Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePyGlove: Symbolic Programming for Automated Machine Learning
Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.
ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development
We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.
GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models
The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators. Nonetheless, designing these accelerators for various AI workloads remains both labor- and time-intensive. While existing design exploration and automation tools can partially alleviate the need for extensive human involvement, they still demand substantial hardware expertise, posing a barrier to non-experts and stifling AI accelerator development. Motivated by the astonishing potential of large language models (LLMs) for generating high-quality content in response to human language instructions, we embark on this work to examine the possibility of harnessing LLMs to automate AI accelerator design. Through this endeavor, we develop GPT4AIGChip, a framework intended to democratize AI accelerator design by leveraging human natural languages instead of domain-specific languages. Specifically, we first perform an in-depth investigation into LLMs' limitations and capabilities for AI accelerator design, thus aiding our understanding of our current position and garnering insights into LLM-powered automated AI accelerator design. Furthermore, drawing inspiration from the above insights, we develop a framework called GPT4AIGChip, which features an automated demo-augmented prompt-generation pipeline utilizing in-context learning to guide LLMs towards creating high-quality AI accelerator design. To our knowledge, this work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation. Accordingly, we anticipate that our insights and framework can serve as a catalyst for innovations in next-generation LLM-powered design automation tools.
Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers
Our everyday lives now heavily rely on artificial intelligence (AI) powered large language models (LLMs). Like regular users, programmers are also benefiting from the newest large language models. In response to the critical role that AI models play in modern software development, this study presents a thorough evaluation of leading programming assistants, including ChatGPT, Gemini(Bard AI), AlphaCode, and GitHub Copilot. The evaluation is based on tasks like natural language processing and code generation accuracy in different programming languages like Java, Python and C++. Based on the results, it has emphasized their strengths and weaknesses and the importance of further modifications to increase the reliability and accuracy of the latest popular models. Although these AI assistants illustrate a high level of progress in language understanding and code generation, along with ethical considerations and responsible usage, they provoke a necessity for discussion. With time, developing more refined AI technology is essential for achieving advanced solutions in various fields, especially with the knowledge of the feature intricacies of these models and their implications. This study offers a comparison of different LLMs and provides essential feedback on the rapidly changing area of AI models. It also emphasizes the need for ethical developmental practices to actualize AI models' full potential.
Yi-Lightning Technical Report
This technical report presents Yi-Lightning, our latest flagship large language model (LLM). It achieves exceptional performance, ranking 6th overall on Chatbot Arena, with particularly strong results (2nd to 4th place) in specialized categories including Chinese, Math, Coding, and Hard Prompts. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, featuring advanced expert segmentation and routing mechanisms coupled with optimized KV-caching techniques. Our development process encompasses comprehensive pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF), where we devise deliberate strategies for multi-stage training, synthetic data construction, and reward modeling. Furthermore, we implement RAISE (Responsible AI Safety Engine), a four-component framework to address safety issues across pre-training, post-training, and serving phases. Empowered by our scalable super-computing infrastructure, all these innovations substantially reduce training, deployment and inference costs while maintaining high-performance standards. With further evaluations on public academic benchmarks, Yi-Lightning demonstrates competitive performance against top-tier LLMs, while we observe a notable disparity between traditional, static benchmark results and real-world, dynamic human preferences. This observation prompts a critical reassessment of conventional benchmarks' utility in guiding the development of more intelligent and powerful AI systems for practical applications. Yi-Lightning is now available through our developer platform at https://platform.lingyiwanwu.com.
PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python
Machine learning is a general-purpose technology holding promises for many interdisciplinary research problems. However, significant barriers exist in crossing disciplinary boundaries when most machine learning tools are developed in different areas separately. We present Pykale - a Python library for knowledge-aware machine learning on graphs, images, texts, and videos to enable and accelerate interdisciplinary research. We formulate new green machine learning guidelines based on standard software engineering practices and propose a novel pipeline-based application programming interface (API). PyKale focuses on leveraging knowledge from multiple sources for accurate and interpretable prediction, thus supporting multimodal learning and transfer learning (particularly domain adaptation) with latest deep learning and dimensionality reduction models. We build PyKale on PyTorch and leverage the rich PyTorch ecosystem. Our pipeline-based API design enforces standardization and minimalism, embracing green machine learning concepts via reducing repetitions and redundancy, reusing existing resources, and recycling learning models across areas. We demonstrate its interdisciplinary nature via examples in bioinformatics, knowledge graph, image/video recognition, and medical imaging.
Eliza: A Web3 friendly AI Agent Operating System
AI Agent, powered by large language models (LLMs) as its cognitive core, is an intelligent agentic system capable of autonomously controlling and determining the execution paths under user's instructions. With the burst of capabilities of LLMs and various plugins, such as RAG, text-to-image/video/3D, etc., the potential of AI Agents has been vastly expanded, with their capabilities growing stronger by the day. However, at the intersection between AI and web3, there is currently no ideal agentic framework that can seamlessly integrate web3 applications into AI agent functionalities. In this paper, we propose Eliza, the first open-source web3-friendly Agentic framework that makes the deployment of web3 applications effortless. We emphasize that every aspect of Eliza is a regular Typescript program under the full control of its user, and it seamlessly integrates with web3 (i.e., reading and writing blockchain data, interacting with smart contracts, etc.). Furthermore, we show how stable performance is achieved through the pragmatic implementation of the key components of Eliza's runtime. Our code is publicly available at https://github.com/ai16z/eliza.
PAS: Data-Efficient Plug-and-Play Prompt Augmentation System
In recent years, the rise of Large Language Models (LLMs) has spurred a growing demand for plug-and-play AI systems. Among the various AI techniques, prompt engineering stands out as particularly significant. However, users often face challenges in writing prompts due to the steep learning curve and significant time investment, and existing automatic prompt engineering (APE) models can be difficult to use. To address this issue, we propose PAS, an LLM-based plug-and-play APE system. PAS utilizes LLMs trained on high-quality, automatically generated prompt complementary datasets, resulting in exceptional performance. In comprehensive benchmarks, PAS achieves state-of-the-art (SoTA) results compared to previous APE models, with an average improvement of 6.09 points. Moreover, PAS is highly efficient, achieving SoTA performance with only 9000 data points. Additionally, PAS can autonomously generate prompt augmentation data without requiring additional human labor. Its flexibility also allows it to be compatible with all existing LLMs and applicable to a wide range of tasks. PAS excels in human evaluations, underscoring its suitability as a plug-in for users. This combination of high performance, efficiency, and flexibility makes PAS a valuable system for enhancing the usability and effectiveness of LLMs through improved prompt engineering.
Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions
We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.
AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks
Automated machine learning (AutoML) is a collection of techniques designed to automate the machine learning development process. While traditional AutoML approaches have been successfully applied in several critical steps of model development (e.g. hyperparameter optimization), there lacks a AutoML system that automates the entire end-to-end model production workflow. To fill this blank, we present AutoMMLab, a general-purpose LLM-empowered AutoML system that follows user's language instructions to automate the whole model production workflow for computer vision tasks. The proposed AutoMMLab system effectively employs LLMs as the bridge to connect AutoML and OpenMMLab community, empowering non-expert individuals to easily build task-specific models via a user-friendly language interface. Specifically, we propose RU-LLaMA to understand users' request and schedule the whole pipeline, and propose a novel LLM-based hyperparameter optimizer called HPO-LLaMA to effectively search for the optimal hyperparameters. Experiments show that our AutoMMLab system is versatile and covers a wide range of mainstream tasks, including classification, detection, segmentation and keypoint estimation. We further develop a new benchmark, called LAMP, for studying key components in the end-to-end prompt-based model training pipeline. Code, model, and data will be released.
LLMTrace: A Corpus for Classification and Fine-Grained Localization of AI-Written Text
The widespread use of human-like text from Large Language Models (LLMs) necessitates the development of robust detection systems. However, progress is limited by a critical lack of suitable training data; existing datasets are often generated with outdated models, are predominantly in English, and fail to address the increasingly common scenario of mixed human-AI authorship. Crucially, while some datasets address mixed authorship, none provide the character-level annotations required for the precise localization of AI-generated segments within a text. To address these gaps, we introduce LLMTrace, a new large-scale, bilingual (English and Russian) corpus for AI-generated text detection. Constructed using a diverse range of modern proprietary and open-source LLMs, our dataset is designed to support two key tasks: traditional full-text binary classification (human vs. AI) and the novel task of AI-generated interval detection, facilitated by character-level annotations. We believe LLMTrace will serve as a vital resource for training and evaluating the next generation of more nuanced and practical AI detection models. The project page is available at https://sweetdream779.github.io/LLMTrace-info/{iitolstykh/LLMTrace}.
EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
A Comprehensive Performance Study of Large Language Models on Novel AI Accelerators
Artificial intelligence (AI) methods have become critical in scientific applications to help accelerate scientific discovery. Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems because of their superior generalization capabilities across domains. The effectiveness of the models and the accuracy of the applications is contingent upon their efficient execution on the underlying hardware infrastructure. Specialized AI accelerator hardware systems have recently become available for accelerating AI applications. However, the comparative performance of these AI accelerators on large language models has not been previously studied. In this paper, we systematically study LLMs on multiple AI accelerators and GPUs and evaluate their performance characteristics for these models. We evaluate these systems with (i) a micro-benchmark using a core transformer block, (ii) a GPT- 2 model, and (iii) an LLM-driven science use case, GenSLM. We present our findings and analyses of the models' performance to better understand the intrinsic capabilities of AI accelerators. Furthermore, our analysis takes into account key factors such as sequence lengths, scaling behavior, sparsity, and sensitivity to gradient accumulation steps.
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/stanfordnlp/pyvene.
YAYI 2: Multilingual Open-Source Large Language Models
As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.
