new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models

Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.

  • 7 authors
·
Jun 3

Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment

Contrastive Language and Image Pairing (CLIP), a transformative method in multimedia retrieval, typically trains two neural networks concurrently to generate joint embeddings for text and image pairs. However, when applied directly, these models often struggle to differentiate between visually distinct images that have similar captions, resulting in suboptimal performance for image-based similarity searches. This paper addresses the challenge of optimizing CLIP models for various image-based similarity search scenarios, while maintaining their effectiveness in text-based search tasks such as text-to-image retrieval and zero-shot classification. We propose and evaluate two novel methods aimed at refining the retrieval capabilities of CLIP without compromising the alignment between text and image embeddings. The first method involves a sequential fine-tuning process: initially optimizing the image encoder for more precise image retrieval and subsequently realigning the text encoder to these optimized image embeddings. The second approach integrates pseudo-captions during the retrieval-optimization phase to foster direct alignment within the embedding space. Through comprehensive experiments, we demonstrate that these methods enhance CLIP's performance on various benchmarks, including image retrieval, k-NN classification, and zero-shot text-based classification, while maintaining robustness in text-to-image retrieval. Our optimized models permit maintaining a single embedding per image, significantly simplifying the infrastructure needed for large-scale multi-modal similarity search systems.

  • 4 authors
·
Sep 3, 2024

IMAD: IMage-Augmented multi-modal Dialogue

Currently, dialogue systems have achieved high performance in processing text-based communication. However, they have not yet effectively incorporated visual information, which poses a significant challenge. Furthermore, existing models that incorporate images in dialogue generation focus on discussing the image itself. Our proposed approach presents a novel perspective on multi-modal dialogue systems, which interprets the image in the context of the dialogue. By doing so, we aim to expand the capabilities of current dialogue systems and transition them from single modality (text) to multi-modality. However, there is a lack of validated English datasets that contain both images and dialogue contexts for this task. Thus, we propose a two-stage approach to automatically construct a multi-modal dialogue dataset. In the first stage, we utilize text-to-image similarity and sentence similarity to identify which utterances could be replaced with an image. In the second stage, we replace those utterances by selecting a subset of relevant images and filtering them with a visual question answering model. We used this approach, along with additional labeling, to create the IMage Augmented multi-modal Dialogue dataset (IMAD), which can serve as a validated dataset for this task. Furthermore, we propose a baseline model trained on this dataset, which outperforms model trained on the same data without images and BlenderBot.

  • 3 authors
·
May 17, 2023

Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation

Existing automatic captioning methods for visual content face challenges such as lack of detail, content hallucination, and poor instruction following. In this work, we propose VisualFactChecker (VFC), a flexible training-free pipeline that generates high-fidelity and detailed captions for both 2D images and 3D objects. VFC consists of three steps: 1) proposal, where image-to-text captioning models propose multiple initial captions; 2) verification, where a large language model (LLM) utilizes tools such as object detection and VQA models to fact-check proposed captions; 3) captioning, where an LLM generates the final caption by summarizing caption proposals and the fact check verification results. In this step, VFC can flexibly generate captions in various styles following complex instructions. We conduct comprehensive captioning evaluations using four metrics: 1) CLIP-Score for image-text similarity; 2) CLIP-Image-Score for measuring the image-image similarity between the original and the reconstructed image generated by a text-to-image model using the caption. 3) human study on Amazon Mechanical Turk; 4) GPT-4V for fine-grained evaluation. Evaluation results show that VFC outperforms state-of-the-art open-sourced captioning methods for 2D images on the COCO dataset and 3D assets on the Objaverse dataset. Our study demonstrates that by combining open-source models into a pipeline, we can attain captioning capability comparable to proprietary models such as GPT-4V, despite being over 10x smaller in model size.

  • 6 authors
·
Apr 30, 2024 4

Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval

Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.

  • 2 authors
·
Mar 22, 2023

RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization

Text-to-image customization, which aims to synthesize text-driven images for the given subjects, has recently revolutionized content creation. Existing works follow the pseudo-word paradigm, i.e., represent the given subjects as pseudo-words and then compose them with the given text. However, the inherent entangled influence scope of pseudo-words with the given text results in a dual-optimum paradox, i.e., the similarity of the given subjects and the controllability of the given text could not be optimal simultaneously. We present RealCustom that, for the first time, disentangles similarity from controllability by precisely limiting subject influence to relevant parts only, achieved by gradually narrowing real text word from its general connotation to the specific subject and using its cross-attention to distinguish relevance. Specifically, RealCustom introduces a novel "train-inference" decoupled framework: (1) during training, RealCustom learns general alignment between visual conditions to original textual conditions by a novel adaptive scoring module to adaptively modulate influence quantity; (2) during inference, a novel adaptive mask guidance strategy is proposed to iteratively update the influence scope and influence quantity of the given subjects to gradually narrow the generation of the real text word. Comprehensive experiments demonstrate the superior real-time customization ability of RealCustom in the open domain, achieving both unprecedented similarity of the given subjects and controllability of the given text for the first time. The project page is https://corleone-huang.github.io/realcustom/.

  • 5 authors
·
Mar 1, 2024 1

Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning

Text-to-image generative models have recently attracted considerable interest, enabling the synthesis of high-quality images from textual prompts. However, these models often lack the capability to generate specific subjects from given reference images or to synthesize novel renditions under varying conditions. Methods like DreamBooth and Subject-driven Text-to-Image (SuTI) have made significant progress in this area. Yet, both approaches primarily focus on enhancing similarity to reference images and require expensive setups, often overlooking the need for efficient training and avoiding overfitting to the reference images. In this work, we present the lambda-Harmonic reward function, which provides a reliable reward signal and enables early stopping for faster training and effective regularization. By combining the Bradley-Terry preference model, the lambda-Harmonic reward function also provides preference labels for subject-driven generation tasks. We propose Reward Preference Optimization (RPO), which offers a simpler setup (requiring only 3% of the negative samples used by DreamBooth) and fewer gradient steps for fine-tuning. Unlike most existing methods, our approach does not require training a text encoder or optimizing text embeddings and achieves text-image alignment by fine-tuning only the U-Net component. Empirically, lambda-Harmonic proves to be a reliable approach for model selection in subject-driven generation tasks. Based on preference labels and early stopping validation from the lambda-Harmonic reward function, our algorithm achieves a state-of-the-art CLIP-I score of 0.833 and a CLIP-T score of 0.314 on DreamBench.

