openvoice plugin
Browse files
.ipynb_checkpoints/README-checkpoint.md
DELETED
|
@@ -1,158 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
language:
|
| 3 |
-
- en
|
| 4 |
-
tags:
|
| 5 |
-
- myshell
|
| 6 |
-
- speech-to-speech
|
| 7 |
-
---
|
| 8 |
-
<!-- might put a [width=2000 * height=xxx] img here, this size best fits git page
|
| 9 |
-
<img src="resources\cover.png"> -->
|
| 10 |
-
<img src="resources/dreamvoice.png">
|
| 11 |
-
|
| 12 |
-
# DreamVoice: Text-guided Voice Conversion
|
| 13 |
-
|
| 14 |
-
--------------------
|
| 15 |
-
|
| 16 |
-
## Introduction
|
| 17 |
-
|
| 18 |
-
DreamVoice is an innovative approach to voice conversion (VC) that leverages text-guided generation to create personalized and versatile voice experiences.
|
| 19 |
-
Unlike traditional VC methods, which require a target recording during inference, DreamVoice introduces a more intuitive solution by allowing users to specify desired voice timbres through text prompts.
|
| 20 |
-
|
| 21 |
-
For more details, please check our interspeech paper: [DreamVoice](https://arxiv.org/abs/2406.16314)
|
| 22 |
-
|
| 23 |
-
To listen to demos and download dataset, please check dreamvoice's homepage: [Homepage](https://haidog-yaqub.github.io/dreamvoice_demo/)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# How to Use
|
| 27 |
-
|
| 28 |
-
To load the models, you need to install packages:
|
| 29 |
-
|
| 30 |
-
```
|
| 31 |
-
pip install -r requirements.txt
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
Then you can use the model with the following code:
|
| 35 |
-
|
| 36 |
-
- NEW! DreamVoice Plugin for OpenVoice (DreamVG + [Opnevoice](https://github.com/myshell-ai/OpenVoice))
|
| 37 |
-
|
| 38 |
-
```python
|
| 39 |
-
import torch
|
| 40 |
-
from dreamvoice import DreamVoice_Plugin
|
| 41 |
-
from dreamvoice.openvoice_utils import se_extractor
|
| 42 |
-
from openvoice.api import ToneColorConverter
|
| 43 |
-
|
| 44 |
-
# init dreamvoice
|
| 45 |
-
dreamvoice = DreamVoice_Plugin(device='cuda')
|
| 46 |
-
|
| 47 |
-
# init openvoice
|
| 48 |
-
ckpt_converter = 'checkpoints_v2/converter'
|
| 49 |
-
openvoice = ToneColorConverter(f'{ckpt_converter}/config.json', device='cuda')
|
| 50 |
-
openvoice.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
| 51 |
-
|
| 52 |
-
# generate speaker
|
| 53 |
-
prompt = 'young female voice, sounds young and cute'
|
| 54 |
-
target_se = dreamvoice.gen_spk(prompt)
|
| 55 |
-
target_se = target_se.unsqueeze(-1)
|
| 56 |
-
|
| 57 |
-
# content source
|
| 58 |
-
source_path = 'examples/test2.wav'
|
| 59 |
-
source_se = se_extractor(source_path, openvoice).to(device)
|
| 60 |
-
|
| 61 |
-
# voice conversion
|
| 62 |
-
encode_message = "@MyShell"
|
| 63 |
-
openvoice.convert(
|
| 64 |
-
audio_src_path=source_path,
|
| 65 |
-
src_se=source_se,
|
| 66 |
-
tgt_se=target_se,
|
| 67 |
-
output_path='output.wav',
|
| 68 |
-
message=encode_message)
|
| 69 |
-
```
|
| 70 |
-
|
| 71 |
-
- DreamVoice Plugin for DiffVC (Diffusion-based VC Model)
|
| 72 |
-
|
| 73 |
-
```python
|
| 74 |
-
from dreamvoice import DreamVoice
|
| 75 |
-
|
| 76 |
-
# Initialize DreamVoice in plugin mode with CUDA device
|
| 77 |
-
dreamvoice = DreamVoice(mode='plugin', device='cuda')
|
| 78 |
-
# Description of the target voice
|
| 79 |
-
prompt = 'young female voice, sounds young and cute'
|
| 80 |
-
# Provide the path to the content audio and generate the converted audio
|
| 81 |
-
gen_audio, sr = dreamvoice.genvc('examples/test1.wav', prompt)
|
| 82 |
-