PyGen: A Collaborative Human-AI Approach to Python Package Creation
The principles of automation and innovation serve as foundational elements for advancement in contemporary science and technology. Here, we introduce Pygen, an automation platform designed to empower researchers, technologists, and hobbyists to bring abstract ideas to life as core, usable software tools written in Python. Pygen leverages the immense power of autoregressive large language models to augment human creativity during the ideation, iteration, and innovation process. By combining state-of-the-art language models with open-source code generation technologies, Pygen has significantly reduced the manual overhead of tool development. From a user prompt, Pygen automatically generates Python packages for a complete workflow from concept to package generation and documentation. The findings of our work show that Pygen considerably enhances the researcher's productivity by enabling the creation of resilient, modular, and well-documented packages for various specialized purposes. We employ a prompt enhancement approach to distill the user's package description into increasingly specific and actionable. While being inherently an open-ended task, we have evaluated the generated packages and the documentation using Human Evaluation, LLM-based evaluation, and CodeBLEU, with detailed results in the results section. Furthermore, we documented our results, analyzed the limitations, and suggested strategies to alleviate them. Pygen is our vision of ethical automation, a framework that promotes inclusivity, accessibility, and collaborative development. This project marks the beginning of a large-scale effort towards creating tools where intelligent agents collaborate with humans to improve scientific and technological development substantially. Our code and generated examples are open-sourced at [https://github.com/GitsSaikat/Pygen]
Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs
Large Language Models (LLMs) have revolutionized various aspects of engineering and science. Their utility is often bottlenecked by the lack of interaction with the external digital environment. To overcome this limitation and achieve integration of LLMs and Artificial Intelligence (AI) into real-world applications, customized AI agents are being constructed. Based on the technological trends and techniques, we extract a high-level approach for constructing these AI agents, focusing on their underlying architecture. This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs). We present a 7-step methodology that begins with the selection of suitable LLMs and the task decomposition that is necessary for complex problem-solving. This methodology includes techniques for generating training data for API interactions and heuristics for selecting the appropriate API among a plethora of options. These steps eventually lead to the generation of API calls that are both syntactically and semantically aligned with the LLM's understanding of a given task. Moreover, we review existing frameworks and tools that facilitate these processes and highlight the gaps in current attempts. In this direction, we propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community. We examine the effectiveness of these approaches on real-world applications of various domains, including the generation of a piano sheet. Through an extensive analysis of the literature and available technologies, this thesis aims to set a compass for researchers and practitioners to harness the full potential of LLMs augmented with external tool capabilities, thus paving the way for more autonomous, robust, and context-aware AI agents.
AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains.
Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis
Personalized AI assistants, a hallmark of the human-like capabilities of Large Language Models (LLMs), are a challenging application that intertwines multiple problems in LLM research. Despite the growing interest in the development of personalized assistants, the lack of an open-source conversational dataset tailored for personalization remains a significant obstacle for researchers in the field. To address this research gap, we introduce HiCUPID, a new benchmark to probe and unleash the potential of LLMs to deliver personalized responses. Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model whose assessment closely mirrors human preferences. We release our dataset, evaluation model, and code at https://github.com/12kimih/HiCUPID.
LILO: Learning Interpretable Libraries by Compressing and Documenting Code
While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.
The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines
The recent surge of open-source large language models (LLMs) enables developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance, thereby providing governance and ownership of the model deployment process. To utilize these LLMs, inference engines are needed. These engines load the model's weights onto available resources, such as GPUs, and process queries to generate responses. The speed of inference, or performance, of the LLM, is critical for real-time applications, as it computes millions or billions of floating point operations per inference. Recently, advanced inference engines such as vLLM have emerged, incorporating novel mechanisms such as efficient memory management to achieve state-of-the-art performance. In this paper, we analyze the performance, particularly the throughput (tokens generated per unit of time), of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines. We investigate how various hyperparameters, which developers must configure, influence inference performance. Our results reveal that throughput landscapes are irregular, with distinct peaks, highlighting the importance of hyperparameter optimization to achieve maximum performance. We also show that applying hyperparameter optimization when upgrading or downgrading the GPU model used for inference can improve throughput from HuggingFace pipelines by an average of 9.16% and 13.7%, respectively.
The Stack: 3 TB of permissively licensed source code
Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language processing but also for code understanding and generation. To stimulate open and responsible research on LLMs for code, we introduce The Stack, a 3.1 TB dataset consisting of permissively licensed source code in 30 programming languages. We describe how we collect the full dataset, construct a permissively licensed subset, present a data governance plan, discuss limitations, and show promising results on text2code benchmarks by training 350M-parameter decoders on different Python subsets. We find that (1) near-deduplicating the data significantly boosts performance across all experiments, and (2) it is possible to match previously reported HumanEval and MBPP performance using only permissively licensed data. We make the dataset available at https://hf.co/BigCode, provide a tool called "Am I in The Stack" (https://hf.co/spaces/bigcode/in-the-stack) for developers to search The Stack for copies of their code, and provide a process for code to be removed from the dataset by following the instructions at https://www.bigcode-project.org/docs/about/the-stack/.
ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.
Enhancing Nursing and Elderly Care with Large Language Models: An AI-Driven Framework
This paper explores the application of large language models (LLMs) in nursing and elderly care, focusing on AI-driven patient monitoring and interaction. We introduce a novel Chinese nursing dataset and implement incremental pre-training (IPT) and supervised fine-tuning (SFT) techniques to enhance LLM performance in specialized tasks. Using LangChain, we develop a dynamic nursing assistant capable of real-time care and personalized interventions. Experimental results demonstrate significant improvements, paving the way for AI-driven solutions to meet the growing demands of healthcare in aging populations.
DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows
Large language models (LLMs) have become a dominant and important tool for NLP researchers in a wide range of tasks. Today, many researchers use LLMs in synthetic data generation, task evaluation, fine-tuning, distillation, and other model-in-the-loop research workflows. However, challenges arise when using these models that stem from their scale, their closed source nature, and the lack of standardized tooling for these new and emerging workflows. The rapid rise to prominence of these models and these unique challenges has had immediate adverse impacts on open science and on the reproducibility of work that uses them. In this paper, we introduce DataDreamer, an open source Python library that allows researchers to write simple code to implement powerful LLM workflows. DataDreamer also helps researchers adhere to best practices that we propose to encourage open science and reproducibility. The library and documentation are available at https://github.com/datadreamer-dev/DataDreamer .
AIDE: AI-Driven Exploration in the Space of Code
Machine learning, the foundation of modern artificial intelligence, has driven innovations that have fundamentally transformed the world. Yet, behind advancements lies a complex and often tedious process requiring labor and compute intensive iteration and experimentation. Engineers and scientists developing machine learning models spend much of their time on trial-and-error tasks instead of conceptualizing innovative solutions or research hypotheses. To address this challenge, we introduce AI-Driven Exploration (AIDE), a machine learning engineering agent powered by large language models (LLMs). AIDE frames machine learning engineering as a code optimization problem, and formulates trial-and-error as a tree search in the space of potential solutions. By strategically reusing and refining promising solutions, AIDE effectively trades computational resources for enhanced performance, achieving state-of-the-art results on multiple machine learning engineering benchmarks, including our Kaggle evaluations, OpenAI MLE-Bench and METRs RE-Bench.
LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
From Bytes to Borsch: Fine-Tuning Gemma and Mistral for the Ukrainian Language Representation
In the rapidly advancing field of AI and NLP, generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation. However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology. Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency and benchmarking them against other existing models capable of processing Ukrainian language. This endeavor not only aims to mitigate language bias in technology but also promotes inclusivity in the digital realm. Our transparent and reproducible approach encourages further NLP research and development. Additionally, we present the Ukrainian Knowledge and Instruction Dataset (UKID) to aid future efforts in language model fine-tuning. Our research not only advances the field of NLP but also highlights the importance of linguistic diversity in AI, which is crucial for cultural preservation, education, and expanding AI's global utility. Ultimately, we advocate for a future where technology is inclusive, enabling AI to communicate effectively across all languages, especially those currently underrepresented.
Large Language Models Are Human-Level Prompt Engineers
By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.
MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering
We introduce MLE-bench, a benchmark for measuring how well AI agents perform at machine learning engineering. To this end, we curate 75 ML engineering-related competitions from Kaggle, creating a diverse set of challenging tasks that test real-world ML engineering skills such as training models, preparing datasets, and running experiments. We establish human baselines for each competition using Kaggle's publicly available leaderboards. We use open-source agent scaffolds to evaluate several frontier language models on our benchmark, finding that the best-performing setup--OpenAI's o1-preview with AIDE scaffolding--achieves at least the level of a Kaggle bronze medal in 16.9% of competitions. In addition to our main results, we investigate various forms of resource scaling for AI agents and the impact of contamination from pre-training. We open-source our benchmark code (github.com/openai/mle-bench/) to facilitate future research in understanding the ML engineering capabilities of AI agents.
A Sanity Check for AI-generated Image Detection
With the rapid development of generative models, discerning AI-generated content has evoked increasing attention from both industry and academia. In this paper, we conduct a sanity check on "whether the task of AI-generated image detection has been solved". To start with, we present Chameleon dataset, consisting AIgenerated images that are genuinely challenging for human perception. To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset. Upon analysis, almost all models classify AI-generated images as real ones. Later, we propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns. Specifically, to capture the high-level semantics, we utilize CLIP to compute the visual embedding. This effectively enables the model to discern AI-generated images based on semantics or contextual information; Secondly, we select the highest frequency patches and the lowest frequency patches in the image, and compute the low-level patchwise features, aiming to detect AI-generated images by low-level artifacts, for example, noise pattern, anti-aliasing, etc. While evaluating on existing benchmarks, for example, AIGCDetectBenchmark and GenImage, AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods, and on our proposed challenging Chameleon benchmarks, it also achieves the promising results, despite this problem for detecting AI-generated images is far from being solved.
ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation
Graphical User Interface (GUI) automation holds significant promise for assisting users with complex tasks, thereby boosting human productivity. Existing works leveraging Large Language Model (LLM) or LLM-based AI agents have shown capabilities in automating tasks on Android and Web platforms. However, these tasks are primarily aimed at simple device usage and entertainment operations. This paper presents a novel benchmark, AssistGUI, to evaluate whether models are capable of manipulating the mouse and keyboard on the Windows platform in response to user-requested tasks. We carefully collected a set of 100 tasks from nine widely-used software applications, such as, After Effects and MS Word, each accompanied by the necessary project files for better evaluation. Moreover, we propose an advanced Actor-Critic Embodied Agent framework, which incorporates a sophisticated GUI parser driven by an LLM-agent and an enhanced reasoning mechanism adept at handling lengthy procedural tasks. Our experimental results reveal that our GUI Parser and Reasoning mechanism outshine existing methods in performance. Nevertheless, the potential remains substantial, with the best model attaining only a 46% success rate on our benchmark. We conclude with a thorough analysis of the current methods' limitations, setting the stage for future breakthroughs in this domain.
Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs
Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.
Representation Engineering: A Top-Down Approach to AI Transparency
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
LM4HPC: Towards Effective Language Model Application in High-Performance Computing
In recent years, language models (LMs), such as GPT-4, have been widely used in multiple domains, including natural language processing, visualization, and so on. However, applying them for analyzing and optimizing high-performance computing (HPC) software is still challenging due to the lack of HPC-specific support. In this paper, we design the LM4HPC framework to facilitate the research and development of HPC software analyses and optimizations using LMs. Tailored for supporting HPC datasets, AI models, and pipelines, our framework is built on top of a range of components from different levels of the machine learning software stack, with Hugging Face-compatible APIs. Using three representative tasks, we evaluated the prototype of our framework. The results show that LM4HPC can help users quickly evaluate a set of state-of-the-art models and generate insightful leaderboards.
Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.
Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs
The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.
Lita: Light Agent Uncovers the Agentic Coding Capabilities of LLMs
Large language models (LLMs) are increasingly being applied to programming tasks, ranging from single-turn code completion to autonomous agents. Current code agent designs frequently depend on complex, hand-crafted workflows and tool sets. However, this reliance on elaborate scaffolding presents several challenges: agent performance becomes overly dependent on prompt tuning and custom design choices, heavy human intervention obscures a model's true underlying capabilities, and intricate pipelines are costly to build and maintain. Furthermore, optimizing complex task prompts increases the risk of data leakage. Currently, when introducing new models, LLM providers like OpenAI and Anthropic often publish benchmark scores to demonstrate their models' coding proficiency, but keep their proprietary evaluation frameworks confidential. To address these limitations, we introduce Lita (Lite Agent), which operationalizes liteness, a principle of minimizing manual design while retaining the essential elements of a fully autonomous agent. Lita enables a more faithful and unified evaluation without elaborate scaffolding. Experiments on the Aider Polyglot and SWE-Bench with frontier models demonstrate that Lita achieves competitive or superior performance compared to workflow-based and agentic baselines. Crucially, Lita also consumes fewer tokens and requires significantly less design effort. Our results suggest that Lita is sufficient to reveal the underlying coding competence of modern LLMs. Finally, we propose the Agent Complexity Law: the performance gap between agents of varying complexity, from simple to sophisticated designs, will shrink as the core model improves, ultimately converging to a negligible difference.
LMentry: A Language Model Benchmark of Elementary Language Tasks
As the performance of large language models rapidly improves, benchmarks are getting larger and more complex as well. We present LMentry, a benchmark that avoids this "arms race" by focusing on a compact set of tasks that are trivial to humans, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, or choosing which of two words is longer. LMentry is specifically designed to provide quick and interpretable insights into the capabilities and robustness of large language models. Our experiments reveal a wide variety of failure cases that, while immediately obvious to humans, pose a considerable challenge for large language models, including OpenAI's latest 175B-parameter instruction-tuned model, TextDavinci002. LMentry complements contemporary evaluation approaches of large language models, providing a quick, automatic, and easy-to-run "unit test", without resorting to large benchmark suites of complex tasks.
MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
Agents based on large language models (LLMs) for machine learning engineering (MLE) can automatically implement ML models via code generation. However, existing approaches to build such agents often rely heavily on inherent LLM knowledge and employ coarse exploration strategies that modify the entire code structure at once. This limits their ability to select effective task-specific models and perform deep exploration within specific components, such as experimenting extensively with feature engineering options. To overcome these, we propose MLE-STAR, a novel approach to build MLE agents. MLE-STAR first leverages external knowledge by using a search engine to retrieve effective models from the web, forming an initial solution, then iteratively refines it by exploring various strategies targeting specific ML components. This exploration is guided by ablation studies analyzing the impact of individual code blocks. Furthermore, we introduce a novel ensembling method using an effective strategy suggested by MLE-STAR. Our experimental results show that MLE-STAR achieves medals in 64% of the Kaggle competitions on the MLE-bench Lite, significantly outperforming the best alternative.
The Design and Implementation of XiaoIce, an Empathetic Social Chatbot
This paper describes the development of Microsoft XiaoIce, the most popular social chatbot in the world. XiaoIce is uniquely designed as an AI companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient (IQ) and emotional quotient (EQ) in system design, cast human-machine social chat as decision-making over Markov Decision Processes (MDPs), and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intent, and responds to user needs throughout long conversations. Since her launch in 2014, XiaoIce has communicated with over 660 million active users and succeeded in establishing long-term relationships with many of them. Analysis of large scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.
STELLA: Self-Evolving LLM Agent for Biomedical Research
The rapid growth of biomedical data, tools, and literature has created a fragmented research landscape that outpaces human expertise. While AI agents offer a solution, they typically rely on static, manually curated toolsets, limiting their ability to adapt and scale. Here, we introduce STELLA, a self-evolving AI agent designed to overcome these limitations. STELLA employs a multi-agent architecture that autonomously improves its own capabilities through two core mechanisms: an evolving Template Library for reasoning strategies and a dynamic Tool Ocean that expands as a Tool Creation Agent automatically discovers and integrates new bioinformatics tools. This allows STELLA to learn from experience. We demonstrate that STELLA achieves state-of-the-art accuracy on a suite of biomedical benchmarks, scoring approximately 26\% on Humanity's Last Exam: Biomedicine, 54\% on LAB-Bench: DBQA, and 63\% on LAB-Bench: LitQA, outperforming leading models by up to 6 percentage points. More importantly, we show that its performance systematically improves with experience; for instance, its accuracy on the Humanity's Last Exam benchmark almost doubles with increased trials. STELLA represents a significant advance towards AI Agent systems that can learn and grow, dynamically scaling their expertise to accelerate the pace of biomedical discovery.
KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI
In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets.
Self-Programming Artificial Intelligence Using Code-Generating Language Models
Recent progress in large-scale language models has enabled breakthroughs in previously intractable computer programming tasks. Prior work in meta-learning and neural architecture search has led to substantial successes across various task domains, spawning myriad approaches for algorithmically optimizing the design and learning dynamics of deep learning models. At the intersection of these research areas, we implement a code-generating language model with the ability to modify its own source code. Self-programming AI algorithms have been of interest since the dawn of AI itself. Although various theoretical formulations of generalized self-programming AI have been posed, no such system has been successfully implemented to date under real-world computational constraints. Applying AI-based code generation to AI itself, we develop and experimentally validate the first practical implementation of a self-programming AI system. We empirically show that a self-programming AI implemented using a code generation model can successfully modify its own source code to improve performance and program sub-models to perform auxiliary tasks. Our model can self-modify various properties including model architecture, computational capacity, and learning dynamics.
Comparing Software Developers with ChatGPT: An Empirical Investigation
The advent of automation in particular Software Engineering (SE) tasks has transitioned from theory to reality. Numerous scholarly articles have documented the successful application of Artificial Intelligence to address issues in areas such as project management, modeling, testing, and development. A recent innovation is the introduction of ChatGPT, an ML-infused chatbot, touted as a resource proficient in generating programming codes and formulating software testing strategies for developers and testers respectively. Although there is speculation that AI-based computation can increase productivity and even substitute software engineers in software development, there is currently a lack of empirical evidence to verify this. Moreover, despite the primary focus on enhancing the accuracy of AI systems, non-functional requirements including energy efficiency, vulnerability, fairness (i.e., human bias), and safety frequently receive insufficient attention. This paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration, enhancing the reliability of AI-based methods, and understanding task suitability for humans or AI. Furthermore, it facilitates the effective implementation of cooperative work structures and human-in-the-loop processes. This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics. The empirical study includes a case of assessing ChatGPT-generated code versus code produced by developers and uploaded in Leetcode.
Understanding The Effectiveness of Lossy Compression in Machine Learning Training Sets
Learning and Artificial Intelligence (ML/AI) techniques have become increasingly prevalent in high performance computing (HPC). However, these methods depend on vast volumes of floating point data for training and validation which need methods to share the data on a wide area network (WAN) or to transfer it from edge devices to data centers. Data compression can be a solution to these problems, but an in-depth understanding of how lossy compression affects model quality is needed. Prior work largely considers a single application or compression method. We designed a systematic methodology for evaluating data reduction techniques for ML/AI, and we use it to perform a very comprehensive evaluation with 17 data reduction methods on 7 ML/AI applications to show modern lossy compression methods can achieve a 50-100x compression ratio improvement for a 1% or less loss in quality. We identify critical insights that guide the future use and design of lossy compressors for ML/AI.
AlphaResearch: Accelerating New Algorithm Discovery with Language Models
Large language models have made significant progress in complex but easy-to-verify problems, yet they still struggle with discovering the unknown. In this paper, we present AlphaResearch, an autonomous research agent designed to discover new algorithms on open-ended problems. To synergize the feasibility and innovation of the discovery process, we construct a novel dual research environment by combining the execution-based verify and simulated real-world peer review environment. AlphaResearch discovers new algorithm by iteratively running the following steps: (1) propose new ideas (2) verify the ideas in the dual research environment (3) optimize the research proposals for better performance. To promote a transparent evaluation process, we construct AlphaResearchComp, a new evaluation benchmark that includes an eight open-ended algorithmic problems competition, with each problem carefully curated and verified through executable pipelines, objective metrics, and reproducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison with human researchers, demonstrate the possibility of accelerating algorithm discovery with LLMs. Notably, the algorithm discovered by AlphaResearch on the ``packing circles'' problem achieves the best-of-known performance, surpassing the results of human researchers and strong baselines from recent work (e.g., AlphaEvolve). Additionally, we conduct a comprehensive analysis of the remaining challenges of the 6/8 failure cases, providing valuable insights for future research.
AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
The advent of Large Language Models (LLMs) has profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage. While LLMs are primarily designed for natural language interaction, the extensive embedded knowledge empowers them to comprehend digital sensor data. This capability enables LLMs to engage with the physical world through IoT sensors and actuators, performing a myriad of AIoT tasks. Consequently, this evolution triggers a paradigm shift in conventional AIoT application development, democratizing its accessibility to all by facilitating the design and development of AIoT applications via natural language. However, some limitations need to be addressed to unlock the full potential of LLMs in AIoT application development. First, existing solutions often require transferring raw sensor data to LLM servers, which raises privacy concerns, incurs high query fees, and is limited by token size. Moreover, the reasoning processes of LLMs are opaque to users, making it difficult to verify the robustness and correctness of inference results. This paper introduces AutoIOT, an LLM-based automated program generator for AIoT applications. AutoIOT enables users to specify their requirements using natural language (input) and automatically synthesizes interpretable programs with documentation (output). AutoIOT automates the iterative optimization to enhance the quality of generated code with minimum user involvement. AutoIOT not only makes the execution of AIoT tasks more explainable but also mitigates privacy concerns and reduces token costs with local execution of synthesized programs. Extensive experiments and user studies demonstrate AutoIOT's remarkable capability in program synthesis for various AIoT tasks. The synthesized programs can match and even outperform some representative baselines.
KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model
Artificial intelligence is gradually demonstrating its immense potential, and increasing attention is being given to how AI can be harnessed to advance scientific research. In this vision paper, we present our perspectives on how AI can better assist scientific inquiry and explore corresponding technical approach. We have proposed and open-sourced a large model of our KALE-LM model series, Llama3-KALE-LM-Chem-8B, which has achieved outstanding performance in tasks related to the field of chemistry. We hope that our work serves as a strong starting point, helping to realize more intelligent AI and promoting the advancement of human science and technology, as well as societal development.