  • 6 authors
·
Jul 16, 2024

On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts

Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.

  • 5 authors
·
Oct 25, 2023

CustomContrast: A Multilevel Contrastive Perspective For Subject-Driven Text-to-Image Customization

Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.

  • 6 authors
·
Sep 9, 2024

Maybe you are looking for CroQS: Cross-modal Query Suggestion for Text-to-Image Retrieval

Query suggestion, a technique widely adopted in information retrieval, enhances system interactivity and the browsing experience of document collections. In cross-modal retrieval, many works have focused on retrieving relevant items from natural language queries, while few have explored query suggestion solutions. In this work, we address query suggestion in cross-modal retrieval, introducing a novel task that focuses on suggesting minimal textual modifications needed to explore visually consistent subsets of the collection, following the premise of ''Maybe you are looking for''. To facilitate the evaluation and development of methods, we present a tailored benchmark named CroQS. This dataset comprises initial queries, grouped result sets, and human-defined suggested queries for each group. We establish dedicated metrics to rigorously evaluate the performance of various methods on this task, measuring representativeness, cluster specificity, and similarity of the suggested queries to the original ones. Baseline methods from related fields, such as image captioning and content summarization, are adapted for this task to provide reference performance scores. Although relatively far from human performance, our experiments reveal that both LLM-based and captioning-based methods achieve competitive results on CroQS, improving the recall on cluster specificity by more than 115% and representativeness mAP by more than 52% with respect to the initial query. The dataset, the implementation of the baseline methods and the notebooks containing our experiments are available here: https://paciosoft.com/CroQS-benchmark/

  • 6 authors
·
Dec 18, 2024

OptiPrune: Boosting Prompt-Image Consistency with Attention-Guided Noise and Dynamic Token Selection

Text-to-image diffusion models often struggle to achieve accurate semantic alignment between generated images and text prompts while maintaining efficiency for deployment on resource-constrained hardware. Existing approaches either incur substantial computational overhead through noise optimization or compromise semantic fidelity by aggressively pruning tokens. In this work, we propose OptiPrune, a unified framework that combines distribution-aware initial noise optimization with similarity-based token pruning to address both challenges simultaneously. Specifically, (1) we introduce a distribution-aware noise optimization module guided by attention scores to steer the initial latent noise toward semantically meaningful regions, mitigating issues such as subject neglect and feature entanglement; (2) we design a hardware-efficient token pruning strategy that selects representative base tokens via patch-wise similarity, injects randomness to enhance generalization, and recovers pruned tokens using maximum similarity copying before attention operations. Our method preserves the Gaussian prior during noise optimization and enables efficient inference without sacrificing alignment quality. Experiments on benchmark datasets, including Animal-Animal, demonstrate that OptiPrune achieves state-of-the-art prompt-image consistency with significantly reduced computational cost.

  • 1 authors
·
Jul 1

Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering

Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.

  • 8 authors
·
Jul 27

RealCustom++: Representing Images as Real-Word for Real-Time Customization

Text-to-image customization, which takes given texts and images depicting given subjects as inputs, aims to synthesize new images that align with both text semantics and subject appearance. This task provides precise control over details that text alone cannot capture and is fundamental for various real-world applications, garnering significant interest from academia and industry. Existing works follow the pseudo-word paradigm, which involves representing given subjects as pseudo-words and combining them with given texts to collectively guide the generation. However, the inherent conflict and entanglement between the pseudo-words and texts result in a dual-optimum paradox, where subject similarity and text controllability cannot be optimal simultaneously. We propose a novel real-words paradigm termed RealCustom++ that instead represents subjects as non-conflict real words, thereby disentangling subject similarity from text controllability and allowing both to be optimized simultaneously. Specifically, RealCustom++ introduces a novel "train-inference" decoupled framework: (1) During training, RealCustom++ learns the alignment between vision conditions and all real words in the text, ensuring high subject-similarity generation in open domains. This is achieved by the cross-layer cross-scale projector to robustly and finely extract subject features, and a curriculum training recipe that adapts the generated subject to diverse poses and sizes. (2) During inference, leveraging the learned general alignment, an adaptive mask guidance is proposed to only customize the generation of the specific target real word, keeping other subject-irrelevant regions uncontaminated to ensure high text-controllability in real-time.

  • 6 authors
·
Aug 19, 2024

AttriCtrl: Fine-Grained Control of Aesthetic Attribute Intensity in Diffusion Models

Recent breakthroughs in text-to-image diffusion models have significantly enhanced both the visual fidelity and semantic controllability of generated images. However, fine-grained control over aesthetic attributes remains challenging, especially when users require continuous and intensity-specific adjustments. Existing approaches often rely on vague textual prompts, which are inherently ambiguous in expressing both the aesthetic semantics and the desired intensity, or depend on costly human preference data for alignment, limiting their scalability and practicality. To address these limitations, we propose AttriCtrl, a plug-and-play framework for precise and continuous control of aesthetic attributes. Specifically, we quantify abstract aesthetics by leveraging semantic similarity from pre-trained vision-language models, and employ a lightweight value encoder that maps scalar intensities in [0,1] to learnable embeddings within diffusion-based generation. This design enables intuitive and customizable aesthetic manipulation, with minimal training overhead and seamless integration into existing generation pipelines. Extensive experiments demonstrate that AttriCtrl achieves accurate control over individual attributes as well as flexible multi-attribute composition. Moreover, it is fully compatible with popular open-source controllable generation frameworks, showcasing strong integration capability and practical utility across diverse generation scenarios.

