new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration

Large Language Models (LLMs) are evolving at an unprecedented pace and have exhibited considerable capability in the realm of natural language processing (NLP) with world knowledge. Benefiting from ultra-large-scale training corpora, a single LLM can manage typical NLP tasks competently. However, its performance in executing reasoning tasks is still confined by the limitations of its internal representations. To push this boundary further, we introduce Corex in this paper, a suite of novel general-purpose strategies that transform LLMs into autonomous agents pioneering multi-model collaborations for complex task-solving. Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes, which collectively work towards enhancing the factuality, faithfulness, and reliability of the reasoning process. These paradigms foster task-agnostic approaches that enable LLMs to ''think outside the box,'' thereby overcoming hallucinations and providing better solutions. Through extensive experiments across four different types of reasoning tasks, we demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods. Further results and in-depth analysis demonstrate the cost-effectiveness of our method, facilitating collaboration among different LLMs and promoting annotation efficiency.

  • 6 authors
·
Sep 30, 2023

S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners

Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S^3c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.

  • 8 authors
·
Sep 2, 2024

Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration

Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.

  • 8 authors
·
Jun 4

MechAgents: Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge

Solving mechanics problems using numerical methods requires comprehensive intelligent capability of retrieving relevant knowledge and theory, constructing and executing codes, analyzing the results, a task that has thus far mainly been reserved for humans. While emerging AI methods can provide effective approaches to solve end-to-end problems, for instance via the use of deep surrogate models or various data analytics strategies, they often lack physical intuition since knowledge is baked into the parametric complement through training, offering less flexibility when it comes to incorporating mathematical or physical insights. By leveraging diverse capabilities of multiple dynamically interacting large language models (LLMs), we can overcome the limitations of conventional approaches and develop a new class of physics-inspired generative machine learning platform, here referred to as MechAgents. A set of AI agents can solve mechanics tasks, here demonstrated for elasticity problems, via autonomous collaborations. A two-agent team can effectively write, execute and self-correct code, in order to apply finite element methods to solve classical elasticity problems in various flavors (different boundary conditions, domain geometries, meshes, small/finite deformation and linear/hyper-elastic constitutive laws, and others). For more complex tasks, we construct a larger group of agents with enhanced division of labor among planning, formulating, coding, executing and criticizing the process and results. The agents mutually correct each other to improve the overall team-work performance in understanding, formulating and validating the solution. Our framework shows the potential of synergizing the intelligence of language models, the reliability of physics-based modeling, and the dynamic collaborations among diverse agents, opening novel avenues for automation of solving engineering problems.

  • 2 authors
·
Nov 14, 2023

ProtAgents: Protein discovery via large language model multi-agent collaborations combining physics and machine learning

Designing de novo proteins beyond those found in nature holds significant promise for advancements in both scientific and engineering applications. Current methodologies for protein design often rely on AI-based models, such as surrogate models that address end-to-end problems by linking protein structure to material properties or vice versa. However, these models frequently focus on specific material objectives or structural properties, limiting their flexibility when incorporating out-of-domain knowledge into the design process or comprehensive data analysis is required. In this study, we introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs), where multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment. The versatility in agent development allows for expertise in diverse domains, including knowledge retrieval, protein structure analysis, physics-based simulations, and results analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile approach to tackling protein design and analysis problems, as demonstrated through diverse examples in this study. The problems of interest encompass designing new proteins, analyzing protein structures and obtaining new first-principles data -- natural vibrational frequencies -- via physics simulations. The concerted effort of the system allows for powerful automated and synergistic design of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-objective materials problems and opens up new avenues for autonomous materials discovery and design.

  • 2 authors
·
Jan 27, 2024

MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL

Recent LLM-based Text-to-SQL methods usually suffer from significant performance degradation on "huge" databases and complex user questions that require multi-step reasoning. Moreover, most existing methods neglect the crucial significance of LLMs utilizing external tools and model collaboration. To address these challenges, we introduce MAC-SQL, a novel LLM-based multi-agent collaborative framework. Our framework comprises a core decomposer agent for Text-to-SQL generation with few-shot chain-of-thought reasoning, accompanied by two auxiliary agents that utilize external tools or models to acquire smaller sub-databases and refine erroneous SQL queries. The decomposer agent collaborates with auxiliary agents, which are activated as needed and can be expanded to accommodate new features or tools for effective Text-to-SQL parsing. In our framework, We initially leverage GPT-4 as the strong backbone LLM for all agent tasks to determine the upper bound of our framework. We then fine-tune an open-sourced instruction-followed model, SQL-Llama, by leveraging Code Llama 7B, to accomplish all tasks as GPT-4 does. Experiments show that SQL-Llama achieves a comparable execution accuracy of 43.94, compared to the baseline accuracy of 46.35 for vanilla GPT-4. At the time of writing, MAC-SQL+GPT-4 achieves an execution accuracy of 59.59 when evaluated on the BIRD benchmark, establishing a new state-of-the-art (SOTA) on its holdout test set (https://github.com/wbbeyourself/MAC-SQL).

  • 11 authors
·
Dec 18, 2023

MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration

Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC.

  • 8 authors
·
Nov 14, 2023

Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model

Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.

  • 324 authors
·
Mar 19

mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video

Recent years have witnessed a big convergence of language, vision, and multi-modal pretraining. In this work, we present mPLUG-2, a new unified paradigm with modularized design for multi-modal pretraining, which can benefit from modality collaboration while addressing the problem of modality entanglement. In contrast to predominant paradigms of solely relying on sequence-to-sequence generation or encoder-based instance discrimination, mPLUG-2 introduces a multi-module composition network by sharing common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement. It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video. Empirical study shows that mPLUG-2 achieves state-of-the-art or competitive results on a broad range of over 30 downstream tasks, spanning multi-modal tasks of image-text and video-text understanding and generation, and uni-modal tasks of text-only, image-only, and video-only understanding. Notably, mPLUG-2 shows new state-of-the-art results of 48.0 top-1 accuracy and 80.3 CIDEr on the challenging MSRVTT video QA and video caption tasks with a far smaller model size and data scale. It also demonstrates strong zero-shot transferability on vision-language and video-language tasks. Code and models will be released in https://github.com/alibaba/AliceMind.