AIvril: AI-Driven RTL Generation With Verification In-The-Loop
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks. Leveraging these capabilities, LLMs hold the potential to transform the entire hardware design stack, with predictions suggesting that front-end and back-end tasks could be fully automated in the near future. Currently, LLMs show great promise in streamlining Register Transfer Level (RTL) generation, enhancing efficiency, and accelerating innovation. However, their probabilistic nature makes them prone to inaccuracies - a significant drawback in RTL design, where reliability and precision are essential. To address these challenges, this paper introduces AIvril, an advanced framework designed to enhance the accuracy and reliability of RTL-aware LLMs. AIvril employs a multi-agent, LLM-agnostic system for automatic syntax correction and functional verification, significantly reducing - and in many cases, completely eliminating - instances of erroneous code generation. Experimental results conducted on the VerilogEval-Human dataset show that our framework improves code quality by nearly 2x when compared to previous works, while achieving an 88.46% success rate in meeting verification objectives. This represents a critical step toward automating and optimizing hardware design workflows, offering a more dependable methodology for AI-driven RTL design.
Benchmarking Large Language Models for Image Classification of Marine Mammals
As Artificial Intelligence (AI) has developed rapidly over the past few decades, the new generation of AI, Large Language Models (LLMs) trained on massive datasets, has achieved ground-breaking performance in many applications. Further progress has been made in multimodal LLMs, with many datasets created to evaluate LLMs with vision abilities. However, none of those datasets focuses solely on marine mammals, which are indispensable for ecological equilibrium. In this work, we build a benchmark dataset with 1,423 images of 65 kinds of marine mammals, where each animal is uniquely classified into different levels of class, ranging from species-level to medium-level to group-level. Moreover, we evaluate several approaches for classifying these marine mammals: (1) machine learning (ML) algorithms using embeddings provided by neural networks, (2) influential pre-trained neural networks, (3) zero-shot models: CLIP and LLMs, and (4) a novel LLM-based multi-agent system (MAS). The results demonstrate the strengths of traditional models and LLMs in different aspects, and the MAS can further improve the classification performance. The dataset is available on GitHub: https://github.com/yeyimilk/LLM-Vision-Marine-Animals.git.
Survey of Specialized Large Language Model
The rapid evolution of specialized large language models (LLMs) has transitioned from simple domain adaptation to sophisticated native architectures, marking a paradigm shift in AI development. This survey systematically examines this progression across healthcare, finance, legal, and technical domains. Besides the wide use of specialized LLMs, technical breakthrough such as the emergence of domain-native designs beyond fine-tuning, growing emphasis on parameter efficiency through sparse computation and quantization, increasing integration of multimodal capabilities and so on are applied to recent LLM agent. Our analysis reveals how these innovations address fundamental limitations of general-purpose LLMs in professional applications, with specialized models consistently performance gains on domain-specific benchmarks. The survey further highlights the implications for E-Commerce field to fill gaps in the field.
Visual AI and Linguistic Intelligence Through Steerability and Composability
This study explores the capabilities of multimodal large language models (LLMs) in handling challenging multistep tasks that integrate language and vision, focusing on model steerability, composability, and the application of long-term memory and context understanding. The problem addressed is the LLM's ability (Nov 2023 GPT-4 Vision Preview) to manage tasks that require synthesizing visual and textual information, especially where stepwise instructions and sequential logic are paramount. The research presents a series of 14 creatively and constructively diverse tasks, ranging from AI Lego Designing to AI Satellite Image Analysis, designed to test the limits of current LLMs in contexts that previously proved difficult without extensive memory and contextual understanding. Key findings from evaluating 800 guided dialogs include notable disparities in task completion difficulty. For instance, 'Image to Ingredient AI Bartender' (Low difficulty) contrasted sharply with 'AI Game Self-Player' (High difficulty), highlighting the LLM's varying proficiency in processing complex visual data and generating coherent instructions. Tasks such as 'AI Genetic Programmer' and 'AI Negotiator' showed high completion difficulty, emphasizing challenges in maintaining context over multiple steps. The results underscore the importance of developing LLMs that combine long-term memory and contextual awareness to mimic human-like thought processes in complex problem-solving scenarios.
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern due to their ability to effectively respond to freetext queries with certain professional knowledge. This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process, with the aim of providing an overview of the development roadmap from traditional Pretrained Language Models (PLMs) to LLMs. Specifically, we first explore the potential of LLMs to enhance the efficiency and effectiveness of various Healthcare applications highlighting both the strengths and limitations. Secondly, we conduct a comparison between the previous PLMs and the latest LLMs, as well as comparing various LLMs with each other. Then we summarize related Healthcare training data, training methods, optimization strategies, and usage. Finally, the unique concerns associated with deploying LLMs in Healthcare settings are investigated, particularly regarding fairness, accountability, transparency and ethics. Our survey provide a comprehensive investigation from perspectives of both computer science and Healthcare specialty. Besides the discussion about Healthcare concerns, we supports the computer science community by compiling a collection of open source resources, such as accessible datasets, the latest methodologies, code implementations, and evaluation benchmarks in the Github. Summarily, we contend that a significant paradigm shift is underway, transitioning from PLMs to LLMs. This shift encompasses a move from discriminative AI approaches to generative AI approaches, as well as a shift from model-centered methodologies to datacentered methodologies.
LIMI: Less is More for Agency
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
VISION2UI: A Real-World Dataset with Layout for Code Generation from UI Designs
Automatically generating UI code from webpage design visions can significantly alleviate the burden of developers, enabling beginner developers or designers to directly generate Web pages from design diagrams. Currently, prior research has accomplished the objective of generating UI code from rudimentary design visions or sketches through designing deep neural networks. Inspired by the groundbreaking advancements achieved by Multimodal Large Language Models (MLLMs), the automatic generation of UI code from high-fidelity design images is now emerging as a viable possibility. Nevertheless, our investigation reveals that existing MLLMs are hampered by the scarcity of authentic, high-quality, and large-scale datasets, leading to unsatisfactory performance in automated UI code generation. To mitigate this gap, we present a novel dataset, termed VISION2UI, extracted from real-world scenarios, augmented with comprehensive layout information, tailored specifically for finetuning MLLMs in UI code generation. Specifically, this dataset is derived through a series of operations, encompassing collecting, cleaning, and filtering of the open-source Common Crawl dataset. In order to uphold its quality, a neural scorer trained on labeled samples is utilized to refine the data, retaining higher-quality instances. Ultimately, this process yields a dataset comprising 2,000 (Much more is coming soon) parallel samples encompassing design visions and UI code. The dataset is available at https://huggingface.co/datasets/xcodemind/vision2ui.
Aloe: A Family of Fine-tuned Open Healthcare LLMs
As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator
Artificial intelligence has significantly advanced healthcare, particularly through large language models (LLMs) that excel in medical question answering benchmarks. However, their real-world clinical application remains limited due to the complexities of doctor-patient interactions. To address this, we introduce AI Hospital, a multi-agent framework simulating dynamic medical interactions between Doctor as player and NPCs including Patient, Examiner, Chief Physician. This setup allows for realistic assessments of LLMs in clinical scenarios. We develop the Multi-View Medical Evaluation (MVME) benchmark, utilizing high-quality Chinese medical records and NPCs to evaluate LLMs' performance in symptom collection, examination recommendations, and diagnoses. Additionally, a dispute resolution collaborative mechanism is proposed to enhance diagnostic accuracy through iterative discussions. Despite improvements, current LLMs exhibit significant performance gaps in multi-turn interactions compared to one-step approaches. Our findings highlight the need for further research to bridge these gaps and improve LLMs' clinical diagnostic capabilities. Our data, code, and experimental results are all open-sourced at https://github.com/LibertFan/AI_Hospital.
Preparing Lessons for Progressive Training on Language Models
The rapid progress of Transformers in artificial intelligence has come at the cost of increased resource consumption and greenhouse gas emissions due to growing model sizes. Prior work suggests using pretrained small models to improve training efficiency, but this approach may not be suitable for new model structures. On the other hand, training from scratch can be slow, and progressively stacking layers often fails to achieve significant acceleration. To address these challenges, we propose a novel method called Apollo, which prepares lessons for expanding operations by learning high-layer functionality during training of low layers. Our approach involves low-value-prioritized sampling (LVPS) to train different depths and weight sharing to facilitate efficient expansion. We also introduce an interpolation method for stable model depth extension. Experiments demonstrate that Apollo achieves state-of-the-art acceleration ratios, even rivaling methods using pretrained models, making it a universal and efficient solution for training deep models while reducing time, financial, and environmental costs.
OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.
ChatGPT vs. DeepSeek: A Comparative Study on AI-Based Code Generation
Background: AI-powered code generation, fueled by Large Language Models (LLMs), is revolutionizing software development. Models like OpenAI's Codex and GPT-4, alongside DeepSeek, leverage vast code and natural language datasets. However, ensuring code quality, correctness, and managing complex tasks remains challenging, necessitating thorough evaluation. Methodology: This research compares ChatGPT (version o1) and DeepSeek (version R1) for Python code generation using online judge coding challenges. It evaluates correctness (online judge verdicts, up to three attempts), code quality (Pylint/Flake8), and efficiency (execution time/memory usage). Results: DeepSeek demonstrated higher correctness, particularly on algorithmic tasks, often achieving 'Accepted' on the first attempt. ChatGPT sometimes requires multiple attempts or failures. ChatGPT encountered fewer issues, used comparable or slightly less memory, consumed less execution times and wrote fewer lines of code. Conclusion: DeepSeek exhibited superior correctness in Python code generation, often requiring fewer attempts, suggesting an advantage in algorithmic problem-solving. Both models showed almost similar efficiency in execution time and memory use. Finally, this research provides insights for developers choosing AI coding assistants and informs future AI-driven software development research.
What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers
GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.
Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning
The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
Octopus: On-device language model for function calling of software APIs
In the rapidly evolving domain of artificial intelligence, Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities. This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs. We meticulously compile a dataset derived from software API documentation and apply fine-tuning to LLMs with capacities of 2B, 3B and 7B parameters, specifically to enhance their proficiency in software API interactions. Our approach concentrates on refining the models' grasp of API structures and syntax, significantly enhancing the accuracy of API function calls. Additionally, we propose conditional masking techniques to ensure outputs in the desired formats and reduce error rates while maintaining inference speeds. We also propose a novel benchmark designed to evaluate the effectiveness of LLMs in API interactions, establishing a foundation for subsequent research. Octopus, the fine-tuned model, is proved to have better performance than GPT-4 for the software APIs calling. This research aims to advance automated software development and API integration, representing substantial progress in aligning LLM capabilities with the demands of practical software engineering applications.
