--- license: apache-2.0 --- Here is a code to create this tiny model: ```python import os import torch torch.set_default_dtype(torch.bfloat16) from transformers import AutoTokenizer, AutoConfig, Lfm2ForCausalLM # # === Step 1: Define tiny model config === model_id = "LiquidAI/LFM2-350M" config = AutoConfig.from_pretrained(model_id) config.num_hidden_layers=4 config.layer_types=[ "conv", "conv", "full_attention", "conv", ] config.num_attention_heads=4 config.num_key_value_heads=4 config.hidden_size=16 config.block_multiple_of=8 # === Step 2: Create model from config === model = Lfm2ForCausalLM(config) # === Step 3: Load or create tokenizer === tokenizer = AutoTokenizer.from_pretrained(model_id) # === Step 4: Save model and tokenizer === output_dir = "./lfm2" os.makedirs(output_dir, exist_ok=True) model.save_pretrained(output_dir, safe_serialization=False) tokenizer.save_pretrained(output_dir) ```