  • 15 authors
·
Feb 1, 2023

FriendsQA: A New Large-Scale Deep Video Understanding Dataset with Fine-grained Topic Categorization for Story Videos

Video question answering (VideoQA) aims to answer natural language questions according to the given videos. Although existing models perform well in the factoid VideoQA task, they still face challenges in deep video understanding (DVU) task, which focuses on story videos. Compared to factoid videos, the most significant feature of story videos is storylines, which are composed of complex interactions and long-range evolvement of core story topics including characters, actions and locations. Understanding these topics requires models to possess DVU capability. However, existing DVU datasets rarely organize questions according to these story topics, making them difficult to comprehensively assess VideoQA models' DVU capability of complex storylines. Additionally, the question quantity and video length of these dataset are limited by high labor costs of handcrafted dataset building method. In this paper, we devise a large language model based multi-agent collaboration framework, StoryMind, to automatically generate a new large-scale DVU dataset. The dataset, FriendsQA, derived from the renowned sitcom Friends with an average episode length of 1,358 seconds, contains 44.6K questions evenly distributed across 14 fine-grained topics. Finally, We conduct comprehensive experiments on 10 state-of-the-art VideoQA models using the FriendsQA dataset.

  • 6 authors
·
Dec 22, 2024

GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration

Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.

  • 10 authors
·
Oct 23, 2024

Latent Collaboration in Multi-Agent Systems

Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.

Gen-Verse Princeton-AI
·
Nov 25 12

Multi-Agent Collaboration Mechanisms: A Survey of LLMs

With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.

  • 6 authors
·
Jan 10

LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents

Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 13.3% compared with SOTA.

  • 7 authors
·
Mar 13

Multi-Agent Software Development through Cross-Team Collaboration

The latest breakthroughs in Large Language Models (LLMs), eg., ChatDev, have catalyzed profound transformations, particularly through multi-agent collaboration for software development. LLM agents can collaborate in teams like humans, and follow the waterfall model to sequentially work on requirements analysis, development, review, testing, and other phases to perform autonomous software generation. However, for an agent team, each phase in a single development process yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently, this may lead to obtaining suboptimal results. To address this challenge, we introduce Cross-Team Collaboration (CTC), a scalable multi-team framework that enables orchestrated teams to jointly propose various decisions and communicate with their insights in a cross-team collaboration environment for superior content generation. Experimental results in software development reveal a notable increase in quality compared to state-of-the-art baselines, underscoring the efficacy of our framework. The significant improvements in story generation demonstrate the promising generalization ability of our framework across various domains. We anticipate that our work will guide LLM agents towards a cross-team paradigm and contribute to their significant growth in but not limited to software development. The code and data will be available at https://github.com/OpenBMB/ChatDev.

  • 8 authors
·
Jun 13, 2024

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.

  • 4 authors
·
Nov 22, 2023

Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration

Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.

  • 5 authors
·
Oct 22 1

PathGen-1.6M: 1.6 Million Pathology Image-text Pairs Generation through Multi-agent Collaboration

Vision Language Models (VLMs) like CLIP have attracted substantial attention in pathology, serving as backbones for applications such as zero-shot image classification and Whole Slide Image (WSI) analysis. Additionally, they can function as vision encoders when combined with large language models (LLMs) to support broader capabilities. Current efforts to train pathology VLMs rely on pathology image-text pairs from platforms like PubMed, YouTube, and Twitter, which provide limited, unscalable data with generally suboptimal image quality. In this work, we leverage large-scale WSI datasets like TCGA to extract numerous high-quality image patches. We then train a large multimodal model to generate captions for these images, creating PathGen-1.6M, a dataset containing 1.6 million high-quality image-caption pairs. Our approach involves multiple agent models collaborating to extract representative WSI patches, generating and refining captions to obtain high-quality image-text pairs. Extensive experiments show that integrating these generated pairs with existing datasets to train a pathology-specific CLIP model, PathGen-CLIP, significantly enhances its ability to analyze pathological images, with substantial improvements across nine pathology-related zero-shot image classification tasks and three whole-slide image tasks. Furthermore, we construct 200K instruction-tuning data based on PathGen-1.6M and integrate PathGen-CLIP with the Vicuna LLM to create more powerful multimodal models through instruction tuning. Overall, we provide a scalable pathway for high-quality data generation in pathology, paving the way for next-generation general pathology models.

  • 10 authors
·
Jun 28, 2024

Collaboration and Transition: Distilling Item Transitions into Multi-Query Self-Attention for Sequential Recommendation

Modern recommender systems employ various sequential modules such as self-attention to learn dynamic user interests. However, these methods are less effective in capturing collaborative and transitional signals within user interaction sequences. First, the self-attention architecture uses the embedding of a single item as the attention query, making it challenging to capture collaborative signals. Second, these methods typically follow an auto-regressive framework, which is unable to learn global item transition patterns. To overcome these limitations, we propose a new method called Multi-Query Self-Attention with Transition-Aware Embedding Distillation (MQSA-TED). First, we propose an L-query self-attention module that employs flexible window sizes for attention queries to capture collaborative signals. In addition, we introduce a multi-query self-attention method that balances the bias-variance trade-off in modeling user preferences by combining long and short-query self-attentions. Second, we develop a transition-aware embedding distillation module that distills global item-to-item transition patterns into item embeddings, which enables the model to memorize and leverage transitional signals and serves as a calibrator for collaborative signals. Experimental results on four real-world datasets demonstrate the effectiveness of the proposed modules.