DreamGarden: A Designer Assistant for Growing Games from a Single Prompt
Coding assistants are increasingly leveraged in game design, both generating code and making high-level plans. To what degree can these tools align with developer workflows, and what new modes of human-computer interaction can emerge from their use? We present DreamGarden, an AI system capable of assisting with the development of diverse game environments in Unreal Engine. At the core of our method is an LLM-driven planner, capable of breaking down a single, high-level prompt -- a dream, memory, or imagined scenario provided by a human user -- into a hierarchical action plan, which is then distributed across specialized submodules facilitating concrete implementation. This system is presented to the user as a garden of plans and actions, both growing independently and responding to user intervention via seed prompts, pruning, and feedback. Through a user study, we explore design implications of this system, charting courses for future work in semi-autonomous assistants and open-ended simulation design.
CREATOR: Disentangling Abstract and Concrete Reasonings of Large Language Models through Tool Creation
Large Language Models (LLMs) have demonstrated significant progress in utilizing external APIs as tools for various tasks. However, their tool-using ability is limited by the availability of suitable APIs and the instability of implicit reasoning, particularly when simultaneously engaging in reasoning about plans and actual calculations. To address these limitations, we propose CREATOR, a novel framework that empowers LLMs to create their own tools through documentation and code realization. CREATOR disentangles the LLM's ability into two distinct phases: abstract tool creation and concrete decision execution, which results in improved LLM performance. We evaluate CREATOR on two established benchmarks: MATH, which consists of challenging math competition problems, and TabMWP, which includes diverse tabular contents for problem-solving. Remarkably, CREATOR significantly outperforms existing chain-of-thought (CoT), program-of-thought (PoT), and tool-using baselines on these two benchmarks. Additionally, we present a new dataset, Creation Challenge, comprising 2K diverse questions, to highlight the necessity and benefits of LLMs' tool creation ability in effectively addressing these problems. Furthermore, our research reveals that leveraging LLMs as tool creators facilitates knowledge transfer, and LLMs exhibit varying levels of tool creation abilities, enabling them to flexibly tackle diverse situations. Our study represents a promising avenue for maximizing the potential of LLMs and advancing toward truly intelligent and adaptable AI systems.
MASAI: Modular Architecture for Software-engineering AI Agents
A common method to solve complex problems in software engineering, is to divide the problem into multiple sub-problems. Inspired by this, we propose a Modular Architecture for Software-engineering AI (MASAI) agents, where different LLM-powered sub-agents are instantiated with well-defined objectives and strategies tuned to achieve those objectives. Our modular architecture offers several advantages: (1) employing and tuning different problem-solving strategies across sub-agents, (2) enabling sub-agents to gather information from different sources scattered throughout a repository, and (3) avoiding unnecessarily long trajectories which inflate costs and add extraneous context. MASAI enabled us to achieve the highest performance (28.33% resolution rate) on the popular and highly challenging SWE-bench Lite dataset consisting of 300 GitHub issues from 11 Python repositories. We conduct a comprehensive evaluation of MASAI relative to other agentic methods and analyze the effects of our design decisions and their contribution to the success of MASAI.
Scope is all you need: Transforming LLMs for HPC Code
With easier access to powerful compute resources, there is a growing trend in the field of AI for software development to develop larger and larger language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size (e.g., billions of parameters) and demand expensive compute resources for training. We found this design choice confusing - why do we need large LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question design choices made by existing LLMs by developing smaller LLMs for specific domains - we call them domain-specific LLMs. Specifically, we start off with HPC as a domain and propose a novel tokenizer named Tokompiler, designed specifically for preprocessing code in HPC and compilation-centric tasks. Tokompiler leverages knowledge of language primitives to generate language-oriented tokens, providing a context-aware understanding of code structure while avoiding human semantics attributed to code structures completely. We applied Tokompiler to pre-train two state-of-the-art models, SPT-Code and Polycoder, for a Fortran code corpus mined from GitHub. We evaluate the performance of these models against the conventional LLMs. Results demonstrate that Tokompiler significantly enhances code completion accuracy and semantic understanding compared to traditional tokenizers in normalized-perplexity tests, down to ~1 perplexity score. This research opens avenues for further advancements in domain-specific LLMs, catering to the unique demands of HPC and compilation tasks.
Template Matters: Understanding the Role of Instruction Templates in Multimodal Language Model Evaluation and Training
Current multimodal language models (MLMs) evaluation and training approaches overlook the influence of instruction format, presenting an elephant-in-the-room problem. Previous research deals with this problem by manually crafting instructions, failing to yield significant insights due to limitations in diversity and scalability. In this work, we propose a programmatic instruction template generator capable of producing over 39B unique template combinations by filling randomly sampled positional synonyms into weighted sampled meta templates, enabling us to comprehensively examine the MLM's performance across diverse instruction templates. Our experiments across eight common MLMs on five benchmark datasets reveal that MLMs have high template sensitivities with at most 29% performance gaps between different templates. We further augment the instruction tuning dataset of LLaVA-1.5 with our template generator and perform instruction tuning on LLaVA-1.5-7B and LLaVA-1.5-13B. Models tuned on our augmented dataset achieve the best overall performance when compared with the same scale MLMs tuned on at most 75 times the scale of our augmented dataset, highlighting the importance of instruction templates in MLM training. The code is available at https://github.com/shijian2001/TemplateMatters .
Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents
AI agents are systems capable of perceiving their environment, autonomously planning and executing tasks. Recent advancements in LLM have introduced a transformative paradigm for AI agents, enabling them to interact with external resources and tools through prompts. In such agents, the workflow integrates developer-written code, which manages framework construction and logic control, with LLM-generated natural language that enhances dynamic decision-making and interaction. However, discrepancies between developer-implemented logic and the dynamically generated content of LLMs in terms of behavior and expected outcomes can lead to defects, such as tool invocation failures and task execution errors. These issues introduce specific risks, leading to various defects in LLM-based AI Agents, such as service interruptions. Despite the importance of these issues, there is a lack of systematic work that focuses on analyzing LLM-based AI Agents to uncover defects in their code. In this paper, we present the first study focused on identifying and detecting defects in LLM Agents. We collected and analyzed 6,854 relevant posts from StackOverflow to define 8 types of agent defects. For each type, we provided detailed descriptions with an example. Then, we designed a static analysis tool, named Agentable, to detect the defects. Agentable leverages Code Property Graphs and LLMs to analyze Agent workflows by efficiently identifying specific code patterns and analyzing natural language descriptions. To evaluate Agentable, we constructed two datasets: AgentSet, consists of 84 real-world Agents, and AgentTest, which contains 78 Agents specifically designed to include various types of defects. Our results show that Agentable achieved an overall accuracy of 88.79% and a recall rate of 91.03%. Furthermore, our analysis reveals the 889 defects of the AgentSet, highlighting the prevalence of these defects.
Inference Acceleration for Large Language Models on CPUs
In recent years, large language models have demonstrated remarkable performance across various natural language processing (NLP) tasks. However, deploying these models for real-world applications often requires efficient inference solutions to handle the computational demands. In this paper, we explore the utilization of CPUs for accelerating the inference of large language models. Specifically, we introduce a parallelized approach to enhance throughput by 1) Exploiting the parallel processing capabilities of modern CPU architectures, 2) Batching the inference request. Our evaluation shows the accelerated inference engine gives an 18-22x improvement in the generated token per sec. The improvement is more with longer sequence and larger models. In addition to this, we can also run multiple workers in the same machine with NUMA node isolation to further improvement in tokens/s. Table 2, we have received 4x additional improvement with 4 workers. This would also make Gen-AI based products and companies environment friendly, our estimates shows that CPU usage for Inference could reduce the power consumption of LLMs by 48.9% while providing production ready throughput and latency.
Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare
The integration of Large Language Models (LLMs) into healthcare promises to transform medical diagnostics, research, and patient care. Yet, the progression of medical LLMs faces obstacles such as complex training requirements, rigorous evaluation demands, and the dominance of proprietary models that restrict academic exploration. Transparent, comprehensive access to LLM resources is essential for advancing the field, fostering reproducibility, and encouraging innovation in healthcare AI. We present Hippocrates, an open-source LLM framework specifically developed for the medical domain. In stark contrast to previous efforts, it offers unrestricted access to its training datasets, codebase, checkpoints, and evaluation protocols. This open approach is designed to stimulate collaborative research, allowing the community to build upon, refine, and rigorously evaluate medical LLMs within a transparent ecosystem. Also, we introduce Hippo, a family of 7B models tailored for the medical domain, fine-tuned from Mistral and LLaMA2 through continual pre-training, instruction tuning, and reinforcement learning from human and AI feedback. Our models outperform existing open medical LLMs models by a large-margin, even surpassing models with 70B parameters. Through Hippocrates, we aspire to unlock the full potential of LLMs not just to advance medical knowledge and patient care but also to democratize the benefits of AI research in healthcare, making them available across the globe.
AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
AIGCodeSet: A New Annotated Dataset for AI Generated Code Detection
While large language models provide significant convenience for software development, they can lead to ethical issues in job interviews and student assignments. Therefore, determining whether a piece of code is written by a human or generated by an artificial intelligence (AI) model is a critical issue. In this study, we present AIGCodeSet, which consists of 2.828 AI-generated and 4.755 human-written Python codes, created using CodeLlama 34B, Codestral 22B, and Gemini 1.5 Flash. In addition, we share the results of our experiments conducted with baseline detection methods. Our experiments show that a Bayesian classifier outperforms the other models.
Are Large Language Models Really Bias-Free? Jailbreak Prompts for Assessing Adversarial Robustness to Bias Elicitation
Large Language Models (LLMs) have revolutionized artificial intelligence, demonstrating remarkable computational power and linguistic capabilities. However, these models are inherently prone to various biases stemming from their training data. These include selection, linguistic, and confirmation biases, along with common stereotypes related to gender, ethnicity, sexual orientation, religion, socioeconomic status, disability, and age. This study explores the presence of these biases within the responses given by the most recent LLMs, analyzing the impact on their fairness and reliability. We also investigate how known prompt engineering techniques can be exploited to effectively reveal hidden biases of LLMs, testing their adversarial robustness against jailbreak prompts specially crafted for bias elicitation. Extensive experiments are conducted using the most widespread LLMs at different scales, confirming that LLMs can still be manipulated to produce biased or inappropriate responses, despite their advanced capabilities and sophisticated alignment processes. Our findings underscore the importance of enhancing mitigation techniques to address these safety issues, toward a more sustainable and inclusive artificial intelligence.