  • 7 authors
·
Aug 4

Dissecting CLIP: Decomposition with a Schur Complement-based Approach

The use of CLIP embeddings to assess the alignment of samples produced by text-to-image generative models has been extensively explored in the literature. While the widely adopted CLIPScore, derived from the cosine similarity of text and image embeddings, effectively measures the relevance of a generated image, it does not quantify the diversity of images generated by a text-to-image model. In this work, we extend the application of CLIP embeddings to quantify and interpret the intrinsic diversity of text-to-image models, which is responsible for generating diverse images from similar text prompts. To achieve this, we propose a decomposition of the CLIP-based kernel covariance matrix of image data into text-based and non-text-based components. Using the Schur complement of the joint image-text kernel covariance matrix, we perform this decomposition and define the matrix-based entropy of the decomposed component as the Schur Complement Entropy (SCE) score, a measure of the intrinsic diversity of a text-to-image model based on data collected with varying text prompts. Additionally, we demonstrate the use of the Schur complement-based decomposition to nullify the influence of a given prompt in the CLIP embedding of an image, enabling focus or defocus of embeddings on specific objects or properties for downstream tasks. We present several numerical results that apply our Schur complement-based approach to evaluate text-to-image models and modify CLIP image embeddings. The codebase is available at https://github.com/aziksh-ospanov/CLIP-DISSECTION

  • 3 authors
·
Dec 24, 2024

PDV: Prompt Directional Vectors for Zero-shot Composed Image Retrieval

Zero-shot composed image retrieval (ZS-CIR) enables image search using a reference image and text prompt without requiring specialized text-image composition networks trained on large-scale paired data. However, current ZS-CIR approaches face three critical limitations in their reliance on composed text embeddings: static query embedding representations, insufficient utilization of image embeddings, and suboptimal performance when fusing text and image embeddings. To address these challenges, we introduce the Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts. PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings that enhances retrieval by balancing visual and semantic similarity. Our approach serves as a plug-and-play enhancement for existing ZS-CIR methods with minimal computational overhead. Extensive experiments across multiple benchmarks demonstrate that PDV consistently improves retrieval performance when integrated with state-of-the-art ZS-CIR approaches, particularly for methods that generate accurate compositional embeddings. The code will be publicly available.

  • 4 authors
·
Feb 10

Generalizable Origin Identification for Text-Guided Image-to-Image Diffusion Models

Text-guided image-to-image diffusion models excel in translating images based on textual prompts, allowing for precise and creative visual modifications. However, such a powerful technique can be misused for spreading misinformation, infringing on copyrights, and evading content tracing. This motivates us to introduce the task of origin IDentification for text-guided Image-to-image Diffusion models (ID^2), aiming to retrieve the original image of a given translated query. A straightforward solution to ID^2 involves training a specialized deep embedding model to extract and compare features from both query and reference images. However, due to visual discrepancy across generations produced by different diffusion models, this similarity-based approach fails when training on images from one model and testing on those from another, limiting its effectiveness in real-world applications. To solve this challenge of the proposed ID^2 task, we contribute the first dataset and a theoretically guaranteed method, both emphasizing generalizability. The curated dataset, OriPID, contains abundant Origins and guided Prompts, which can be used to train and test potential IDentification models across various diffusion models. In the method section, we first prove the existence of a linear transformation that minimizes the distance between the pre-trained Variational Autoencoder (VAE) embeddings of generated samples and their origins. Subsequently, it is demonstrated that such a simple linear transformation can be generalized across different diffusion models. Experimental results show that the proposed method achieves satisfying generalization performance, significantly surpassing similarity-based methods (+31.6% mAP), even those with generalization designs.

  • 6 authors
·
Jan 4 2

Deep Learning Applied to Image and Text Matching

The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.

  • 1 authors
·
Sep 14, 2015

Iterative Prompt Learning for Unsupervised Backlit Image Enhancement

We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel-level image enhancement. We show that the open-world CLIP prior not only aids in distinguishing between backlit and well-lit images, but also in perceiving heterogeneous regions with different luminance, facilitating the optimization of the enhancement network. Unlike high-level and image manipulation tasks, directly applying CLIP to enhancement tasks is non-trivial, owing to the difficulty in finding accurate prompts. To solve this issue, we devise a prompt learning framework that first learns an initial prompt pair by constraining the text-image similarity between the prompt (negative/positive sample) and the corresponding image (backlit image/well-lit image) in the CLIP latent space. Then, we train the enhancement network based on the text-image similarity between the enhanced result and the initial prompt pair. To further improve the accuracy of the initial prompt pair, we iteratively fine-tune the prompt learning framework to reduce the distribution gaps between the backlit images, enhanced results, and well-lit images via rank learning, boosting the enhancement performance. Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability, without requiring any paired data.

  • 5 authors
·
Mar 30, 2023

PC$^2$: Pseudo-Classification Based Pseudo-Captioning for Noisy Correspondence Learning in Cross-Modal Retrieval

In the realm of cross-modal retrieval, seamlessly integrating diverse modalities within multimedia remains a formidable challenge, especially given the complexities introduced by noisy correspondence learning (NCL). Such noise often stems from mismatched data pairs, which is a significant obstacle distinct from traditional noisy labels. This paper introduces Pseudo-Classification based Pseudo-Captioning (PC^2) framework to address this challenge. PC^2 offers a threefold strategy: firstly, it establishes an auxiliary "pseudo-classification" task that interprets captions as categorical labels, steering the model to learn image-text semantic similarity through a non-contrastive mechanism. Secondly, unlike prevailing margin-based techniques, capitalizing on PC^2's pseudo-classification capability, we generate pseudo-captions to provide more informative and tangible supervision for each mismatched pair. Thirdly, the oscillation of pseudo-classification is borrowed to assistant the correction of correspondence. In addition to technical contributions, we develop a realistic NCL dataset called Noise of Web (NoW), which could be a new powerful NCL benchmark where noise exists naturally. Empirical evaluations of PC^2 showcase marked improvements over existing state-of-the-art robust cross-modal retrieval techniques on both simulated and realistic datasets with various NCL settings. The contributed dataset and source code are released at https://github.com/alipay/PC2-NoiseofWeb.

