new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment

We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.

Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning

The realization of scalable fault-tolerant quantum computing is expected to hinge on quantum error-correcting codes. In the quest for more efficient quantum fault tolerance, a critical code parameter is the weight of measurements that extract information about errors to enable error correction: as higher measurement weights require higher implementation costs and introduce more errors, it is important in code design to optimize measurement weight. This underlies the surging interest in quantum low-density parity-check (qLDPC) codes, the study of which has primarily focused on the asymptotic (large-code-limit) properties. In this work, we introduce a versatile and computationally efficient approach to stabilizer code weight reduction based on reinforcement learning (RL), which produces new low-weight codes that substantially outperform the state of the art in practically relevant parameter regimes, extending significantly beyond previously accessible small distances. For example, our approach demonstrates savings in physical qubit overhead compared to existing results by 1 to 2 orders of magnitude for weight 6 codes and brings the overhead into a feasible range for near-future experiments. We also investigate the interplay between code parameters using our RL framework, offering new insights into the potential efficiency and power of practically viable coding strategies. Overall, our results demonstrate how RL can effectively advance the crucial yet challenging problem of quantum code discovery and thereby facilitate a faster path to the practical implementation of fault-tolerant quantum technologies.

  • 2 authors
·
Feb 20 4