CAISE: Conversational Agent for Image Search and Editing
Demand for image editing has been increasing as users' desire for expression is also increasing. However, for most users, image editing tools are not easy to use since the tools require certain expertise in photo effects and have complex interfaces. Hence, users might need someone to help edit their images, but having a personal dedicated human assistant for every user is impossible to scale. For that reason, an automated assistant system for image editing is desirable. Additionally, users want more image sources for diverse image editing works, and integrating an image search functionality into the editing tool is a potential remedy for this demand. Thus, we propose a dataset of an automated Conversational Agent for Image Search and Editing (CAISE). To our knowledge, this is the first dataset that provides conversational image search and editing annotations, where the agent holds a grounded conversation with users and helps them to search and edit images according to their requests. To build such a system, we first collect image search and editing conversations between pairs of annotators. The assistant-annotators are equipped with a customized image search and editing tool to address the requests from the user-annotators. The functions that the assistant-annotators conduct with the tool are recorded as executable commands, allowing the trained system to be useful for real-world application execution. We also introduce a generator-extractor baseline model for this task, which can adaptively select the source of the next token (i.e., from the vocabulary or from textual/visual contexts) for the executable command. This serves as a strong starting point while still leaving a large human-machine performance gap for useful future work. Our code and dataset are publicly available at: https://github.com/hyounghk/CAISE
CodeReef: an open platform for portable MLOps, reusable automation actions and reproducible benchmarking
We present CodeReef - an open platform to share all the components necessary to enable cross-platform MLOps (MLSysOps), i.e. automating the deployment of ML models across diverse systems in the most efficient way. We also introduce the CodeReef solution - a way to package and share models as non-virtualized, portable, customizable and reproducible archive files. Such ML packages include JSON meta description of models with all dependencies, Python APIs, CLI actions and portable workflows necessary to automatically build, benchmark, test and customize models across diverse platforms, AI frameworks, libraries, compilers and datasets. We demonstrate several CodeReef solutions to automatically build, run and measure object detection based on SSD-Mobilenets, TensorFlow and COCO dataset from the latest MLPerf inference benchmark across a wide range of platforms from Raspberry Pi, Android phones and IoT devices to data centers. Our long-term goal is to help researchers share their new techniques as production-ready packages along with research papers to participate in collaborative and reproducible benchmarking, compare the different ML/software/hardware stacks and select the most efficient ones on a Pareto frontier using online CodeReef dashboards.
Superpipeline: A Universal Approach for Reducing GPU Memory Usage in Large Models
The rapid growth in machine learning models, especially in natural language processing and computer vision, has led to challenges when running these models on hardware with limited resources. This paper introduces Superpipeline, a new framework designed to optimize the execution of large AI models on constrained hardware during both training and inference. Our approach involves dynamically managing model execution by dividing models into individual layers and efficiently transferring these layers between GPU and CPU memory. Superpipeline reduces GPU memory usage by up to 60% in our experiments while maintaining model accuracy and acceptable processing speeds. This allows models that would otherwise exceed available GPU memory to run effectively. Unlike existing solutions that focus mainly on inference or specific model types, Superpipeline can be applied to large language models (LLMs), vision-language models (VLMs), and vision-based models. We tested Superpipeline's performance across various models and hardware setups. The method includes two key parameters that allow fine-tuning the balance between GPU memory use and processing speed. Importantly, Superpipeline does not require retraining or changing model parameters, ensuring that the original model's output remains unchanged. Superpipeline's simplicity and flexibility make it useful for researchers and professionals working with advanced AI models on limited hardware. It enables the use of larger models or bigger batch sizes on existing hardware, potentially speeding up innovation across many machine learning applications. This work marks an important step toward making advanced AI models more accessible and optimizing their deployment in resource-limited environments. The code for Superpipeline is available at https://github.com/abbasiReza/super-pipeline.
Me LLaMA: Foundation Large Language Models for Medical Applications
Recent large language models (LLMs) such as ChatGPT and LLaMA have shown great promise in many AI applications. However, their performance on medical tasks is suboptimal and can be improved by training on extensive domain-specific datasets. This study introduces Me LLaMA, a medical LLM family that includes foundation models - Me LLaMA 13/70B, along with their chat-enhanced versions - Me LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our domain-specific data suite for training and evaluation includes a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. Their zero-shot performance is comparable with ChatGPT across 7 out of 8 datasets, with a slight variance of within 3%, and yet falls short when compared to GPT-4. In addition, we investigated the catastrophic forgetting problem, and our results show that Me LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: https://github.com/BIDS-Xu-Lab/Me-LLaMA.
Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present Cognitive Kernel-Pro, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro
Deciphering Digital Detectives: Understanding LLM Behaviors and Capabilities in Multi-Agent Mystery Games
In this study, we explore the application of Large Language Models (LLMs) in Jubensha, a Chinese detective role-playing game and a novel area in Artificial Intelligence (AI) driven gaming. We introduce the first dataset specifically for Jubensha, including character scripts and game rules, to foster AI agent development in this complex narrative environment. Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game. To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills. Furthermore, we incorporated the latest advancements in in-context learning to improve the agents' performance in information gathering, murderer identification, and logical reasoning. The experimental results validate the effectiveness of our proposed methods. This work aims to offer a novel perspective on understanding LLM capabilities and establish a new benchmark for evaluating large language model-based agents.
Bias in Multimodal AI: Testbed for Fair Automatic Recruitment
The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. In fact, many relevant automated systems have been shown to make decisions based on sensitive information or discriminate certain social groups (e.g. certain biometric systems for person recognition). With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious automated recruitment testbed: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind such recruitment tool to extract sensitive information from unstructured data, and exploit it in combination to data biases in undesirable (unfair) ways. Finally, we present a list of recent works developing techniques capable of removing sensitive information from the decision-making process of deep learning architectures. We have used one of these algorithms (SensitiveNets) to experiment discrimination-aware learning for the elimination of sensitive information in our multimodal AI framework. Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and reduce hallucinations. However, developing prompting techniques that enable LLM agents to effectively use these tools and knowledge remains a heuristic and labor-intensive task. Here, we introduce AvaTaR, a novel and automated framework that optimizes an LLM agent to effectively leverage provided tools, improving performance on a given task. During optimization, we design a comparator module to iteratively deliver insightful and comprehensive prompts to the LLM agent by contrastively reasoning between positive and negative examples sampled from training data. We demonstrate AvaTaR on four complex multimodal retrieval datasets featuring textual, visual, and relational information, and three general question-answering (QA) datasets. We find AvaTaR consistently outperforms state-of-the-art approaches across all seven tasks, exhibiting strong generalization ability when applied to novel cases and achieving an average relative improvement of 14% on the Hit@1 metric for the retrieval datasets and 13% for the QA datasets. Code and dataset are available at https://github.com/zou-group/avatar.
Large Language Model Guided Self-Debugging Code Generation
Automated code generation is gaining significant importance in intelligent computer programming and system deployment. However, current approaches often face challenges in computational efficiency and lack robust mechanisms for code parsing and error correction. In this work, we propose a novel framework, PyCapsule, with a simple yet effective two-agent pipeline and efficient self-debugging modules for Python code generation. PyCapsule features sophisticated prompt inference, iterative error handling, and case testing, ensuring high generation stability, safety, and correctness. Empirically, PyCapsule achieves up to 5.7% improvement of success rate on HumanEval, 10.3% on HumanEval-ET, and 24.4% on BigCodeBench compared to the state-of-art methods. We also observe a decrease in normalized success rate given more self-debugging attempts, potentially affected by limited and noisy error feedback in retention. PyCapsule demonstrates broader impacts on advancing lightweight and efficient code generation for artificial intelligence systems.
The Hidden DNA of LLM-Generated JavaScript: Structural Patterns Enable High-Accuracy Authorship Attribution
In this paper, we present the first large-scale study exploring whether JavaScript code generated by Large Language Models (LLMs) can reveal which model produced it, enabling reliable authorship attribution and model fingerprinting. With the rapid rise of AI-generated code, attribution is playing a critical role in detecting vulnerabilities, flagging malicious content, and ensuring accountability. While AI-vs-human detection usually treats AI as a single category we show that individual LLMs leave unique stylistic signatures, even among models belonging to the same family or parameter size. To this end, we introduce LLM-NodeJS, a dataset of 50,000 Node.js back-end programs from 20 large language models. Each has four transformed variants, yielding 250,000 unique JavaScript samples and two additional representations (JSIR and AST) for diverse research applications. Using this dataset, we benchmark traditional machine learning classifiers against fine-tuned Transformer encoders and introduce CodeT5-JSA, a custom architecture derived from the 770M-parameter CodeT5 model with its decoder removed and a modified classification head. It achieves 95.8% accuracy on five-class attribution, 94.6% on ten-class, and 88.5% on twenty-class tasks, surpassing other tested models such as BERT, CodeBERT, and Longformer. We demonstrate that classifiers capture deeper stylistic regularities in program dataflow and structure, rather than relying on surface-level features. As a result, attribution remains effective even after mangling, comment removal, and heavy code transformations. To support open science and reproducibility, we release the LLM-NodeJS dataset, Google Colab training scripts, and all related materials on GitHub: https://github.com/LLM-NodeJS-dataset.
GenLens: A Systematic Evaluation of Visual GenAI Model Outputs
The rapid development of generative AI (GenAI) models in computer vision necessitates effective evaluation methods to ensure their quality and fairness. Existing tools primarily focus on dataset quality assurance and model explainability, leaving a significant gap in GenAI output evaluation during model development. Current practices often depend on developers' subjective visual assessments, which may lack scalability and generalizability. This paper bridges this gap by conducting a formative study with GenAI model developers in an industrial setting. Our findings led to the development of GenLens, a visual analytic interface designed for the systematic evaluation of GenAI model outputs during the early stages of model development. GenLens offers a quantifiable approach for overviewing and annotating failure cases, customizing issue tags and classifications, and aggregating annotations from multiple users to enhance collaboration. A user study with model developers reveals that GenLens effectively enhances their workflow, evidenced by high satisfaction rates and a strong intent to integrate it into their practices. This research underscores the importance of robust early-stage evaluation tools in GenAI development, contributing to the advancement of fair and high-quality GenAI models.