  • 6 authors
·
Aug 2, 2024

H2R: A Human-to-Robot Data Augmentation for Robot Pre-training from Videos

Large-scale pre-training using videos has proven effective for robot learning. However, the models pre-trained on such data can be suboptimal for robot learning due to the significant visual gap between human hands and those of different robots. To remedy this, we propose H2R, a simple data augmentation technique that detects human hand keypoints, synthesizes robot motions in simulation, and composites rendered robots into egocentric videos. This process explicitly bridges the visual gap between human and robot embodiments during pre-training. We apply H2R to augment large-scale egocentric human video datasets such as Ego4D and SSv2, replacing human hands with simulated robotic arms to generate robot-centric training data. Based on this, we construct and release a family of 1M-scale datasets covering multiple robot embodiments (UR5 with gripper/Leaphand, Franka) and data sources (SSv2, Ego4D). To verify the effectiveness of the augmentation pipeline, we introduce a CLIP-based image-text similarity metric that quantitatively evaluates the semantic fidelity of robot-rendered frames to the original human actions. We validate H2R across three simulation benchmarks: Robomimic, RLBench and PushT and real-world manipulation tasks with a UR5 robot equipped with Gripper and Leaphand end-effectors. H2R consistently improves downstream success rates, yielding gains of 5.0%-10.2% in simulation and 6.7%-23.3% in real-world tasks across various visual encoders and policy learning methods. These results indicate that H2R improves the generalization ability of robotic policies by mitigating the visual discrepancies between human and robot domains.

  • 6 authors
·
May 17

Reasoning to Attend: Try to Understand How <SEG> Token Works

Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.

  • 3 authors
·
Dec 23, 2024

Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations

We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.

  • 3 authors
·
May 18, 2023

BikeBench: A Bicycle Design Benchmark for Generative Models with Objectives and Constraints

We introduce BikeBench, an engineering design benchmark for evaluating generative models on problems with multiple real-world objectives and constraints. As generative AI's reach continues to grow, evaluating its capability to understand physical laws, human guidelines, and hard constraints grows increasingly important. Engineering product design lies at the intersection of these difficult tasks, providing new challenges for AI capabilities. BikeBench evaluates AI models' capabilities to generate bicycle designs that not only resemble the dataset, but meet specific performance objectives and constraints. To do so, BikeBench quantifies a variety of human-centered and multiphysics performance characteristics, such as aerodynamics, ergonomics, structural mechanics, human-rated usability, and similarity to subjective text or image prompts. Supporting the benchmark are several datasets of simulation results, a dataset of 10,000 human-rated bicycle assessments, and a synthetically generated dataset of 1.6M designs, each with a parametric, CAD/XML, SVG, and PNG representation. BikeBench is uniquely configured to evaluate tabular generative models, large language models (LLMs), design optimization, and hybrid algorithms side-by-side. Our experiments indicate that LLMs and tabular generative models fall short of hybrid GenAI+optimization algorithms in design quality, constraint satisfaction, and similarity scores, suggesting significant room for improvement. We hope that BikeBench, a first-of-its-kind benchmark, will help catalyze progress in generative AI for constrained multi-objective engineering design problems. We provide code, data, an interactive leaderboard, and other resources at https://github.com/Lyleregenwetter/BikeBench.

  • 5 authors
·
May 25

How to Make Cross Encoder a Good Teacher for Efficient Image-Text Retrieval?

Dominant dual-encoder models enable efficient image-text retrieval but suffer from limited accuracy while the cross-encoder models offer higher accuracy at the expense of efficiency. Distilling cross-modality matching knowledge from cross-encoder to dual-encoder provides a natural approach to harness their strengths. Thus we investigate the following valuable question: how to make cross-encoder a good teacher for dual-encoder? Our findings are threefold:(1) Cross-modal similarity score distribution of cross-encoder is more concentrated while the result of dual-encoder is nearly normal making vanilla logit distillation less effective. However ranking distillation remains practical as it is not affected by the score distribution.(2) Only the relative order between hard negatives conveys valid knowledge while the order information between easy negatives has little significance.(3) Maintaining the coordination between distillation loss and dual-encoder training loss is beneficial for knowledge transfer. Based on these findings we propose a novel Contrastive Partial Ranking Distillation (CPRD) method which implements the objective of mimicking relative order between hard negative samples with contrastive learning. This approach coordinates with the training of the dual-encoder effectively transferring valid knowledge from the cross-encoder to the dual-encoder. Extensive experiments on image-text retrieval and ranking tasks show that our method surpasses other distillation methods and significantly improves the accuracy of dual-encoder.

  • 10 authors
·
Jul 10, 2024

CgT-GAN: CLIP-guided Text GAN for Image Captioning

The large-scale visual-language pre-trained model, Contrastive Language-Image Pre-training (CLIP), has significantly improved image captioning for scenarios without human-annotated image-caption pairs. Recent advanced CLIP-based image captioning without human annotations follows a text-only training paradigm, i.e., reconstructing text from shared embedding space. Nevertheless, these approaches are limited by the training/inference gap or huge storage requirements for text embeddings. Given that it is trivial to obtain images in the real world, we propose CLIP-guided text GAN (CgT-GAN), which incorporates images into the training process to enable the model to "see" real visual modality. Particularly, we use adversarial training to teach CgT-GAN to mimic the phrases of an external text corpus and CLIP-based reward to provide semantic guidance. The caption generator is jointly rewarded based on the caption naturalness to human language calculated from the GAN's discriminator and the semantic guidance reward computed by the CLIP-based reward module. In addition to the cosine similarity as the semantic guidance reward (i.e., CLIP-cos), we further introduce a novel semantic guidance reward called CLIP-agg, which aligns the generated caption with a weighted text embedding by attentively aggregating the entire corpus. Experimental results on three subtasks (ZS-IC, In-UIC and Cross-UIC) show that CgT-GAN outperforms state-of-the-art methods significantly across all metrics. Code is available at https://github.com/Lihr747/CgtGAN.

