4 GET-Zero: Graph Embodiment Transformer for Zero-shot Embodiment Generalization This paper introduces GET-Zero, a model architecture and training procedure for learning an embodiment-aware control policy that can immediately adapt to new hardware changes without retraining. To do so, we present Graph Embodiment Transformer (GET), a transformer model that leverages the embodiment graph connectivity as a learned structural bias in the attention mechanism. We use behavior cloning to distill demonstration data from embodiment-specific expert policies into an embodiment-aware GET model that conditions on the hardware configuration of the robot to make control decisions. We conduct a case study on a dexterous in-hand object rotation task using different configurations of a four-fingered robot hand with joints removed and with link length extensions. Using the GET model along with a self-modeling loss enables GET-Zero to zero-shot generalize to unseen variation in graph structure and link length, yielding a 20% improvement over baseline methods. All code and qualitative video results are on https://get-zero-paper.github.io 2 authors · Jul 20, 2024 2
- ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, we design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts. To reduce the computation overhead and carbon emission, we propose an online distillation framework for ERNIE 3.0 Titan, where the teacher model will teach students and train itself simultaneously. ERNIE 3.0 Titan is the largest Chinese dense pre-trained model so far. Empirical results show that the ERNIE 3.0 Titan outperforms the state-of-the-art models on 68 NLP datasets. 29 authors · Dec 23, 2021
- Optimizing Cycle Life Prediction of Lithium-ion Batteries via a Physics-Informed Model Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development. We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data. After fitting capacity loss curves to this physics-based equation, we then use a self-attention layer to reconstruct entire battery capacity loss curves. Our model exhibits comparable performances to existing models while predicting more information: the entire capacity loss curve instead of cycle life. This provides more robustness and interpretability: our model does not need to be retrained for a different notion of end-of-life and is backed by physical intuition. 4 authors · Apr 26, 2024
- Learning from Noisy Labels via Self-Taught On-the-Fly Meta Loss Rescaling Correct labels are indispensable for training effective machine learning models. However, creating high-quality labels is expensive, and even professionally labeled data contains errors and ambiguities. Filtering and denoising can be applied to curate labeled data prior to training, at the cost of additional processing and loss of information. An alternative is on-the-fly sample reweighting during the training process to decrease the negative impact of incorrect or ambiguous labels, but this typically requires clean seed data. In this work we propose unsupervised on-the-fly meta loss rescaling to reweight training samples. Crucially, we rely only on features provided by the model being trained, to learn a rescaling function in real time without knowledge of the true clean data distribution. We achieve this via a novel meta learning setup that samples validation data for the meta update directly from the noisy training corpus by employing the rescaling function being trained. Our proposed method consistently improves performance across various NLP tasks with minimal computational overhead. Further, we are among the first to attempt on-the-fly training data reweighting on the challenging task of dialogue modeling, where noisy and ambiguous labels are common. Our strategy is robust in the face of noisy and clean data, handles class imbalance, and prevents overfitting to noisy labels. Our self-taught loss rescaling improves as the model trains, showing the ability to keep learning from the model's own signals. As training progresses, the impact of correctly labeled data is scaled up, while the impact of wrongly labeled data is suppressed. 9 authors · Dec 17, 2024
2 ALBERT: A Lite BERT for Self-supervised Learning of Language Representations Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and \squad benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at https://github.com/google-research/ALBERT. 6 authors · Sep 26, 2019
- TEASER: Token Enhanced Spatial Modeling for Expressions Reconstruction 3D facial reconstruction from a single in-the-wild image is a crucial task in human-centered computer vision tasks. While existing methods can recover accurate facial shapes, there remains significant space for improvement in fine-grained expression capture. Current approaches struggle with irregular mouth shapes, exaggerated expressions, and asymmetrical facial movements. We present TEASER (Token EnhAnced Spatial modeling for Expressions Reconstruction), which addresses these challenges and enhances 3D facial geometry performance. TEASER tackles two main limitations of existing methods: insufficient photometric loss for self-reconstruction and inaccurate localization of subtle expressions. We introduce a multi-scale tokenizer to extract facial appearance information. Combined with a neural renderer, these tokens provide precise geometric guidance for expression reconstruction. Furthermore, TEASER incorporates a pose-dependent landmark loss to further improve geometric performances. Our approach not only significantly enhances expression reconstruction quality but also offers interpretable tokens suitable for various downstream applications, such as photorealistic facial video driving, expression transfer, and identity swapping. Quantitative and qualitative experimental results across multiple datasets demonstrate that TEASER achieves state-of-the-art performance in precise expression reconstruction. 6 authors · Feb 15
- Selfie: Self-supervised Pretraining for Image Embedding We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs. 3 authors · Jun 7, 2019
9 OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at https://github.com/allenai/olmoearth_pretrain{https://github.com/allenai/olmoearth_pretrain}. Ai2 · Nov 17 2
- Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised Video Representation Learning We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to encourage multi-scale understanding. Motivated by their effectiveness in supervised learning, we first introduce spatial-temporal feature learning decoupling and hierarchical learning to the context of unsupervised video learning. We show by experiments that augmentations can be manipulated as regularization to guide the network to learn desired semantics in contrastive learning, and we propose a way for the model to separately capture spatial and temporal features at multiple scales. We also introduce an approach to overcome the problem of divergent levels of instance invariance at different hierarchies by modeling the invariance as loss weights for objective re-weighting. Experiments on downstream action recognition benchmarks on UCF101 and HMDB51 show that our proposed Hierarchically Decoupled Spatial-Temporal Contrast (HDC) makes substantial improvements over directly learning spatial-temporal features as a whole and achieves competitive performance when compared with other state-of-the-art unsupervised methods. Code will be made available. 2 authors · Nov 23, 2020
- Learning Effective Representations for Retrieval Using Self-Distillation with Adaptive Relevance Margins Representation-based retrieval models, so-called biencoders, estimate the relevance of a document to a query by calculating the similarity of their respective embeddings. Current state-of-the-art biencoders are trained using an expensive training regime involving knowledge distillation from a teacher model and batch-sampling. Instead of relying on a teacher model, we contribute a novel parameter-free loss function for self-supervision that exploits the pre-trained language modeling capabilities of the encoder model as a training signal, eliminating the need for batch sampling by performing implicit hard negative mining. We investigate the capabilities of our proposed approach through extensive ablation studies, demonstrating that self-distillation can match the effectiveness of teacher distillation using only 13.5% of the data, while offering a speedup in training time between 3x and 15x compared to parametrized losses. Code and data is made openly available. 4 authors · Jul 31, 2024
- TriDet: Temporal Action Detection with Relative Boundary Modeling In this paper, we present a one-stage framework TriDet for temporal action detection. Existing methods often suffer from imprecise boundary predictions due to the ambiguous action boundaries in videos. To alleviate this problem, we propose a novel Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. In the feature pyramid of TriDet, we propose an efficient Scalable-Granularity Perception (SGP) layer to mitigate the rank loss problem of self-attention that takes place in the video features and aggregate information across different temporal granularities. Benefiting from the Trident-head and the SGP-based feature pyramid, TriDet achieves state-of-the-art performance on three challenging benchmarks: THUMOS14, HACS and EPIC-KITCHEN 100, with lower computational costs, compared to previous methods. For example, TriDet hits an average mAP of 69.3% on THUMOS14, outperforming the previous best by 2.5%, but with only 74.6% of its latency. The code is released to https://github.com/sssste/TriDet. 6 authors · Mar 13, 2023
- Social NCE: Contrastive Learning of Socially-aware Motion Representations Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks still struggle to generalize in closed-loop predictions (e.g., output colliding trajectories). This issue largely arises from the non-i.i.d. nature of sequential prediction in conjunction with ill-distributed training data. Intuitively, if the training data only comes from human behaviors in safe spaces, i.e., from "positive" examples, it is difficult for learning algorithms to capture the notion of "negative" examples like collisions. In this work, we aim to address this issue by explicitly modeling negative examples through self-supervision: (i) we introduce a social contrastive loss that regularizes the extracted motion representation by discerning the ground-truth positive events from synthetic negative ones; (ii) we construct informative negative samples based on our prior knowledge of rare but dangerous circumstances. Our method substantially reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms, outperforming state-of-the-art methods on several benchmarks. Our code is available at https://github.com/vita-epfl/social-nce. 3 authors · Dec 21, 2020
- VoxelSplat: Dynamic Gaussian Splatting as an Effective Loss for Occupancy and Flow Prediction Recent advancements in camera-based occupancy prediction have focused on the simultaneous prediction of 3D semantics and scene flow, a task that presents significant challenges due to specific difficulties, e.g., occlusions and unbalanced dynamic environments. In this paper, we analyze these challenges and their underlying causes. To address them, we propose a novel regularization framework called VoxelSplat. This framework leverages recent developments in 3D Gaussian Splatting to enhance model performance in two key ways: (i) Enhanced Semantics Supervision through 2D Projection: During training, our method decodes sparse semantic 3D Gaussians from 3D representations and projects them onto the 2D camera view. This provides additional supervision signals in the camera-visible space, allowing 2D labels to improve the learning of 3D semantics. (ii) Scene Flow Learning: Our framework uses the predicted scene flow to model the motion of Gaussians, and is thus able to learn the scene flow of moving objects in a self-supervised manner using the labels of adjacent frames. Our method can be seamlessly integrated into various existing occupancy models, enhancing performance without increasing inference time. Extensive experiments on benchmark datasets demonstrate the effectiveness of VoxelSplat in improving the accuracy of both semantic occupancy and scene flow estimation. The project page and codes are available at https://zzy816.github.io/VoxelSplat-Demo/. 6 authors · Jun 5
- MS-HuBERT: Mitigating Pre-training and Inference Mismatch in Masked Language Modelling methods for learning Speech Representations In recent years, self-supervised pre-training methods have gained significant traction in learning high-level information from raw speech. Among these methods, HuBERT has demonstrated SOTA performance in automatic speech recognition (ASR). However, HuBERT's performance lags behind data2vec due to disparities in pre-training strategies. In this paper, we propose (i) a Swap method to address pre-training and inference mismatch observed in HuBERT and (ii) incorporates Multicluster masked prediction loss for more effective utilization of the models capacity. The resulting method is, MS-HuBERT, an end-to-end self-supervised pre-training method for learning robust speech representations. It beats vanilla HuBERT on the ASR Librispeech benchmark on average by a 5% margin when evaluated on different finetuning splits. Additionally, we demonstrate that the learned embeddings obtained during pre-training encode essential information for improving performance of content based tasks such as ASR. 3 authors · Jun 9, 2024