--- language: - en library_name: mlx pipeline_tag: text-generation tags: - esper - esper-3.1 - esper-3 - valiant - valiant-labs - qwen - qwen-3 - qwen-3-4b - qwen3-4b-thinking-2507 - 4b - reasoning - code - code-instruct - python - javascript - dev-ops - jenkins - terraform - ansible - docker - kubernetes - helm - grafana - prometheus - shell - bash - azure - aws - gcp - cloud - scripting - powershell - problem-solving - architect - engineer - developer - creative - analytical - expert - rationality - conversational - chat - instruct - mlx base_model: ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1 datasets: - sequelbox/Titanium3-DeepSeek-V3.1-Terminus - sequelbox/Tachibana3-Part1-DeepSeek-V3.1-Terminus - sequelbox/Tachibana3-Part2-DeepSeek-V3.2 - sequelbox/Mitakihara-DeepSeek-R1-0528 license: apache-2.0 --- # Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx This model [Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx](https://huggingface.co/Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx) was converted to MLX format from [ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1](https://huggingface.co/ValiantLabs/Qwen3-4B-Thinking-2507-Esper3.1) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-4B-Thinking-2507-Esper3.1-qx86-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```