  • 6 authors
·
Aug 23, 2023

Quality-Aware Image-Text Alignment for Opinion-Unaware Image Quality Assessment

No-Reference Image Quality Assessment (NR-IQA) focuses on designing methods to measure image quality in alignment with human perception when a high-quality reference image is unavailable. Most state-of-the-art NR-IQA approaches are opinion-aware, i.e. they require human annotations for training. This dependency limits their scalability and broad applicability. To overcome this limitation, we propose QualiCLIP (Quality-aware CLIP), a CLIP-based self-supervised opinion-unaware approach that does not require human opinions. In particular, we introduce a quality-aware image-text alignment strategy to make CLIP generate quality-aware image representations. Starting from pristine images, we synthetically degrade them with increasing levels of intensity. Then, we train CLIP to rank these degraded images based on their similarity to quality-related antonym text prompts. At the same time, we force CLIP to generate consistent representations for images with similar content and the same level of degradation. Our experiments show that the proposed method improves over existing opinion-unaware approaches across multiple datasets with diverse distortion types. Moreover, despite not requiring human annotations, QualiCLIP achieves excellent performance against supervised opinion-aware methods in cross-dataset experiments, thus demonstrating remarkable generalization capabilities. The code and the model are publicly available at https://github.com/miccunifi/QualiCLIP.

  • 3 authors
·
Mar 17, 2024

Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity

Composed image retrieval (CIR), which formulates the query as a combination of a reference image and modified text, has emerged as a new form of image search due to its enhanced ability to capture user intent. However, training a CIR model in a supervised manner typically requires labor-intensive collection of (reference image, text modifier, target image) triplets. While existing zero-shot CIR (ZS-CIR) methods eliminate the need for training on specific downstream datasets, they still require additional pretraining on large-scale image datasets. In this paper, we introduce a training-free approach for ZS-CIR. Our approach, Weighted Modality fusion and similarity for CIR (WeiMoCIR), operates under the assumption that image and text modalities can be effectively combined using a simple weighted average. This allows the query representation to be constructed directly from the reference image and text modifier. To further enhance retrieval performance, we employ multimodal large language models (MLLMs) to generate image captions for the database images and incorporate these textual captions into the similarity computation by combining them with image information using a weighted average. Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets. Code is available at https://github.com/whats2000/WeiMoCIR.

  • 3 authors
·
Sep 7, 2024

Plug-and-Play Regulators for Image-Text Matching

Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching. Generally, recent approaches first employ a cross-modal attention unit to capture latent region-word interactions, and then integrate all the alignments to obtain the final similarity. However, most of them adopt one-time forward association or aggregation strategies with complex architectures or additional information, while ignoring the regulation ability of network feedback. In this paper, we develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations. Specifically, we propose (i) a Recurrent Correspondence Regulator (RCR) which facilitates the cross-modal attention unit progressively with adaptive attention factors to capture more flexible correspondence, and (ii) a Recurrent Aggregation Regulator (RAR) which adjusts the aggregation weights repeatedly to increasingly emphasize important alignments and dilute unimportant ones. Besides, it is interesting that RCR and RAR are plug-and-play: both of them can be incorporated into many frameworks based on cross-modal interaction to obtain significant benefits, and their cooperation achieves further improvements. Extensive experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R@1 gain on multiple models, confirming the general effectiveness and generalization ability of the proposed methods. Code and pre-trained models are available at: https://github.com/Paranioar/RCAR.

  • 5 authors
·
Mar 23, 2023

LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation

Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.

  • 6 authors
·
Apr 19

Fine-grained Image Captioning with CLIP Reward

Modern image captioning models are usually trained with text similarity objectives. However, since reference captions in public datasets often describe the most salient common objects, models trained with text similarity objectives tend to ignore specific and detailed aspects of an image that distinguish it from others. Toward more descriptive and distinctive caption generation, we propose using CLIP, a multimodal encoder trained on huge image-text pairs from web, to calculate multimodal similarity and use it as a reward function. We also propose a simple finetuning strategy of the CLIP text encoder to improve grammar that does not require extra text annotation. This completely eliminates the need for reference captions during the reward computation. To comprehensively evaluate descriptive captions, we introduce FineCapEval, a new dataset for caption evaluation with fine-grained criteria: overall, background, object, relations. In our experiments on text-to-image retrieval and FineCapEval, the proposed CLIP-guided model generates more distinctive captions than the CIDEr-optimized model. We also show that our unsupervised grammar finetuning of the CLIP text encoder alleviates the degeneration problem of the naive CLIP reward. Lastly, we show human analysis where the annotators strongly prefer the CLIP reward to the CIDEr and MLE objectives according to various criteria. Code and Data: https://github.com/j-min/CLIP-Caption-Reward

  • 6 authors
·
May 25, 2022

Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwritten Text Recognition

Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic information (e.g. dictionaries and language models). Thus, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human labor annotation process, requiring only few images of each alphabet symbol. The method consists in detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from any alphabet, even though different from the target domain. A second training step is then applied to diminish the gap between the source and target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the non-annotated data. The evaluation on different manuscript datasets show that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in this repository: https://github.com/dali92002/HTRbyMatching

  • 4 authors
·
Jul 21, 2021

UniEmoX: Cross-modal Semantic-Guided Large-Scale Pretraining for Universal Scene Emotion Perception

Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at https://github.com/chincharles/u-emo.

  • 3 authors
·
Sep 27, 2024

FindVehicle and VehicleFinder: A NER dataset for natural language-based vehicle retrieval and a keyword-based cross-modal vehicle retrieval system

Natural language (NL) based vehicle retrieval is a task aiming to retrieve a vehicle that is most consistent with a given NL query from among all candidate vehicles. Because NL query can be easily obtained, such a task has a promising prospect in building an interactive intelligent traffic system (ITS). Current solutions mainly focus on extracting both text and image features and mapping them to the same latent space to compare the similarity. However, existing methods usually use dependency analysis or semantic role-labelling techniques to find keywords related to vehicle attributes. These techniques may require a lot of pre-processing and post-processing work, and also suffer from extracting the wrong keyword when the NL query is complex. To tackle these problems and simplify, we borrow the idea from named entity recognition (NER) and construct FindVehicle, a NER dataset in the traffic domain. It has 42.3k labelled NL descriptions of vehicle tracks, containing information such as the location, orientation, type and colour of the vehicle. FindVehicle also adopts both overlapping entities and fine-grained entities to meet further requirements. To verify its effectiveness, we propose a baseline NL-based vehicle retrieval model called VehicleFinder. Our experiment shows that by using text encoders pre-trained by FindVehicle, VehicleFinder achieves 87.7\% precision and 89.4\% recall when retrieving a target vehicle by text command on our homemade dataset based on UA-DETRAC. The time cost of VehicleFinder is 279.35 ms on one ARM v8.2 CPU and 93.72 ms on one RTX A4000 GPU, which is much faster than the Transformer-based system. The dataset is open-source via the link https://github.com/GuanRunwei/FindVehicle, and the implementation can be found via the link https://github.com/GuanRunwei/VehicleFinder-CTIM.

