prithivMLmods commited on
Commit
db706fd
·
verified ·
1 Parent(s): 1482b38

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -1
README.md CHANGED
@@ -8,4 +8,43 @@ pipeline_tag: text-generation
8
  library_name: transformers
9
  tags:
10
  - text-generation-inference
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  library_name: transformers
9
  tags:
10
  - text-generation-inference
11
+ ---
12
+
13
+ # Vulpecula-4B-GGUF
14
+
15
+ > **Vulpecula-4B** is fine-tuned based on the traces of **SK1.1**, consisting of the same 1,000 entries of the **DeepSeek thinking trajectory**, along with fine-tuning on **Fine-Tome 100k** and **Open Math Reasoning** datasets. This specialized 4B parameter model is designed for enhanced mathematical reasoning, logical problem-solving, and structured content generation, optimized for precision and step-by-step explanation.
16
+
17
+ ## Model Files
18
+
19
+ | File Name | Size | Quantization | Format | Description |
20
+ | -------------------------- | ------- | ------------ | ------ | ----------------------------- |
21
+ | `Vulpecula-4B.F16.gguf` | 8.05 GB | FP16 | GGUF | Float16 precision version |
22
+ | `Vulpecula-4B.Q4_K_M.gguf` | 2.5 GB | Q4\_K\_M | GGUF | 4-bit quantized (K M variant) |
23
+ | `Vulpecula-4B.Q5_K_M.gguf` | 2.89 GB | Q5\_K\_M | GGUF | 5-bit quantized (K M variant) |
24
+ | `Vulpecula-4B.Q8_0.gguf` | 4.28 GB | Q8\_0 | GGUF | 8-bit quantized |
25
+ | `.gitattributes` | 1.8 kB | — | — | Git LFS tracking file |
26
+ | `README.md` | 31 B | — | — | Model documentation |
27
+
28
+ ## Quants Usage
29
+
30
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
31
+
32
+ | Link | Type | Size/GB | Notes |
33
+ |:-----|:-----|--------:|:------|
34
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q2_K.gguf) | Q2_K | 0.4 | |
35
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_S.gguf) | Q3_K_S | 0.5 | |
36
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality |
37
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_L.gguf) | Q3_K_L | 0.5 | |
38
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.IQ4_XS.gguf) | IQ4_XS | 0.6 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_S.gguf) | Q4_K_S | 0.6 | fast, recommended |
40
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_M.gguf) | Q4_K_M | 0.6 | fast, recommended |
41
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_S.gguf) | Q5_K_S | 0.6 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_M.gguf) | Q5_K_M | 0.7 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q6_K.gguf) | Q6_K | 0.7 | very good quality |
44
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q8_0.gguf) | Q8_0 | 0.9 | fast, best quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.f16.gguf) | f16 | 1.6 | 16 bpw, overkill |
46
+
47
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
48
+ types (lower is better):
49
+
50
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)