README.md CHANGED
@@ -50,6 +50,49 @@ This is to show how to create a computer vision model for applications such as a
50
 
51
  ### Direct Use
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  ### Results
55
  | Class | Images | Instances | P | R | mAP50 |
 
50
 
51
  ### Direct Use
52
 
53
+ - Install [yolov5](https://github.com/fcakyon/yolov5-pip):
54
+
55
+ ```bash
56
+ pip install -U yolov5
57
+ ```
58
+
59
+ - Load model and perform prediction:
60
+
61
+ ```python
62
+ import yolov5
63
+
64
+ # load model
65
+ model = yolov5.load('ljamesdatascience/BillboardAdvertDetectionYOLOV5')
66
+
67
+ # set model parameters
68
+ model.conf = 0.25 # NMS confidence threshold
69
+ model.iou = 0.45 # NMS IoU threshold
70
+ model.agnostic = False # NMS class-agnostic
71
+ model.multi_label = False # NMS multiple labels per box
72
+ model.max_det = 1000 # maximum number of detections per image
73
+
74
+ # set image
75
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
76
+
77
+ # perform inference
78
+ results = model(img, size=640)
79
+
80
+ # inference with test time augmentation
81
+ results = model(img, augment=True)
82
+
83
+ # parse results
84
+ predictions = results.pred[0]
85
+ boxes = predictions[:, :4] # x1, y1, x2, y2
86
+ scores = predictions[:, 4]
87
+ categories = predictions[:, 5]
88
+
89
+ # show detection bounding boxes on image
90
+ results.show()
91
+
92
+ # save results into "results/" folder
93
+ results.save(save_dir='results/')
94
+ ```
95
+
96
 
97
  ### Results
98
  | Class | Images | Instances | P | R | mAP50 |
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b36c2d26ce19778db6cfb6d1b88a74043c1eea106e2be1ba0897daac458d69
3
+ size 14401448