  • 9 authors
·
Apr 21, 2023

Contrastive Vision-Language Alignment Makes Efficient Instruction Learner

We study the task of extending the large language model (LLM) into a vision-language instruction-following model. This task is crucial but challenging since the LLM is trained on text modality only, making it hard to effectively digest the visual modality. To address this, existing methods typically train a visual adapter to align the representation between a pre-trained vision transformer (ViT) and the LLM by a generative image captioning loss. However, we find that the generative objective can only produce weak alignment for vision and language, making the aligned vision-language model very hungry for the instruction fine-tuning data. In this paper, we propose CG-VLM that applies both Contrastive and Generative alignment objectives to effectively align the representation of ViT and LLM. Different from image level and sentence level alignment in common contrastive learning settings, CG-VLM aligns the image-patch level features and text-token level embeddings, which, however, is very hard to achieve as no explicit grounding patch-token relation provided in standard image captioning datasets. To address this issue, we propose to maximize the averaged similarity between pooled image-patch features and text-token embeddings. Extensive experiments demonstrate that the proposed CG-VLM produces strong vision-language alignment and is an efficient instruction learner. For example, using only 10% instruction tuning data, we reach 95% performance of state-of-the-art method LLaVA [29] on the zero-shot ScienceQA-Image benchmark.

  • 6 authors
·
Nov 28, 2023

TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models

Recent advances in multimodal Large Language Models (LLMs) have shown great success in understanding multi-modal contents. For video understanding tasks, training-based video LLMs are difficult to build due to the scarcity of high-quality, curated video-text paired data. In contrast, paired image-text data are much easier to obtain, and there is substantial similarity between images and videos. Consequently, extending image LLMs for video understanding tasks presents an appealing alternative. Developing effective strategies for compressing visual tokens from multiple frames is a promising way to leverage the powerful pre-trained image LLM. In this work, we explore the limitations of the existing compression strategies for building a training-free video LLM. The findings lead to our method TS-LLaVA, which constructs visual tokens through a Thumbnail-and-Sampling strategy. Given a video, we select few equidistant frames from all input frames to construct a Thumbnail image as a detailed visual cue, complemented by Sampled visual tokens from all input frames. Our method establishes the new state-of-the-art performance among training-free video LLMs on various benchmarks. Notably, our 34B model outperforms GPT-4V on the MVBench benchmark, and achieves performance comparable to the 72B training-based video LLM, Video-LLaMA2, on the challenging MLVU benchmark. Code is available at https://github.com/tingyu215/TS-LLaVA.

  • 4 authors
·
Nov 17, 2024

GOPro: Generate and Optimize Prompts in CLIP using Self-Supervised Learning

Large-scale foundation models, such as CLIP, have demonstrated remarkable success in visual recognition tasks by embedding images in a semantically rich space. Self-supervised learning (SSL) has also shown promise in improving visual recognition by learning invariant features. However, the combination of CLIP with SSL is found to face challenges due to the multi-task framework that blends CLIP's contrastive loss and SSL's loss, including difficulties with loss weighting and inconsistency among different views of images in CLIP's output space. To overcome these challenges, we propose a prompt learning-based model called GOPro, which is a unified framework that ensures similarity between various augmented views of input images in a shared image-text embedding space, using a pair of learnable image and text projectors atop CLIP, to promote invariance and generalizability. To automatically learn such prompts, we leverage the visual content and style primitives extracted from pre-trained CLIP and adapt them to the target task. In addition to CLIP's cross-domain contrastive loss, we introduce a visual contrastive loss and a novel prompt consistency loss, considering the different views of the images. GOPro is trained end-to-end on all three loss objectives, combining the strengths of CLIP and SSL in a principled manner. Empirical evaluations demonstrate that GOPro outperforms the state-of-the-art prompting techniques on three challenging domain generalization tasks across multiple benchmarks by a significant margin. Our code is available at https://github.com/mainaksingha01/GOPro.

  • 3 authors
·
Aug 22, 2023

Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models

Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.

  • 7 authors
·
May 26 1

Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining

We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. Unlike existing autoregressive image generation approaches, Lumina-mGPT employs a pretrained decoder-only transformer as a unified framework for modeling multimodal token sequences. Our key insight is that a simple decoder-only transformer with multimodal Generative PreTraining (mGPT), utilizing the next-token prediction objective on massive interleaved text-image sequences, can learn broad and general multimodal capabilities, thereby illuminating photorealistic text-to-image generation. Building on these pretrained models, we propose Flexible Progressive Supervised Finetuning (FP-SFT) on high-quality image-text pairs to fully unlock their potential for high-aesthetic image synthesis at any resolution while maintaining their general multimodal capabilities. Furthermore, we introduce Ominiponent Supervised Finetuning (Omni-SFT), transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like flexible text-to-image generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multiturn visual question answering. Additionally, we analyze the differences and similarities between diffusion-based and autoregressive methods in a direct comparison.