  • 6 authors
·
Nov 2, 2023

FURINA: A Fully Customizable Role-Playing Benchmark via Scalable Multi-Agent Collaboration Pipeline

As large language models (LLMs) advance in role-playing (RP) tasks, existing benchmarks quickly become obsolete due to their narrow scope, outdated interaction paradigms, and limited adaptability across diverse application scenarios. To address this gap, we introduce FURINA-Builder, a novel multi-agent collaboration pipeline that automatically constructs fully customizable RP benchmarks at any scale. It enables evaluation of arbitrary characters across diverse scenarios and prompt formats, as the first benchmark builder in RP area for adaptable assessment. FURINA-Builder simulates dialogues between a test character and other characters drawn from a well-constructed character-scene pool, while an LLM judge selects fine-grained evaluation dimensions and adjusts the test character's responses into final test utterances. Using this pipeline, we build FURINA-Bench, a new comprehensive role-playing benchmark featuring both established and synthesized test characters, each assessed with dimension-specific evaluation criteria. Human evaluation and preliminary separability analysis justify our pipeline and benchmark design. We conduct extensive evaluations of cutting-edge LLMs and find that o3 and DeepSeek-R1 achieve the best performance on English and Chinese RP tasks, respectively. Across all models, established characters consistently outperform synthesized ones, with reasoning capabilities further amplifying this disparity. Interestingly, we observe that model scale does not monotonically reduce hallucinations. More critically, for reasoning LLMs, we uncover a novel trade-off: reasoning improves RP performance but simultaneously increases RP hallucinations. This trade-off extends to a broader Pareto frontier between RP performance and reliability for all LLMs. These findings demonstrate the effectiveness of FURINA-Builder and the challenge posed by FURINA-Bench.

  • 8 authors
·
Oct 8

MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration

Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in 3D world. To tackle this limitation, we introduce a generic AI system, namely MUSES, for 3D-controllable image generation from user queries. Specifically, our MUSES addresses this challenging task by developing a progressive workflow with three key components, including (1) Layout Manager for 2D-to-3D layout lifting, (2) Model Engineer for 3D object acquisition and calibration, (3) Image Artist for 3D-to-2D image rendering. By mimicking the collaboration of human professionals, this multi-modal agent pipeline facilitates the effective and automatic creation of images with 3D-controllable objects, through an explainable integration of top-down planning and bottom-up generation. Additionally, we find that existing benchmarks lack detailed descriptions of complex 3D spatial relationships of multiple objects. To fill this gap, we further construct a new benchmark of T2I-3DisBench (3D image scene), which describes diverse 3D image scenes with 50 detailed prompts. Extensive experiments show the state-of-the-art performance of MUSES on both T2I-CompBench and T2I-3DisBench, outperforming recent strong competitors such as DALL-E 3 and Stable Diffusion 3. These results demonstrate a significant step of MUSES forward in bridging natural language, 2D image generation, and 3D world. Our codes and models will be released soon.

  • 6 authors
·
Aug 20, 2024

EvoGit: Decentralized Code Evolution via Git-Based Multi-Agent Collaboration

We introduce EvoGit, a decentralized multi-agent framework for collaborative software development driven by autonomous code evolution. EvoGit deploys a population of independent coding agents, each proposing edits to a shared codebase without centralized coordination, explicit message passing, or shared memory. Instead, all coordination emerges through a Git-based phylogenetic graph that tracks the full version lineage and enables agents to asynchronously read from and write to the evolving code repository. This graph-based structure supports fine-grained branching, implicit concurrency, and scalable agent interaction while preserving a consistent historical record. Human involvement is minimal but strategic: users define high-level goals, periodically review the graph, and provide lightweight feedback to promote promising directions or prune unproductive ones. Experiments demonstrate EvoGit's ability to autonomously produce functional and modular software artifacts across two real-world tasks: (1) building a web application from scratch using modern frameworks, and (2) constructing a meta-level system that evolves its own language-model-guided solver for the bin-packing optimization problem. Our results underscore EvoGit's potential to establish a new paradigm for decentralized, automated, and continual software development. EvoGit is open-sourced at https://github.com/BillHuang2001/evogit.

  • 3 authors
·
Jun 1

RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration

The dawn of embodied intelligence has ushered in an unprecedented imperative for resilient, cognition-enabled multi-agent collaboration across next-generation ecosystems, revolutionizing paradigms in autonomous manufacturing, adaptive service robotics, and cyber-physical production architectures. However, current robotic systems face significant limitations, such as limited cross-embodiment adaptability, inefficient task scheduling, and insufficient dynamic error correction. While End-to-end VLA models demonstrate inadequate long-horizon planning and task generalization, hierarchical VLA models suffer from a lack of cross-embodiment and multi-agent coordination capabilities. To address these challenges, we introduce RoboOS, the first open-source embodied system built on a Brain-Cerebellum hierarchical architecture, enabling a paradigm shift from single-agent to multi-agent intelligence. Specifically, RoboOS consists of three key components: (1) Embodied Brain Model (RoboBrain), a MLLM designed for global perception and high-level decision-making; (2) Cerebellum Skill Library, a modular, plug-and-play toolkit that facilitates seamless execution of multiple skills; and (3) Real-Time Shared Memory, a spatiotemporal synchronization mechanism for coordinating multi-agent states. By integrating hierarchical information flow, RoboOS bridges Embodied Brain and Cerebellum Skill Library, facilitating robust planning, scheduling, and error correction for long-horizon tasks, while ensuring efficient multi-agent collaboration through Real-Time Shared Memory. Furthermore, we enhance edge-cloud communication and cloud-based distributed inference to facilitate high-frequency interactions and enable scalable deployment. Extensive real-world experiments across various scenarios, demonstrate RoboOS's versatility in supporting heterogeneous embodiments. Project website: https://github.com/FlagOpen/RoboOS

  • 8 authors
·
May 6

Towards End-to-End Embodied Decision Making via Multi-modal Large Language Model: Explorations with GPT4-Vision and Beyond