# Save the converted audio
|
| 83 |
-
dreamvoice.save_audio('gen1.wav', gen_audio, sr)
|
| 84 |
-
|
| 85 |
-
# Save the speaker embedding if you like the generated voice
|
| 86 |
-
dreamvoice.save_spk_embed('voice_stash1.pt')
|
| 87 |
-
# Load the saved speaker embedding
|
| 88 |
-
dreamvoice.load_spk_embed('voice_stash1.pt')
|
| 89 |
-
# Use the saved speaker embedding for another audio sample
|
| 90 |
-
gen_audio2, sr = dreamvoice.simplevc('examples/test2.wav', use_spk_cache=True)
|
| 91 |
-
dreamvoice.save_audio('gen2.wav', gen_audio2, sr)
|
| 92 |
-
```
|
| 93 |
-
|
| 94 |
-
# Training Guide
|
| 95 |
-
|
| 96 |
-
1. download VCTK and LibriTTS-R
|
| 97 |
-
2. download [DreamVoice DataSet](https://haidog-yaqub.github.io/dreamvoice_demo/)
|
| 98 |
-
3. extract speaker embeddings and cache in local path:
|
| 99 |
-
```
|
| 100 |
-
python dreamvoice/train_utils/prepare/prepare_se.py
|
| 101 |
-
```
|
| 102 |
-
4. modify trainning config and train your dreamvoice plugin:
|
| 103 |
-
```
|
| 104 |
-
cd dreamvoice/train_utils/src
|
| 105 |
-
accelerate launch train.py
|
| 106 |
-
```
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Extra Features
|
| 110 |
-
|
| 111 |
-
- End-to-end DreamVoice VC Model
|
| 112 |
-
|
| 113 |
-
```python
|
| 114 |
-
from dreamvoice import DreamVoice
|
| 115 |
-
|
| 116 |
-
# Initialize DreamVoice in end-to-end mode with CUDA device
|
| 117 |
-
dreamvoice = DreamVoice(mode='end2end', device='cuda')
|
| 118 |
-
# Provide the path to the content audio and generate the converted audio
|
| 119 |
-
gen_end2end, sr = dreamvoice.genvc('examples/test1.wav', prompt)
|
| 120 |
-
# Save the converted audio
|
| 121 |
-
dreamvoice.save_audio('gen_end2end.wav', gen_end2end, sr)
|
| 122 |
-
|
| 123 |
-
# Note: End-to-end mode does not support saving speaker embeddings
|
| 124 |
-
# To use a voice generated in end-to-end mode, switch back to plugin mode
|
| 125 |
-
# and extract the speaker embedding from the generated audio
|
| 126 |
-
# Switch back to plugin mode
|
| 127 |
-
dreamvoice = DreamVoice(mode='plugin', device='cuda')
|
| 128 |
-
# Load the speaker audio from the previously generated file
|
| 129 |
-
gen_end2end2, sr = dreamvoice.simplevc('examples/test2.wav', speaker_audio='gen_end2end.wav')
|
| 130 |
-
# Save the new converted audio
|
| 131 |
-
dreamvoice.save_audio('gen_end2end2.wav', gen_end2end2, sr)
|
| 132 |
-
```
|
| 133 |
-
|
| 134 |
-
- DiffVC (Diffusion-based VC Model)
|
| 135 |
-
|
| 136 |
-
```python
|
| 137 |
-
from dreamvoice import DreamVoice
|
| 138 |
-
|
| 139 |
-
# Plugin mode can be used for traditional one-shot voice conversion
|
| 140 |
-
dreamvoice = DreamVoice(mode='plugin', device='cuda')
|
| 141 |
-
# Generate audio using traditional one-shot voice conversion
|
| 142 |
-
gen_tradition, sr = dreamvoice.simplevc('examples/test1.wav', speaker_audio='examples/speaker.wav')
|
| 143 |
-
# Save the converted audio
|
| 144 |
-
dreamvoice.save_audio('gen_tradition.wav', gen_tradition, sr)
|
| 145 |
-
```
|
| 146 |
-
|
| 147 |
-
## Reference
|
| 148 |
-
|
| 149 |
-
If you find the code useful for your research, please consider citing:
|
| 150 |
-
|
| 151 |
-
```bibtex
|
| 152 |
-
@article{hai2024dreamvoice,
|
| 153 |
-
title={DreamVoice: Text-Guided Voice Conversion},
|
| 154 |
-
author={Hai, Jiarui and Thakkar, Karan and Wang, Helin and Qin, Zengyi and Elhilali, Mounya},
|
| 155 |
-
journal={arXiv preprint arXiv:2406.16314},
|
| 156 |
-
year={2024}
|
| 157 |
-
}
|
| 158 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|