  • 7 authors
·
Aug 5, 2024 2

Long Range Arena: A Benchmark for Efficient Transformers

Transformers do not scale very well to long sequence lengths largely because of quadratic self-attention complexity. In the recent months, a wide spectrum of efficient, fast Transformers have been proposed to tackle this problem, more often than not claiming superior or comparable model quality to vanilla Transformer models. To this date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide spectrum of tasks and datasets makes it difficult to assess relative model quality amongst many models. This paper proposes a systematic and unified benchmark, LRA, specifically focused on evaluating model quality under long-context scenarios. Our benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning. We systematically evaluate ten well-established long-range Transformer models (Reformers, Linformers, Linear Transformers, Sinkhorn Transformers, Performers, Synthesizers, Sparse Transformers, and Longformers) on our newly proposed benchmark suite. LRA paves the way towards better understanding this class of efficient Transformer models, facilitates more research in this direction, and presents new challenging tasks to tackle. Our benchmark code will be released at https://github.com/google-research/long-range-arena.

  • 10 authors
·
Nov 8, 2020

CMRAG: Co-modality-based visual document retrieval and question answering

Retrieval-Augmented Generation (RAG) has become a core paradigm in document question answering tasks. However, existing methods have limitations when dealing with multimodal documents: one category of methods relies on layout analysis and text extraction, which can only utilize explicit text information and struggle to capture images or unstructured content; the other category treats document segmentation as visual input and directly passes it to visual language models (VLMs) for processing, yet it ignores the semantic advantages of text, leading to suboptimal retrieval and generation results. To address these research gaps, we propose the Co-Modality-based RAG (CMRAG) framework, which can simultaneously leverage texts and images for more accurate retrieval and generation. Our framework includes two key components: (1) a Unified Encoding Model (UEM) that projects queries, parsed text, and images into a shared embedding space via triplet-based training, and (2) a Unified Co-Modality-informed Retrieval (UCMR) method that statistically normalizes similarity scores to effectively fuse cross-modal signals. To support research in this direction, we further construct and release a large-scale triplet dataset of (query, text, image) examples. Experiments demonstrate that our proposed framework consistently outperforms single-modality--based RAG in multiple visual document question-answering (VDQA) benchmarks. The findings of this paper show that integrating co-modality information into the RAG framework in a unified manner is an effective approach to improving the performance of complex VDQA systems.

  • 8 authors
·
Sep 2

Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis

Existing text-to-image generation approaches have set high standards for photorealism and text-image correspondence, largely benefiting from web-scale text-image datasets, which can include up to 5~billion pairs. However, text-to-image generation models trained on domain-specific datasets, such as urban scenes, medical images, and faces, still suffer from low text-image correspondence due to the lack of text-image pairs. Additionally, collecting billions of text-image pairs for a specific domain can be time-consuming and costly. Thus, ensuring high text-image correspondence without relying on web-scale text-image datasets remains a challenging task. In this paper, we present a novel approach for enhancing text-image correspondence by leveraging available semantic layouts. Specifically, we propose a Gaussian-categorical diffusion process that simultaneously generates both images and corresponding layout pairs. Our experiments reveal that we can guide text-to-image generation models to be aware of the semantics of different image regions, by training the model to generate semantic labels for each pixel. We demonstrate that our approach achieves higher text-image correspondence compared to existing text-to-image generation approaches in the Multi-Modal CelebA-HQ and the Cityscapes dataset, where text-image pairs are scarce. Codes are available in this https://pmh9960.github.io/research/GCDP

  • 4 authors
·
Aug 16, 2023

Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You

Text-to-image generation models have recently achieved astonishing results in image quality, flexibility, and text alignment and are consequently employed in a fast-growing number of applications. Through improvements in multilingual abilities, a larger community now has access to this kind of technology. Yet, as we will show, multilingual models suffer similarly from (gender) biases as monolingual models. Furthermore, the natural expectation is that these models will provide similar results across languages, but this is not the case and there are important differences between languages. Thus, we propose a novel benchmark MAGBIG intending to foster research in multilingual models without gender bias. We investigate whether multilingual T2I models magnify gender bias with MAGBIG. To this end, we use multilingual prompts requesting portrait images of persons of a certain occupation or trait (using adjectives). Our results show not only that models deviate from the normative assumption that each gender should be equally likely to be generated, but that there are also big differences across languages. Furthermore, we investigate prompt engineering strategies, i.e. the use of indirect, neutral formulations, as a possible remedy for these biases. Unfortunately, they help only to a limited extent and result in worse text-to-image alignment. Consequently, this work calls for more research into diverse representations across languages in image generators.

  • 6 authors
·
Jan 29, 2024

A Neural Space-Time Representation for Text-to-Image Personalization

A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.

  • 4 authors
·
May 24, 2023

Learning the Visualness of Text Using Large Vision-Language Models

Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.

  • 5 authors
·
May 11, 2023

FlexiClip: Locality-Preserving Free-Form Character Animation

Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional B\'ezier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/

  • 1 authors
·
Jan 15

Linearly Mapping from Image to Text Space

The extent to which text-only language models (LMs) learn to represent features of the non-linguistic world is an open question. Prior work has shown that pretrained LMs can be taught to caption images when a vision model's parameters are optimized to encode images in the language space. We test a stronger hypothesis: that the conceptual representations learned by frozen text-only models and vision-only models are similar enough that this can be achieved with a linear map. We show that the image representations from vision models can be transferred as continuous prompts to frozen LMs by training only a single linear projection. Using these to prompt the LM achieves competitive performance on captioning and visual question answering tasks compared to models that tune both the image encoder and text decoder (such as the MAGMA model). We compare three image encoders with increasing amounts of linguistic supervision seen during pretraining: BEIT (no linguistic information), NF-ResNET (lexical category information), and CLIP (full natural language descriptions). We find that all three encoders perform equally well at transferring visual property information to the language model (e.g., whether an animal is large or small), but that image encoders pretrained with linguistic supervision more saliently encode category information (e.g., distinguishing hippo vs. elephant) and thus perform significantly better on benchmark language-and-vision tasks. Our results indicate that LMs encode conceptual information structurally similarly to vision-based models, even those that are solely trained on images. Code is available here: https://github.com/jmerullo/limber