ALAS: Autonomous Learning Agent for Self-Updating Language Models
Large language models (LLMs) often have a fixed knowledge cutoff, limiting their accuracy on emerging information. We present ALAS (Autonomous Learning Agent System), a modular pipeline that continuously updates an LLM's knowledge with minimal human intervention. ALAS autonomously generates a learning curriculum for a target domain, retrieves up-to-date information from the web (with citations), distills this into question-answer training data, and fine-tunes the model through supervised fine-tuning (SFT) and direct preference optimization (DPO). It iteratively evaluates performance and revises the curriculum, enabling long-term continual learning. We demonstrate ALAS's ability to self-improve a model on rapidly evolving domains (e.g., new Python releases, latest security CVEs, academic trends), significantly boosting post-cutoff question answering accuracy (from 15% to 90% on average) without manual dataset curation. The system emphasizes modularity and reproducibility: each component (planning, retrieval, distillation, memory, fine-tuning) is interchangeable and built on standard APIs. We discuss comparative baselines (e.g., retrieval-augmented generation vs. fine-tuning) and show that ALAS achieves 90% accuracy on knowledge-updated queries with minimal engineering overhead. Finally, we outline limitations (cost, dependency on source quality) and future directions for autonomous lifelong learning in LLMs.
SmartFlow: Robotic Process Automation using LLMs
Robotic Process Automation (RPA) systems face challenges in handling complex processes and diverse screen layouts that require advanced human-like decision-making capabilities. These systems typically rely on pixel-level encoding through drag-and-drop or automation frameworks such as Selenium to create navigation workflows, rather than visual understanding of screen elements. In this context, we present SmartFlow, an AI-based RPA system that uses pre-trained large language models (LLMs) coupled with deep-learning based image understanding. Our system can adapt to new scenarios, including changes in the user interface and variations in input data, without the need for human intervention. SmartFlow uses computer vision and natural language processing to perceive visible elements on the graphical user interface (GUI) and convert them into a textual representation. This information is then utilized by LLMs to generate a sequence of actions that are executed by a scripting engine to complete an assigned task. To assess the effectiveness of SmartFlow, we have developed a dataset that includes a set of generic enterprise applications with diverse layouts, which we are releasing for research use. Our evaluations on this dataset demonstrate that SmartFlow exhibits robustness across different layouts and applications. SmartFlow can automate a wide range of business processes such as form filling, customer service, invoice processing, and back-office operations. SmartFlow can thus assist organizations in enhancing productivity by automating an even larger fraction of screen-based workflows. The demo-video and dataset are available at https://smartflow-4c5a0a.webflow.io/.
A Comparative Study of Code Generation using ChatGPT 3.5 across 10 Programming Languages
Large Language Models (LLMs) are advanced Artificial Intelligence (AI) systems that have undergone extensive training using large datasets in order to understand and produce language that closely resembles that of humans. These models have reached a level of proficiency where they are capable of successfully completing university exams across several disciplines and generating functional code to handle novel problems. This research investigates the coding proficiency of ChatGPT 3.5, a LLM released by OpenAI in November 2022, which has gained significant recognition for its impressive text generating and code creation capabilities. The skill of the model in creating code snippets is evaluated across 10 various programming languages and 4 different software domains. Based on the findings derived from this research, major unexpected behaviors and limitations of the model have been identified. This study aims to identify potential areas for development and examine the ramifications of automated code generation on the evolution of programming languages and on the tech industry.
Fashion Matrix: Editing Photos by Just Talking
The utilization of Large Language Models (LLMs) for the construction of AI systems has garnered significant attention across diverse fields. The extension of LLMs to the domain of fashion holds substantial commercial potential but also inherent challenges due to the intricate semantic interactions in fashion-related generation. To address this issue, we developed a hierarchical AI system called Fashion Matrix dedicated to editing photos by just talking. This system facilitates diverse prompt-driven tasks, encompassing garment or accessory replacement, recoloring, addition, and removal. Specifically, Fashion Matrix employs LLM as its foundational support and engages in iterative interactions with users. It employs a range of Semantic Segmentation Models (e.g., Grounded-SAM, MattingAnything, etc.) to delineate the specific editing masks based on user instructions. Subsequently, Visual Foundation Models (e.g., Stable Diffusion, ControlNet, etc.) are leveraged to generate edited images from text prompts and masks, thereby facilitating the automation of fashion editing processes. Experiments demonstrate the outstanding ability of Fashion Matrix to explores the collaborative potential of functionally diverse pre-trained models in the domain of fashion editing.
GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI
Much previous AI research has focused on developing monolithic models to maximize their intelligence and capability, with the primary goal of enhancing performance on specific tasks. In contrast, this paper explores an alternative approach: collaborative AI systems that use workflows to integrate models, data sources, and pipelines to solve complex and diverse tasks. We introduce GenAgent, an LLM-based framework that automatically generates complex workflows, offering greater flexibility and scalability compared to monolithic models. The core innovation of GenAgent lies in representing workflows with code, alongside constructing workflows with collaborative agents in a step-by-step manner. We implement GenAgent on the ComfyUI platform and propose a new benchmark, OpenComfy. The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations, showing its capability to generate complex workflows with superior effectiveness and stability.
The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search
AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.
MLLM-DataEngine: An Iterative Refinement Approach for MLLM
Despite the great advance of Multimodal Large Language Models (MLLMs) in both instruction dataset building and benchmarking, the independence of training and evaluation makes current MLLMs hard to further improve their capability under the guidance of evaluation results with a relatively low human cost. In this paper, we propose MLLM-DataEngine, a novel closed-loop system that bridges data generation, model training, and evaluation. Within each loop iteration, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results, then generate a proper incremental dataset for the next training iteration and enhance the model capability iteratively. Compared with previous data collection methods which are separate from the benchmarking, the data generated by MLLM-DataEngine shows better targeting, quality, and correctness. For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data within each incremental dataset based on the benchmarking results. For quality, we resort to GPT-4 to generate high-quality data with each given data type. For correctness, prompt design is critical for the data generation results. Rather than previous hand-crafted prompt, we propose an Interactive Prompt Optimization strategy, which optimizes the prompt with the multi-round interaction between human and GPT, and improve the correctness of generated data greatly. Through extensive experiments, we find our MLLM-DataEngine could boost the MLLM capability in a targeted and automatic manner, with only a few human participation. We hope it could be a general solution for the following MLLMs building. The MLLM-DataEngine has been open-sourced and is now available at https://github.com/opendatalab/MLLM-DataEngine.
Anim-Director: A Large Multimodal Model Powered Agent for Controllable Animation Video Generation
Traditional animation generation methods depend on training generative models with human-labelled data, entailing a sophisticated multi-stage pipeline that demands substantial human effort and incurs high training costs. Due to limited prompting plans, these methods typically produce brief, information-poor, and context-incoherent animations. To overcome these limitations and automate the animation process, we pioneer the introduction of large multimodal models (LMMs) as the core processor to build an autonomous animation-making agent, named Anim-Director. This agent mainly harnesses the advanced understanding and reasoning capabilities of LMMs and generative AI tools to create animated videos from concise narratives or simple instructions. Specifically, it operates in three main stages: Firstly, the Anim-Director generates a coherent storyline from user inputs, followed by a detailed director's script that encompasses settings of character profiles and interior/exterior descriptions, and context-coherent scene descriptions that include appearing characters, interiors or exteriors, and scene events. Secondly, we employ LMMs with the image generation tool to produce visual images of settings and scenes. These images are designed to maintain visual consistency across different scenes using a visual-language prompting method that combines scene descriptions and images of the appearing character and setting. Thirdly, scene images serve as the foundation for producing animated videos, with LMMs generating prompts to guide this process. The whole process is notably autonomous without manual intervention, as the LMMs interact seamlessly with generative tools to generate prompts, evaluate visual quality, and select the best one to optimize the final output.
ChatHaruhi: Reviving Anime Character in Reality via Large Language Model
Role-playing chatbots built on large language models have drawn interest, but better techniques are needed to enable mimicking specific fictional characters. We propose an algorithm that controls language models via an improved prompt and memories of the character extracted from scripts. We construct ChatHaruhi, a dataset covering 32 Chinese / English TV / anime characters with over 54k simulated dialogues. Both automatic and human evaluations show our approach improves role-playing ability over baselines. Code and data are available at https://github.com/LC1332/Chat-Haruhi-Suzumiya .
Automated test generation to evaluate tool-augmented LLMs as conversational AI agents
Tool-augmented LLMs are a promising approach to create AI agents that can have realistic conversations, follow procedures, and call appropriate functions. However, evaluating them is challenging due to the diversity of possible conversations, and existing datasets focus only on single interactions and function-calling. We present a test generation pipeline to evaluate LLMs as conversational AI agents. Our framework uses LLMs to generate diverse tests grounded on user-defined procedures. For that, we use intermediate graphs to limit the LLM test generator's tendency to hallucinate content that is not grounded on input procedures, and enforces high coverage of the possible conversations. Additionally, we put forward ALMITA, a manually curated dataset for evaluating AI agents in customer support, and use it to evaluate existing LLMs. Our results show that while tool-augmented LLMs perform well in single interactions, they often struggle to handle complete conversations. While our focus is on customer support, our method is general and capable of AI agents for different domains.
Is Hyper-Parameter Optimization Different for Software Analytics?
Yes. SE data can have "smoother" boundaries between classes (compared to traditional AI data sets). To be more precise, the magnitude of the second derivative of the loss function found in SE data is typically much smaller. A new hyper-parameter optimizer, called SMOOTHIE, can exploit this idiosyncrasy of SE data. We compare SMOOTHIE and a state-of-the-art AI hyper-parameter optimizer on three tasks: (a) GitHub issue lifetime prediction (b) detecting static code warnings false alarm; (c) defect prediction. For completeness, we also show experiments on some standard AI datasets. SMOOTHIE runs faster and predicts better on the SE data--but ties on non-SE data with the AI tool. Hence we conclude that SE data can be different to other kinds of data; and those differences mean that we should use different kinds of algorithms for our data. To support open science and other researchers working in this area, all our scripts and datasets are available on-line at https://github.com/yrahul3910/smoothness-hpo/.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute
The Languini Kitchen serves as both a research collective and codebase designed to empower researchers with limited computational resources to contribute meaningfully to the field of language modelling. We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours. The number of tokens on which a model is trained is defined by the model's throughput and the chosen compute class. Notably, this approach avoids constraints on critical hyperparameters which affect total parameters or floating-point operations. For evaluation, we pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length. On it, we compare methods based on their empirical scaling trends which are estimated through experiments at various levels of compute. This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput. While the GPT baseline achieves better perplexity throughout all our levels of compute, our LSTM baseline exhibits a predictable and more favourable scaling law. This is due to the improved throughput and the need for fewer training tokens to achieve the same decrease in test perplexity. Extrapolating the scaling laws leads of both models results in an intersection at roughly 50,000 accelerator hours. We hope this work can serve as the foundation for meaningful and reproducible language modelling research.
Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data
In the field of business data analysis, the ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge. Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data. Conversely, Artificial Intelligence (AI) models, particularly Large Language Models (LLMs), offer significant potential in pattern recognition and predictive analytics but can lack the precision necessary for specific business applications. This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of LLMs in generating actionable business insights.