In this study, we explore the potential of Multimodal Large Language Models (MLLMs) in improving embodied decision-making processes for agents. While Large Language Models (LLMs) have been widely used due to their advanced reasoning skills and vast world knowledge, MLLMs like GPT4-Vision offer enhanced visual understanding and reasoning capabilities. We investigate whether state-of-the-art MLLMs can handle embodied decision-making in an end-to-end manner and whether collaborations between LLMs and MLLMs can enhance decision-making. To address these questions, we introduce a new benchmark called PCA-EVAL, which evaluates embodied decision-making from the perspectives of Perception, Cognition, and Action. Additionally, we propose HOLMES, a multi-agent cooperation framework that allows LLMs to leverage MLLMs and APIs to gather multimodal information for informed decision-making. We compare end-to-end embodied decision-making and HOLMES on our benchmark and find that the GPT4-Vision model demonstrates strong end-to-end embodied decision-making abilities, outperforming GPT4-HOLMES in terms of average decision accuracy (+3%). However, this performance is exclusive to the latest GPT4-Vision model, surpassing the open-source state-of-the-art MLLM by 26%. Our results indicate that powerful MLLMs like GPT4-Vision hold promise for decision-making in embodied agents, offering new avenues for MLLM research.

  • 8 authors
·
Oct 3, 2023 1

Ask-to-Clarify: Resolving Instruction Ambiguity through Multi-turn Dialogue

The ultimate goal of embodied agents is to create collaborators that can interact with humans, not mere executors that passively follow instructions. This requires agents to communicate, coordinate, and adapt their actions based on human feedback. Recently, advances in VLAs have offered a path toward this goal. However, most current VLA-based embodied agents operate in a one-way mode: they receive an instruction and execute it without feedback. This approach fails in real-world scenarios where instructions are often ambiguous. In this paper, we address this problem with the Ask-to-Clarify framework. Our framework first resolves ambiguous instructions by asking questions in a multi-turn dialogue. Then it generates low-level actions end-to-end. Specifically, the Ask-to-Clarify framework consists of two components, one VLM for collaboration and one diffusion for action. We also introduce a connection module that generates conditions for the diffusion based on the output of the VLM. This module adjusts the observation by instructions to create reliable conditions. We train our framework with a two-stage knowledge-insulation strategy. First, we fine-tune the collaboration component using ambiguity-solving dialogue data to handle ambiguity. Then, we integrate the action component while freezing the collaboration one. This preserves the interaction abilities while fine-tuning the diffusion to generate actions. The training strategy guarantees our framework can first ask questions, then generate actions. During inference, a signal detector functions as a router that helps our framework switch between asking questions and taking actions. We evaluate the Ask-to-Clarify framework in 8 real-world tasks, where it outperforms existing state-of-the-art VLAs. The results suggest that our proposed framework, along with the training strategy, provides a path toward collaborative embodied agents.

  • 8 authors
·
Sep 18 3

Beyond Pipelines: A Survey of the Paradigm Shift toward Model-Native Agentic AI

The rapid evolution of agentic AI marks a new phase in artificial intelligence, where Large Language Models (LLMs) no longer merely respond but act, reason, and adapt. This survey traces the paradigm shift in building agentic AI: from Pipeline-based systems, where planning, tool use, and memory are orchestrated by external logic, to the emerging Model-native paradigm, where these capabilities are internalized within the model's parameters. We first position Reinforcement Learning (RL) as the algorithmic engine enabling this paradigm shift. By reframing learning from imitating static data to outcome-driven exploration, RL underpins a unified solution of LLM + RL + Task across language, vision and embodied domains. Building on this, the survey systematically reviews how each capability -- Planning, Tool use, and Memory -- has evolved from externally scripted modules to end-to-end learned behaviors. Furthermore, it examines how this paradigm shift has reshaped major agent applications, specifically the Deep Research agent emphasizing long-horizon reasoning and the GUI agent emphasizing embodied interaction. We conclude by discussing the continued internalization of agentic capabilities like Multi-agent collaboration and Reflection, alongside the evolving roles of the system and model layers in future agentic AI. Together, these developments outline a coherent trajectory toward model-native agentic AI as an integrated learning and interaction framework, marking the transition from constructing systems that apply intelligence to developing models that grow intelligence through experience.

An adapted large language model facilitates multiple medical tasks in diabetes care

Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users. The code is provided via GitHub at https://github.com/waltonfuture/Diabetica.

  • 10 authors
·
Sep 19, 2024 2

GeoLink: Empowering Remote Sensing Foundation Model with OpenStreetMap Data

Integrating ground-level geospatial data with rich geographic context, like OpenStreetMap (OSM), into remote sensing (RS) foundation models (FMs) is essential for advancing geospatial intelligence and supporting a broad spectrum of tasks. However, modality gap between RS and OSM data, including differences in data structure, content, and spatial granularity, makes effective synergy highly challenging, and most existing RS FMs focus on imagery alone. To this end, this study presents GeoLink, a multimodal framework that leverages OSM data to enhance RS FM during both the pretraining and downstream task stages. Specifically, GeoLink enhances RS self-supervised pretraining using multi-granularity learning signals derived from OSM data, guided by cross-modal spatial correlations for information interaction and collaboration. It also introduces image mask-reconstruction to enable sparse input for efficient pretraining. For downstream tasks, GeoLink generates both unimodal and multimodal fine-grained encodings to support a wide range of applications, from common RS interpretation tasks like land cover classification to more comprehensive geographic tasks like urban function zone mapping. Extensive experiments show that incorporating OSM data during pretraining enhances the performance of the RS image encoder, while fusing RS and OSM data in downstream tasks improves the FM's adaptability to complex geographic scenarios. These results underscore the potential of multimodal synergy in advancing high-level geospatial artificial intelligence. Moreover, we find that spatial correlation plays a crucial role in enabling effective multimodal geospatial data integration. Code, checkpoints, and using examples are released at https://github.com/bailubin/GeoLink_NeurIPS2025