  • 4 authors
·
Sep 29, 2022

Sentence-level Prompts Benefit Composed Image Retrieval

Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption. Most existing CIR models adopt the late-fusion strategy to combine visual and language features. Besides, several approaches have also been suggested to generate a pseudo-word token from the reference image, which is further integrated into the relative caption for CIR. However, these pseudo-word-based prompting methods have limitations when target image encompasses complex changes on reference image, e.g., object removal and attribute modification. In this work, we demonstrate that learning an appropriate sentence-level prompt for the relative caption (SPRC) is sufficient for achieving effective composed image retrieval. Instead of relying on pseudo-word-based prompts, we propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts. By concatenating the learned sentence-level prompt with the relative caption, one can readily use existing text-based image retrieval models to enhance CIR performance. Furthermore, we introduce both image-text contrastive loss and text prompt alignment loss to enforce the learning of suitable sentence-level prompts. Experiments show that our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets. The source code and pretrained model are publicly available at https://github.com/chunmeifeng/SPRC

  • 8 authors
·
Oct 9, 2023

Where Does the Performance Improvement Come From? -- A Reproducibility Concern about Image-Text Retrieval

This article aims to provide the information retrieval community with some reflections on recent advances in retrieval learning by analyzing the reproducibility of image-text retrieval models. Due to the increase of multimodal data over the last decade, image-text retrieval has steadily become a major research direction in the field of information retrieval. Numerous researchers train and evaluate image-text retrieval algorithms using benchmark datasets such as MS-COCO and Flickr30k. Research in the past has mostly focused on performance, with multiple state-of-the-art methodologies being suggested in a variety of ways. According to their assertions, these techniques provide improved modality interactions and hence more precise multimodal representations. In contrast to previous works, we focus on the reproducibility of the approaches and the examination of the elements that lead to improved performance by pretrained and nonpretrained models in retrieving images and text. To be more specific, we first examine the related reproducibility concerns and explain why our focus is on image-text retrieval tasks. Second, we systematically summarize the current paradigm of image-text retrieval models and the stated contributions of those approaches. Third, we analyze various aspects of the reproduction of pretrained and nonpretrained retrieval models. To complete this, we conducted ablation experiments and obtained some influencing factors that affect retrieval recall more than the improvement claimed in the original paper. Finally, we present some reflections and challenges that the retrieval community should consider in the future. Our source code is publicly available at https://github.com/WangFei-2019/Image-text-Retrieval.

  • 7 authors
·
Mar 8, 2022

SORCE: Small Object Retrieval in Complex Environments

Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.

  • 7 authors
·
May 30

AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models

We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.

  • 3 authors
·
Jun 27, 2024

Compress & Align: Curating Image-Text Data with Human Knowledge

The massive growth of image-text data through web crawling inherently presents the challenge of variability in data quality. This paper introduces a novel algorithm, rooted in human knowledge, to compress this vast corpus of web-crawled image-text datasets to a compact and high-quality form. Our method unfolds in three major steps. First, we collect an image-text dataset, wherein each image is associated with multiple captions sourced from diverse origins. Then, to systemically capture human preferences regarding the best caption paired with each image, we establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Lastly, we train a reward model on the annotated dataset to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter misaligned/low-quality image-text pairs. Extensive experiments demonstrate that we are able to secure (or even improve) model performance by compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to 15.5M (e.g., ~9x smaller), our BLIP-B/16 models still consistently show superior performance compared with the full-size-dataset counterpart on image-text retrieval (Flickr30K, COCO) by ~2.5% in Recall@1, and on image-captioning (Nocaps, COCO) by ~10.0% in CIDEr and ~2.7% in SPICE.

  • 6 authors
·
Dec 11, 2023

Getting it Right: Improving Spatial Consistency in Text-to-Image Models

One of the key shortcomings in current text-to-image (T2I) models is their inability to consistently generate images which faithfully follow the spatial relationships specified in the text prompt. In this paper, we offer a comprehensive investigation of this limitation, while also developing datasets and methods that achieve state-of-the-art performance. First, we find that current vision-language datasets do not represent spatial relationships well enough; to alleviate this bottleneck, we create SPRIGHT, the first spatially-focused, large scale dataset, by re-captioning 6 million images from 4 widely used vision datasets. Through a 3-fold evaluation and analysis pipeline, we find that SPRIGHT largely improves upon existing datasets in capturing spatial relationships. To demonstrate its efficacy, we leverage only ~0.25% of SPRIGHT and achieve a 22% improvement in generating spatially accurate images while also improving the FID and CMMD scores. Secondly, we find that training on images containing a large number of objects results in substantial improvements in spatial consistency. Notably, we attain state-of-the-art on T2I-CompBench with a spatial score of 0.2133, by fine-tuning on <500 images. Finally, through a set of controlled experiments and ablations, we document multiple findings that we believe will enhance the understanding of factors that affect spatial consistency in text-to-image models. We publicly release our dataset and model to foster further research in this area.

  • 11 authors
·
Apr 1, 2024 3

Rethinking Benchmarks for Cross-modal Image-text Retrieval

Image-text retrieval, as a fundamental and important branch of information retrieval, has attracted extensive research attentions. The main challenge of this task is cross-modal semantic understanding and matching. Some recent works focus more on fine-grained cross-modal semantic matching. With the prevalence of large scale multimodal pretraining models, several state-of-the-art models (e.g. X-VLM) have achieved near-perfect performance on widely-used image-text retrieval benchmarks, i.e. MSCOCO-Test-5K and Flickr30K-Test-1K. In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching. The reason is that a large amount of images and texts in the benchmarks are coarse-grained. Based on the observation, we renovate the coarse-grained images and texts in the old benchmarks and establish the improved benchmarks called MSCOCO-FG and Flickr30K-FG. Specifically, on the image side, we enlarge the original image pool by adopting more similar images. On the text side, we propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort. Furthermore, we evaluate representative image-text retrieval models on our new benchmarks to demonstrate the effectiveness of our method. We also analyze the capability of models on fine-grained semantic comprehension through extensive experiments. The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding, especially in distinguishing attributes of close objects in images. Our code and improved benchmark datasets are publicly available at: https://github.com/cwj1412/MSCOCO-Flikcr30K_FG, which we hope will inspire further in-depth research on cross-modal retrieval.

  • 3 authors
·
Apr 21, 2023