MagicQuant GGUF Hybrids - Qwen3 30B A3B Thinking 2507

MagicQuant is an automated quantization, benchmarking, and evolutionary hybrid-GGUF search system for LLMs.

Each release includes models optimized to outperform standard baseline quants (Q8, Q6, Q5, Q4). If a baseline GGUF exists in this repo, the evolutionary engine couldn’t beat it. If a baseline is missing, it’s because a hybrid configuration outperformed it so completely that including the baseline would've been pointless.

These hybrid GGUFs are built to be as small, fast, and low-drift as possible while preserving model capability.

To dive deeper into how MagicQuant works, see the main repo: MagicQuant on GitHub (by MagicCodingMan)

Notes:

  • The HuggingFace hardware compatibility where it shows the bits is usually wrong. It doesn't understand hybrid mixes, so don't trust it.
  • Naming scheme can be found on the MagicQuant Wiki.
  • (tips) Less precision loss means less brain damage. More TPS means faster! Smaller is always better right?

Precision Loss Guide

  • 0–0.1% → God-tier, scientifically exact
  • 0.1–1% → True near-lossless, agent-ready
  • 1–3% → Minimal loss, great for personal use
  • 3–5% → Borderline, but still functional
  • 5%+ → Toys, not tools, outside MagicQuant’s scope

Learn more about precision loss here.

Table - File Size + TPS + Avg Precision Loss

model_name file_size_gb bench_tps avg_prec_loss
mxfp4_moe-HQKOR-B16-U-Q5K-E-Q6K-D-Q8_0 36.31 85.41 0.0223%
Q8_0 30.25 99.66 0.1182%
Q5_K 20.23 123.94 0.2558%
mxfp4_moe-H-B16-EUD-IQ4NL-R-Q6K-QKO-Q8_0 19.20 115.33 0.4621%
iq4_nl-QKOUD-IQ4NL-EH-Q8_0 16.33 145.90 0.8683%
iq4_nl-QKOUD-IQ4NL-E-MXFP4-H-Q5K 16.07 153.05 1.1878%

Table - PPL Columns

model_name gen gen_er code code_er math math_er
mxfp4_moe-HQKOR-B16-U-Q5K-E-Q6K-D-Q8_0 6.2842 0.1284 1.2904 0.0068 5.6809 0.1047
Q8_0 6.2952 0.1287 1.2894 0.0069 5.6903 0.1050
Q5_K 6.3057 0.1289 1.2963 0.0069 5.6818 0.1045
mxfp4_moe-H-B16-EUD-IQ4NL-R-Q6K-QKO-Q8_0 6.3141 0.1294 1.2965 0.0070 5.7085 0.1055
iq4_nl-QKOUD-IQ4NL-EH-Q8_0 6.3539 0.1294 1.3056 0.0071 5.7017 0.1040
iq4_nl-QKOUD-IQ4NL-E-MXFP4-H-Q5K 6.3772 0.1301 1.3056 0.0071 5.7351 0.1051

Table - Precision Loss Columns

model_name loss_general loss_code loss_math
mxfp4_moe-HQKOR-B16-U-Q5K-E-Q6K-D-Q8_0 0.0573 0.0078 0.0018
Q8_0 0.1177 0.0698 0.1672
Q5_K 0.2847 0.4650 0.0176
mxfp4_moe-H-B16-EUD-IQ4NL-R-Q6K-QKO-Q8_0 0.4183 0.4805 0.4876
iq4_nl-QKOUD-IQ4NL-EH-Q8_0 1.0512 1.1858 0.3679
iq4_nl-QKOUD-IQ4NL-E-MXFP4-H-Q5K 1.4218 1.1858 0.9559

Baseline Models (Reference)

Table - File Size + TPS + Avg Precision Loss

model_name file_size_gb bench_tps avg_prec_loss
BF16 56.90 51.02 0.0000%
Q8_0 30.25 99.66 0.1182%
Q5_K 20.23 123.94 0.2558%
Q6_K 23.37 114.97 0.2965%
IQ4_NL 16.26 138.47 1.0534%
Q4_K_M 17.28 130.97 1.3851%
MXFP4_MOE 15.15 141.87 10.2733%

Table - PPL Columns

model_name gen gen_er code code_er math math_er
BF16 6.2878 0.1285 1.2903 0.0069 5.6808 0.1047
Q8_0 6.2952 0.1287 1.2894 0.0069 5.6903 0.1050
Q5_K 6.3057 0.1289 1.2963 0.0069 5.6818 0.1045
Q6_K 6.3172 0.1294 1.2927 0.0069 5.6942 0.1051
IQ4_NL 6.3497 0.1293 1.3042 0.0070 5.7432 0.1057
Q4_K_M 6.4310 0.1316 1.3029 0.0070 5.7320 0.1055
MXFP4_MOE 7.1681 0.1508 1.3566 0.0080 6.3444 0.1214

Table - Precision Loss Columns

model_name loss_general loss_code loss_math
BF16 0.0000 0.0000 0.0000
Q8_0 0.1177 0.0698 0.1672
Q5_K 0.2847 0.4650 0.0176
Q6_K 0.4676 0.1860 0.2359
IQ4_NL 0.9844 1.0773 1.0984
Q4_K_M 2.2774 0.9765 0.9013
MXFP4_MOE 14.0001 5.1383 11.6815

Support

I’m a solo developer working full time for myself to achieve my dream, pouring nights and weekends into open protocols and tools that I hope make the world a little better. If you chip in, you're helping me keep the lights on while I keep shipping.

Click here to see ways to support - BTC, Paypal, GitHub sponsors.

Or, just drop a like on the repo :)

Downloads last month
663
GGUF
Model size
31B params
Architecture
qwen3moe
Hardware compatibility
Log In to view the estimation

4-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for magiccodingman/Qwen3-30B-A3B-Thinking-2507-unsloth-MagicQuant-Hybrid-GGUF

Quantized
(1)
this model

Collection including magiccodingman/Qwen3-30B-A3B-Thinking-2507-unsloth-MagicQuant-Hybrid-GGUF