  • 7 authors
·
Sep 30

Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL

Recent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computationally inefficient, less capable, and can not benefit from data-centric learning. In this work, we introduce Chain-of-Agents (CoA), a novel paradigm of LLM reasoning that enables native end-to-end complex problem-solving in the same way as a multi-agent system (i.e., multi-turn problem solving with multiple tools and multiple agents) within one model. In chain-of-agents problem-solving, the model dynamically activates different tool agents and role-playing agents to simulate multi-agent collaboration in an end-to-end fashion. To elicit end-to-end chain-of-agents problem-solving abilities in LLMs, we introduce a multi-agent distillation framework to distill state-of-the-art multi-agent systems into chain-of-agents trajectories for agentic supervised fine-tuning. We then use agentic reinforcement learning on verifiable agentic tasks to further improve the models' capabilities on chain-of-agents problem solving. We call the resulting models Agent Foundation Models (AFMs). Our empirical studies demonstrate that AFM establishes new state-of-the-art performance across diverse benchmarks in both web agent and code agent settings. We make the entire research, including the model weights, code for training and evaluation, and the training data, fully open-sourced, which offers a solid starting point for future research on agent models and agentic RL.

Collab-RAG: Boosting Retrieval-Augmented Generation for Complex Question Answering via White-Box and Black-Box LLM Collaboration

Retrieval-Augmented Generation (RAG) systems often struggle to handle multi-hop question-answering tasks accurately due to irrelevant context retrieval and limited complex reasoning capabilities. We introduce Collab-RAG, a collaborative training framework that leverages mutual enhancement between a white-box small language model (SLM) and a blackbox large language model (LLM) for RAG. Specifically, the SLM decomposes complex queries into simpler sub-questions, thus enhancing the accuracy of the retrieval and facilitating more effective reasoning by the black-box LLM. Concurrently, the black-box LLM provides feedback signals to improve the SLM's decomposition capability. We observe that Collab-RAG relies solely on supervision from an affordable black-box LLM without additional distillation from frontier LLMs, yet demonstrates strong generalization across multiple black-box LLMs. Experimental evaluations across five multi-hop QA datasets demonstrate that Collab-RAG substantially outperforms existing black-box-only and SLM fine-tuning baselines by 1.8%-14.2% on average. In particular, our fine-tuned 3B SLM surpasses a frozen 32B LLM in question decomposition, highlighting the efficiency of Collab-RAG in improving reasoning and retrieval for complex questions. The code of Collab-RAG is available on https://github.com/ritaranx/Collab-RAG/.

  • 7 authors
·
Apr 7

T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation

Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.

  • 4 authors
·
Jul 28

A Survey of Scaling in Large Language Model Reasoning

The rapid advancements in large Language models (LLMs) have significantly enhanced their reasoning capabilities, driven by various strategies such as multi-agent collaboration. However, unlike the well-established performance improvements achieved through scaling data and model size, the scaling of reasoning in LLMs is more complex and can even negatively impact reasoning performance, introducing new challenges in model alignment and robustness. In this survey, we provide a comprehensive examination of scaling in LLM reasoning, categorizing it into multiple dimensions and analyzing how and to what extent different scaling strategies contribute to improving reasoning capabilities. We begin by exploring scaling in input size, which enables LLMs to process and utilize more extensive context for improved reasoning. Next, we analyze scaling in reasoning steps that improves multi-step inference and logical consistency. We then examine scaling in reasoning rounds, where iterative interactions refine reasoning outcomes. Furthermore, we discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement. Finally, we review applications of scaling across domains and outline future directions for further advancing LLM reasoning. By synthesizing these diverse perspectives, this survey aims to provide insights into how scaling strategies fundamentally enhance the reasoning capabilities of LLMs and further guide the development of next-generation AI systems.

  • 9 authors
·
Apr 2

Not All Thoughts are Generated Equal: Efficient LLM Reasoning via Multi-Turn Reinforcement Learning

Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose LongotimesShort, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/yasNing/Long-otimes-Short/.

  • 5 authors
·
May 17 1

Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning

Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks that single-agent systems often struggle to manage. While recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks, how to effectively scale collaboration and reasoning in MAS remains an open question. In this work, we introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination. We construct M500, a high-quality dataset containing 500 multi-agent collaborative reasoning traces, and fine-tune Qwen2.5-32B-Instruct on this dataset to produce M1-32B, a model optimized for multi-agent collaboration. To further enable adaptive reasoning, we propose a novel CEO agent that dynamically manages the discussion process, guiding agent collaboration and adjusting reasoning depth for more effective problem-solving. Evaluated in an open-source MAS across a range of tasks-including general understanding, mathematical reasoning, and coding-our system significantly outperforms strong baselines. For instance, M1-32B achieves 12% improvement on GPQA-Diamond, 41% on AIME2024, and 10% on MBPP-Sanitized, matching the performance of state-of-the-art models like DeepSeek-R1 on some tasks. These results highlight the importance of both learned collaboration and adaptive coordination in scaling multi-agent reasoning. Code is available at https://github.com/jincan333/MAS-TTS

  • 6 authors
·
Apr 13

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.

  • 274 authors
·
Mar 19

Generalizing Test-time Compute-optimal Scaling as an Optimizable Graph

Test-Time Scaling (TTS) improves large language models (LLMs) by allocating additional computation during inference, typically through parallel, sequential, or hybrid scaling. However, prior studies often assume fixed collaboration architectures (e.g., topologies) and single-model usage, overlooking that optimal architectures and model combinations can vary across tasks. Therefore, we study the novel problem of searching for compute-optimal model combinations and architectures in TTS under a fixed budget. We formalize it as a multi-LLM collaboration graph, where nodes encode roles and LLM model assignments, and edges capture information flow. This problem is challenging because (i) the combinatorial search space is prohibitively large, and (ii) task-specific requirements demand tailored designs. To address these, we reformulate the problem as probabilistic graph optimization and, through pilot experiments, derive three empirical insights into TTS collaboration graphs. Guided by these insights, we propose Agent-REINFORCE, an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by mapping sampling-gradient-update to sampling-feedback-update, where feedback serves as a textual gradient to update the probabilistic graph and efficiently search for optimal multi-LLM collaboration graphs. Experiments show that Agent-REINFORCE outperforms both traditional and LLM-based baselines in sample efficiency and search performance, and effectively identifies optimal graphs under joint objectives of accuracy and inference latency.

Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient

In the rapidly advancing field of image generation, Visual Auto-Regressive (VAR) modeling has garnered considerable attention for its innovative next-scale prediction approach. This paradigm offers substantial improvements in efficiency, scalability, and zero-shot generalization. Yet, the inherently coarse-to-fine nature of VAR introduces a prolonged token sequence, leading to prohibitive memory consumption and computational redundancies. To address these bottlenecks, we propose Collaborative Decoding (CoDe), a novel efficient decoding strategy tailored for the VAR framework. CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales. Based on these insights, we partition the multi-scale inference process into a seamless collaboration between a large model and a small model. The large model serves as the 'drafter', specializing in generating low-frequency content at smaller scales, while the smaller model serves as the 'refiner', solely focusing on predicting high-frequency details at larger scales. This collaboration yields remarkable efficiency with minimal impact on quality: CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98. When drafting steps are further decreased, CoDe can achieve an impressive 2.9x acceleration ratio, reaching 41 images/s at 256x256 resolution on a single NVIDIA 4090 GPU, while preserving a commendable FID of 2.27. The code is available at https://github.com/czg1225/CoDe

  • 4 authors
·
Nov 26, 2024 2

Federation of Agents: A Semantics-Aware Communication Fabric for Large-Scale Agentic AI

We present Federation of Agents (FoA), a distributed orchestration framework that transforms static multi-agent coordination into dynamic, capability-driven collaboration. FoA introduces Versioned Capability Vectors (VCVs): machine-readable profiles that make agent capabilities searchable through semantic embeddings, enabling agents to advertise their capabilities, cost, and limitations. Our aarchitecturecombines three key innovations: (1) semantic routing that matches tasks to agents over sharded HNSW indices while enforcing operational constraints through cost-biased optimization, (2) dynamic task decomposition where compatible agents collaboratively break down complex tasks into DAGs of subtasks through consensus-based merging, and (3) smart clustering that groups agents working on similar subtasks into collaborative channels for k-round refinement before synthesis. Built on top of MQTT,s publish-subscribe semantics for scalable message passing, FoA achieves sub-linear complexity through hierarchical capability matching and efficient index maintenance. Evaluation on HealthBench shows 13x improvements over single-model baselines, with clustering-enhanced laboration particularly effective for complex reasoning tasks requiring multiple perspectives. The system scales horizontally while maintaining consistent performance, demonstrating that semantic orchestration with structured collaboration can unlock the collective intelligence of heterogeneous federations of AI agents.

  • 11 authors
·
Sep 24

Boosting LLM Reasoning via Spontaneous Self-Correction

While large language models (LLMs) have demonstrated remarkable success on a broad range of tasks, math reasoning remains a challenging one. One of the approaches for improving math reasoning is self-correction, which designs self-improving loops to let the model correct its own mistakes. However, existing self-correction approaches treat corrections as standalone post-generation refinements, relying on extra prompt and system designs to elicit self-corrections, instead of performing real-time, spontaneous self-corrections in a single pass. To address this, we propose SPOC, a spontaneous self-correction approach that enables LLMs to generate interleaved solutions and verifications in a single inference pass, with generation dynamically terminated based on verification outcomes, thereby effectively scaling inference time compute. SPOC considers a multi-agent perspective by assigning dual roles -- solution proposer and verifier -- to the same model. We adopt a simple yet effective approach to generate synthetic data for fine-tuning, enabling the model to develop capabilities for self-verification and multi-agent collaboration. We further improve its solution proposal and verification accuracy through online reinforcement learning. Experiments on mathematical reasoning benchmarks show that SPOC significantly improves performance. Notably, SPOC boosts the accuracy of Llama-3.1-8B and 70B Instruct models, achieving gains of 8.8% and 11.6% on MATH500, 10.0% and 20.0% on AMC23, and 3.3% and 6.7% on AIME24, respectively.

  • 14 authors
·
Jun 7

Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects

Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios. However, the absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors. In this paper, we propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration. Building on the foundation of BLIP-2, Lyrics infuses local visual features extracted from a visual refiner that includes image tagging, object detection and semantic segmentation modules into the Querying Transformer, while on the text side, the language inputs equip the boundary boxes and tags derived from the visual refiner. We further introduce a two-stage training scheme, in which the pre-training stage bridges the modality gap through explicit and comprehensive vision-language alignment targets. During the instruction fine-tuning stage, we introduce semantic-aware visual feature extraction, a crucial method that enables the model to extract informative features from concrete visual objects. Our approach achieves strong performance on 13 held-out datasets across various vision-language tasks, and demonstrates promising multi-modal understanding and detailed depiction capabilities in real dialogue scenarios.

  • 9 authors
·
Dec 8, 2023

Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration

Mobile device operation tasks are increasingly becoming a popular multi-modal AI application scenario. Current Multi-modal Large Language Models (MLLMs), constrained by their training data, lack the capability to function effectively as operation assistants. Instead, MLLM-based agents, which enhance capabilities through tool invocation, are gradually being applied to this scenario. However, the two major navigation challenges in mobile device operation tasks, task progress navigation and focus content navigation, are significantly complicated under the single-agent architecture of existing work. This is due to the overly long token sequences and the interleaved text-image data format, which limit performance. To address these navigation challenges effectively, we propose Mobile-Agent-v2, a multi-agent architecture for mobile device operation assistance. The architecture comprises three agents: planning agent, decision agent, and reflection agent. The planning agent generates task progress, making the navigation of history operations more efficient. To retain focus content, we design a memory unit that updates with task progress. Additionally, to correct erroneous operations, the reflection agent observes the outcomes of each operation and handles any mistakes accordingly. Experimental results indicate that Mobile-Agent-v2 achieves over a 30% improvement in task completion compared to the single-agent architecture of Mobile-Agent. The code is open-sourced at https://github.com/X-PLUG/MobileAgent.