PyBench: Evaluating LLM Agent on various real-world coding tasks
The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce PyBench, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: PyLlama3 achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: https://github.com/Mercury7353/PyBench{https://github.com/Mercury7353/PyBench}
A General-purpose AI Avatar in Healthcare
Recent advancements in machine learning and natural language processing have led to the rapid development of artificial intelligence (AI) as a valuable tool in the healthcare industry. Using large language models (LLMs) as conversational agents or chatbots has the potential to assist doctors in diagnosing patients, detecting early symptoms of diseases, and providing health advice to patients. This paper focuses on the role of chatbots in healthcare and explores the use of avatars to make AI interactions more appealing to patients. A framework of a general-purpose AI avatar application is demonstrated by using a three-category prompt dictionary and prompt improvement mechanism. A two-phase approach is suggested to fine-tune a general-purpose AI language model and create different AI avatars to discuss medical issues with users. Prompt engineering enhances the chatbot's conversational abilities and personality traits, fostering a more human-like interaction with patients. Ultimately, the injection of personality into the chatbot could potentially increase patient engagement. Future directions for research include investigating ways to improve chatbots' understanding of context and ensuring the accuracy of their outputs through fine-tuning with specialized medical data sets.
Structured Thoughts Automaton: First Formalized Execution Model for Auto-Regressive Language Models
In recent months, Language Models (LMs) have become a part of daily discourse, with focus on OpenAI and the potential of Artificial General Intelligence (AGI). Furthermore, the leaking of LLama's weights to the public has led to an influx of innovations demonstrating the impressive capabilities of generative LMs. While we believe that AGI is still a distant goal, we recognize the potential of LMs in solving tasks such as searching complex documents, compiling reports with basic analysis, and providing assistance in problem-solving. In this paper, we propose formalizing the execution model of language models. We investigate current execution models, to find that this formalism has received little attention, and present our contribution: the first formalized execution model for LMs. We introduce a new algorithm for sampling the predictions of LMs, which we use to build a reliable and inspectable execution model. We introduce a low-level language to write "cognitive program" for this execution model. We hope to shed light on the need for execution models for LMs and encourage further research in this area.
AlerTiger: Deep Learning for AI Model Health Monitoring at LinkedIn
Data-driven companies use AI models extensively to develop products and intelligent business solutions, making the health of these models crucial for business success. Model monitoring and alerting in industries pose unique challenges, including a lack of clear model health metrics definition, label sparsity, and fast model iterations that result in short-lived models and features. As a product, there are also requirements for scalability, generalizability, and explainability. To tackle these challenges, we propose AlerTiger, a deep-learning-based MLOps model monitoring system that helps AI teams across the company monitor their AI models' health by detecting anomalies in models' input features and output score over time. The system consists of four major steps: model statistics generation, deep-learning-based anomaly detection, anomaly post-processing, and user alerting. Our solution generates three categories of statistics to indicate AI model health, offers a two-stage deep anomaly detection solution to address label sparsity and attain the generalizability of monitoring new models, and provides holistic reports for actionable alerts. This approach has been deployed to most of LinkedIn's production AI models for over a year and has identified several model issues that later led to significant business metric gains after fixing.
Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate
The prevailing paradigm for scaling large language models (LLMs) involves monolithic, end-to-end training, a resource-intensive process that lacks flexibility. This paper explores an alternative, constructive approach to model development, built upon the foundation of non-trainable, deterministic input embeddings. In prior [1], we established that high-level semantic reasoning can emerge in Transformers using frozen embeddings derived from the visual structure of Unicode glyphs. Here, we demonstrate that this fixed representational substrate acts as a universal "docking port," enabling two powerful and efficient scaling paradigms: seamless modular composition and progressive layer-wise growth. First, we show that specialist models trained on disparate datasets (e.g., Russian and Chinese text) can be merged into a single, more capable Mixture-of-Experts (MoE) model, post-training, with zero architectural modification. This is achieved by simply averaging their output logits. The resulting MoE model exhibits immediate performance improvements on reasoning benchmarks like MMLU, surpassing its constituent experts without catastrophic forgetting. Second, we introduce a layer-wise constructive training methodology, where a deep Transformer is "grown" by progressively stacking and training one layer at a time. This method demonstrates stable convergence and a clear correlation between model depth and the emergence of complex reasoning abilities, such as those required for SQuAD. Our findings suggest a paradigm shift from monolithic optimization towards a more biological or constructive model of AI development, where complexity is built incrementally and modules can be composed freely. This opens new avenues for resource-efficient scaling, continual learning, and a more democratized ecosystem for building powerful AI systems. We release all code and models to facilitate further research.
Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems
In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.
Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled Bail\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
MonoCoder: Domain-Specific Code Language Model for HPC Codes and Tasks
With easier access to powerful compute resources, there is a growing trend in AI for software development to develop large language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size and demand expensive compute resources for training. This is partly because LLMs for HPC tasks are obtained by finetuning existing LLMs that support several natural and/or programming languages. We found this design choice confusing - why do we need LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question choices made by existing LLMs by developing smaller language models (LMs) for specific domains - we call them domain-specific LMs. Specifically, we start with HPC as a domain and build an HPC-specific LM, named MonoCoder, which is orders of magnitude smaller than existing LMs but delivers better performance on non-HPC and HPC codes. Specifically, we pre-trained MonoCoder on an HPC-specific dataset (named HPCorpus) of C and C++ programs mined from GitHub. We evaluated the performance of MonoCoder against state-of-the-art multi-lingual LLMs. Results demonstrate that MonoCoder, although much smaller than existing LMs, outperforms other LLMs on normalized-perplexity tests (in relation to model size) while also delivering competing CodeBLEU scores for high-performance and parallel code generations. In other words, results suggest that MonoCoder understands HPC code better than state-of-the-art LLMs.
Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
LLM-based Optimization of Compound AI Systems: A Survey
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected. The system's behavior is primarily driven by parameters such as instructions or tool definitions. Recent advancements enable end-to-end optimization of these parameters using an LLM. Notably, leveraging an LLM as an optimizer is particularly efficient because it avoids gradient computation and can generate complex code and instructions. This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems. It covers archetypes of compound AI systems, approaches to LLM-based end-to-end optimization, and insights into future directions and broader impacts. Importantly, this survey uses concepts from program analysis to provide a unified view of how an LLM optimizer is prompted to optimize a compound AI system. The exhaustive list of paper is provided at https://github.com/linyuhongg/LLM-based-Optimization-of-Compound-AI-Systems.
From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
TinyScientist: An Interactive, Extensible, and Controllable Framework for Building Research Agents
Automatic research with Large Language Models (LLMs) is rapidly gaining importance, driving the development of increasingly complex workflows involving multi-agent systems, planning, tool usage, code execution, and human-agent interaction to accelerate research processes. However, as more researchers and developers begin to use and build upon these tools and platforms, the complexity and difficulty of extending and maintaining such agentic workflows have become a significant challenge, particularly as algorithms and architectures continue to advance. To address this growing complexity, TinyScientist identifies the essential components of the automatic research workflow and proposes an interactive, extensible, and controllable framework that easily adapts to new tools and supports iterative growth. We provide an open-source codebase, an interactive web demonstration, and a PyPI Python package to make state-of-the-art auto-research pipelines broadly accessible to every researcher and developer.
DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning
Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that our work will spark new thoughts in the field of AI-generated text detection, ensuring safe application of LLMs and enhancing compliance. Our code is available at https://github.com/heyongxin233/DeTeCtive.
Testing LLMs on Code Generation with Varying Levels of Prompt Specificity
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing. Among the myriad of applications that benefit from LLMs, automated code generation is increasingly promising. The potential to transform natural language prompts into executable code promises a major shift in software development practices and paves the way for significant reductions in manual coding efforts and the likelihood of human-induced errors. This paper reports the results of a study that evaluates the performance of various LLMs, such as Bard, ChatGPT-3.5, ChatGPT-4, and Claude-2, in generating Python for coding problems. We focus on how levels of prompt specificity impact the accuracy, time efficiency, and space efficiency of the generated code. A benchmark of 104 coding problems, each with four types of prompts with varying degrees of tests and specificity, was employed to examine these aspects comprehensively. Our results indicate significant variations in performance across different LLMs and prompt types, and its key contribution is to reveal the ideal prompting strategy for creating accurate Python functions. This study lays the groundwork for further research in LLM capabilities and suggests practical implications for utilizing LLMs in automated code generation tasks and test-driven development.
The Price of Prompting: Profiling Energy Use in Large Language Models Inference
In the rapidly evolving realm of artificial intelligence, deploying large language models (LLMs) poses increasingly pressing computational and environmental challenges. This paper introduces MELODI - Monitoring Energy Levels and Optimization for Data-driven Inference - a multifaceted framework crafted to monitor and analyze the energy consumed during LLM inference processes. MELODI enables detailed observations of power consumption dynamics and facilitates the creation of a comprehensive dataset reflective of energy efficiency across varied deployment scenarios. The dataset, generated using MELODI, encompasses a broad spectrum of LLM deployment frameworks, multiple language models, and extensive prompt datasets, enabling a comparative analysis of energy use. Using the dataset, we investigate how prompt attributes, including length and complexity, correlate with energy expenditure. Our findings indicate substantial disparities in energy efficiency, suggesting ample scope for optimization and adoption of sustainable measures in LLM deployment. Our contribution lies not only in the MELODI framework but also in the novel dataset, a resource that can be expanded by other researchers. Thus, MELODI is a foundational tool and dataset for advancing research into energy-conscious LLM deployment, steering the field toward a more sustainable future.
Can AI Assistants Know What They Don't Know?
Recently, AI assistants based on large language models (LLMs) show surprising performance in many tasks, such as dialogue, solving math problems, writing code, and using tools. Although LLMs possess intensive world knowledge, they still make factual errors when facing some knowledge intensive tasks, like open-domain question answering. These untruthful responses from the AI assistant may cause significant risks in practical applications. We believe that an AI assistant's refusal to answer questions it does not know is a crucial method for reducing hallucinations and making the assistant truthful. Therefore, in this paper, we ask the question "Can AI assistants know what they don't know and express them through natural language?" To answer this question, we construct a model-specific "I don't know" (Idk) dataset for an assistant, which contains its known and unknown questions, based on existing open-domain question answering datasets. Then we align the assistant with its corresponding Idk dataset and observe whether it can refuse to answer its unknown questions after alignment. Experimental results show that after alignment with Idk datasets, the assistant can refuse to answer most its unknown questions. For questions they attempt to answer, the accuracy is significantly higher than before the alignment.
Large Action Models: From Inception to Implementation
As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.