  • 9 authors
·
Jun 3, 2024 2

MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making

Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents) that helps address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes adapted to tasks of varying complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and medical diagnosis benchmarks, including a comparison of LLMs' medical complexity classification against human physicians. MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant improvement of up to 4.2% (p < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy improvement of 11.8%. Our code can be found at https://github.com/mitmedialab/MDAgents.

  • 10 authors
·
Apr 22, 2024

V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction

Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on the spatio-temporal fusion in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with 11 fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatio-temporal relationships across multiple agents, frames, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X collaboration modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks. The codebase and dataset will be released to facilitate future V2X research.

  • 14 authors
·
Dec 2, 2024

MindEval: Benchmarking Language Models on Multi-turn Mental Health Support

Demand for mental health support through AI chatbots is surging, though current systems present several limitations, like sycophancy or overvalidation, and reinforcement of maladaptive beliefs. A core obstacle to the creation of better systems is the scarcity of benchmarks that capture the complexity of real therapeutic interactions. Most existing benchmarks either only test clinical knowledge through multiple-choice questions or assess single responses in isolation. To bridge this gap, we present MindEval, a framework designed in collaboration with Ph.D-level Licensed Clinical Psychologists for automatically evaluating language models in realistic, multi-turn mental health therapy conversations. Through patient simulation and automatic evaluation with LLMs, our framework balances resistance to gaming with reproducibility via its fully automated, model-agnostic design. We begin by quantitatively validating the realism of our simulated patients against human-generated text and by demonstrating strong correlations between automatic and human expert judgments. Then, we evaluate 12 state-of-the-art LLMs and show that all models struggle, scoring below 4 out of 6, on average, with particular weaknesses in problematic AI-specific patterns of communication. Notably, reasoning capabilities and model scale do not guarantee better performance, and systems deteriorate with longer interactions or when supporting patients with severe symptoms. We release all code, prompts, and human evaluation data.

  • 6 authors
·
Nov 23

ToolComp: A Multi-Tool Reasoning & Process Supervision Benchmark

Despite recent advances in AI, the development of systems capable of executing complex, multi-step reasoning tasks involving multiple tools remains a significant challenge. Current benchmarks fall short in capturing the real-world complexity of tool-use reasoning, where verifying the correctness of not only the final answer but also the intermediate steps is important for evaluation, development, and identifying failures during inference time. To bridge this gap, we introduce ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use reasoning. ToolComp is developed through a collaboration between models and human annotators, featuring human-edited/verified prompts, final answers, and process supervision labels, allowing for the evaluation of both final outcomes and intermediate reasoning. Evaluation across six different model families demonstrates the challenging nature of our dataset, with the majority of models achieving less than 50% accuracy. Additionally, we generate synthetic training data to compare the performance of outcome-supervised reward models (ORMs) with process-supervised reward models (PRMs) to assess their ability to improve complex tool-use reasoning as evaluated by ToolComp. Our results show that PRMs generalize significantly better than ORMs, achieving a 19% and 11% improvement in rank@1 accuracy for ranking base and fine-tuned model trajectories, respectively. These findings highlight the critical role of process supervision in both the evaluation and training of AI models, paving the way for more robust and capable systems in complex, multi-step tool-use tasks.

  • 4 authors
·
Jan 2

Scalable Multi-Robot Collaboration with Large Language Models: Centralized or Decentralized Systems?

A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website https://yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.

  • 5 authors
·
Sep 27, 2023

Be My Eyes: Extending Large Language Models to New Modalities Through Multi-Agent Collaboration

Large Language Models (LLMs) have demonstrated remarkable capabilities in challenging, knowledge-intensive reasoning tasks. However, extending LLMs to perceive and reason over a new modality (e.g., vision), often requires costly development of large-scale vision language models (VLMs) with LLMs as backbones. Smaller VLMs are more efficient and adaptable but often lack the broad knowledge and reasoning capabilities of frontier LLMs. In this work, we propose BeMyEyes, a modular, multi-agent framework for extending LLMs to multimodal reasoning by orchestrating collaboration between efficient, adaptable VLMs as perceivers and powerful LLMs as reasoners through conversations. We then introduce a data synthesis and supervised fine-tuning pipeline to train the perceiver agent to effectively collaborate with the reasoner agent. By combining the complementary strengths of perception and reasoning agents, BeMyEyes avoids the need for training large-scale multimodal models, preserves the generalization and reasoning capabilities of LLMs, and allows flexible extension to new domains and modalities. Experiments show that our framework unlocks the multimodal reasoning capabilities for LLMs, enabling a lightweight and fully open-source solution, i.e. equipping text-only DeepSeek-R1 with Qwen2.5-VL-7B perceiver, to outperform large-scale proprietary VLMs such as GPT-4o on a wide range of knowledge-intensive multimodal tasks. These results demonstrate the effectiveness, modularity, and scalability of our multi-agent approach for building future multimodal reasoning systems.

  • 8 authors
·
Nov 24

Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

  • 6 authors
·
Jul 11, 2023

MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning

Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.

  • 11 authors
·
May 31

GenMAC: Compositional Text-to-Video Generation with Multi-Agent Collaboration

Text-to-video generation models have shown significant progress in the recent years. However, they still struggle with generating complex dynamic scenes based on compositional text prompts, such as attribute binding for multiple objects, temporal dynamics associated with different objects, and interactions between objects. Our key motivation is that complex tasks can be decomposed into simpler ones, each handled by a role-specialized MLLM agent. Multiple agents can collaborate together to achieve collective intelligence for complex goals. We propose GenMAC, an iterative, multi-agent framework that enables compositional text-to-video generation. The collaborative workflow includes three stages: Design, Generation, and Redesign, with an iterative loop between the Generation and Redesign stages to progressively verify and refine the generated videos. The Redesign stage is the most challenging stage that aims to verify the generated videos, suggest corrections, and redesign the text prompts, frame-wise layouts, and guidance scales for the next iteration of generation. To avoid hallucination of a single MLLM agent, we decompose this stage to four sequentially-executed MLLM-based agents: verification agent, suggestion agent, correction agent, and output structuring agent. Furthermore, to tackle diverse scenarios of compositional text-to-video generation, we design a self-routing mechanism to adaptively select the proper correction agent from a collection of correction agents each specialized for one scenario. Extensive experiments demonstrate the effectiveness of GenMAC, achieving state-of-the art performance in compositional text-to-video generation.

  • 6 authors
·
Dec 5, 2024 2

Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling

Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

  • 9 authors
·
Aug 5 2

Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency

The use of large language models (LLMs) for automated code generation has emerged as a significant focus within AI research. As these pretrained models continue to evolve, their ability to understand and generate complex code structures has opened new possibilities for automating intricate programming tasks for the sake of accurate code generation. Although contemporary foundational models demonstrate promoting results, researchers continue to explore optimal post-training strategies to enhance code quality. These include supervised fine-tuning, retrieval-augmented generation (RAG), debugging, and many others. In this paper, we combine two widely used approaches namely multi-agent collaboration and runtime execution information-based debugging, for improving code generation functionality, reliability, and practical applicability. We perform an empirical study in order to extend the evaluation of the individual strategies as well as the proposed composition of the activities of both strategies. Our study use 19 LLMs to examines the performance of individual and the proposed strategies, offering comprehensive insights into how different programming activities compositions and training paradigms influence code generation effectiveness. In particular, we implement a chained system that combines both strategies to assess their combined impact on functional accuracy, code reliability, and generation latency using two benchmark datasets commonly used for code generation. Our findings provide valuable insights for organizations seeking robust AI-driven coding solutions by guiding them in selecting models that can better adapt to complex post-training strategies, ultimately fostering the adoption of more effective and reliable code generation technologies.

  • 3 authors
·
May 4

Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration

Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at https://read-llm.github.io/.

  • 7 authors
·
May 23, 2024

TPE: Towards Better Compositional Reasoning over Conceptual Tools with Multi-persona Collaboration

Large language models (LLMs) have demonstrated exceptional performance in planning the use of various functional tools, such as calculators and retrievers, particularly in question-answering tasks. In this paper, we expand the definition of these tools, centering on conceptual tools within the context of dialogue systems. A conceptual tool specifies a cognitive concept that aids systematic or investigative thought. These conceptual tools play important roles in practice, such as multiple psychological or tutoring strategies being dynamically applied in a single turn to compose helpful responses. To further enhance the reasoning and planning capability of LLMs with these conceptual tools, we introduce a multi-persona collaboration framework: Think-Plan-Execute (TPE). This framework decouples the response generation process into three distinct roles: Thinker, Planner, and Executor. Specifically, the Thinker analyzes the internal status exhibited in the dialogue context, such as user emotions and preferences, to formulate a global guideline. The Planner then generates executable plans to call different conceptual tools (e.g., sources or strategies), while the Executor compiles all intermediate results into a coherent response. This structured approach not only enhances the explainability and controllability of responses but also reduces token redundancy. We demonstrate the effectiveness of TPE across various dialogue response generation tasks, including multi-source (FoCus) and multi-strategy interactions (CIMA and PsyQA). This reveals its potential to handle real-world dialogue interactions that require more complicated tool learning beyond just functional tools. The full code and data will be released for reproduction.

  • 9 authors
·
Sep 27, 2023

The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration

As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

  • 3 authors
·
Sep 16 2

Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration

With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, ExtAgents, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $boldsymbol{inftyBench+}, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls within or exceeds the context window$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.

  • 7 authors
·
May 27 2

(P)rior(D)yna(F)low: A Priori Dynamic Workflow Construction via Multi-Agent Collaboration

Recent studies have shown that carefully designed workflows coordinating large language models(LLMs) significantly enhance task-solving capabilities compared to using a single model. While an increasing number of works focus on autonomous workflow construction, most existing approaches rely solely on historical experience, leading to limitations in efficiency and adaptability. We argue that while historical experience is valuable, workflow construction should also flexibly respond to the unique characteristics of each task. To this end, we propose an a priori dynamic framework for automated workflow construction. Our framework first leverages Q-table learning to optimize the decision space, guiding agent decisions and enabling effective use of historical experience. At the same time, agents evaluate the current task progress and make a priori decisions regarding the next executing agent, allowing the system to proactively select the more suitable workflow structure for each given task. Additionally, we incorporate mechanisms such as cold-start initialization, early stopping, and pruning to further improve system efficiency. Experimental evaluations on four benchmark datasets demonstrate the feasibility and effectiveness of our approach. Compared to state-of-the-art baselines, our method achieves an average improvement of 4.05%, while reducing workflow construction and inference costs to only 30.68%-48.31% of those required by existing methods.

  • 3 authors
·
Sep 17

MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning

Large Language Models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and the reasoning over specialized knowledge. To address these obstinate issues, we propose a novel Multi-disciplinary Collaboration (MC) framework for the medical domain that leverages role-playing LLM-based agents who participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free and interpretable framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work particularly focuses on the zero-shot scenario, our results on nine data sets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MC framework excels at mining and harnessing the medical expertise in LLMs, as well as extending its reasoning abilities. Based on these outcomes, we further conduct a human evaluation to pinpoint and categorize common errors within our method, as well as ablation studies aimed at understanding the impact of various factors on overall performance. Our code can be found at https://github.com/gersteinlab/MedAgents.

  • 7 authors
·
Nov 16, 2023