File size: 33,396 Bytes
e8f4897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
from __future__ import print_function
import sys
from os import path, makedirs

sys.path.append(".")
sys.path.append("..")

import argparse
from copy import deepcopy
import json
import numpy as np
import torch
import torch.nn as nn
from collections import namedtuple
from utils.io_ import seeds, Writer, get_logger, prepare_data, rearrange_splits
from utils.models.parsing_gating import BiAffine_Parser_Gated
from utils import load_word_embeddings
from utils.tasks import parse
import time
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam, SGD
import uuid

uid = uuid.uuid4().hex[:6]

logger = get_logger('GraphParser')

def read_arguments():
    args_ = argparse.ArgumentParser(description='Sovling GraphParser')
    args_.add_argument('--dataset', choices=['ontonotes', 'ud'], help='Dataset', required=True)
    args_.add_argument('--domain', help='domain/language', required=True)
    args_.add_argument('--rnn_mode', choices=['RNN', 'LSTM', 'GRU'], help='architecture of rnn',
                       required=True)
    args_.add_argument('--gating',action='store_true', help='use gated mechanism')
    args_.add_argument('--num_gates', type=int, default=0, help='number of gates for gating mechanism')
    args_.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs')
    args_.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch')
    args_.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN')
    args_.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space')
    args_.add_argument('--arc_tag_space', type=int, default=128, help='Dimension of tag space')
    args_.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN')
    args_.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN')
    args_.add_argument('--kernel_size', type=int, default=3, help='Size of Kernel for CNN')
    args_.add_argument('--use_pos', action='store_true', help='use part-of-speech embedding.')
    args_.add_argument('--use_char', action='store_true', help='use character embedding and CNN.')
    args_.add_argument('--word_dim', type=int, default=300, help='Dimension of word embeddings')
    args_.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings')
    args_.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings')
    args_.add_argument('--initializer', choices=['xavier'], help='initialize model parameters')
    args_.add_argument('--opt', choices=['adam', 'sgd'], help='optimization algorithm')
    args_.add_argument('--momentum', type=float, default=0.9, help='momentum of optimizer')
    args_.add_argument('--betas', nargs=2, type=float, default=[0.9, 0.9], help='betas of optimizer')
    args_.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate')
    args_.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate')
    args_.add_argument('--schedule', type=int, help='schedule for learning rate decay')
    args_.add_argument('--clip', type=float, default=5.0, help='gradient clipping')
    args_.add_argument('--gamma', type=float, default=0.0, help='weight for regularization')
    args_.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam')
    args_.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN')
    args_.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings')
    args_.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer')
    args_.add_argument('--arc_decode', choices=['mst', 'greedy'], help='arc decoding algorithm', required=True)
    args_.add_argument('--unk_replace', type=float, default=0.,
                       help='The rate to replace a singleton word with UNK')
    args_.add_argument('--punct_set', nargs='+', type=str, help='List of punctuations')
    args_.add_argument('--word_embedding', choices=['random', 'glove', 'fasttext', 'word2vec'],
                       help='Embedding for words')
    args_.add_argument('--word_path', help='path for word embedding dict - in case word_embedding is not random')
    args_.add_argument('--freeze_word_embeddings', action='store_true', help='frozen the word embedding (disable fine-tuning).')
    args_.add_argument('--freeze_sequence_taggers', action='store_true', help='frozen the BiLSTMs of the pre-trained taggers.')
    args_.add_argument('--char_embedding', choices=['random','hellwig'], help='Embedding for characters',
                       required=True)
    args_.add_argument('--pos_embedding', choices=['random','one_hot'], help='Embedding for pos',
                       required=True)
    args_.add_argument('--char_path', help='path for character embedding dict')
    args_.add_argument('--pos_path', help='path for pos embedding dict')
    args_.add_argument('--set_num_training_samples', type=int, help='downsampling training set to a fixed number of samples')
    args_.add_argument('--model_path', help='path for saving model file.', required=True)
    args_.add_argument('--load_path', help='path for loading saved source model file.', default=None)
    args_.add_argument('--load_sequence_taggers_paths', nargs='+', help='path for loading saved sequence_tagger saved_models files.', default=None)
    args_.add_argument('--strict',action='store_true', help='if True loaded model state should contin '
                                                            'exactly the same keys as current model')
    args_.add_argument('--eval_mode', action='store_true', help='evaluating model without training it')
    args = args_.parse_args()
    args_dict = {}
    args_dict['dataset'] = args.dataset
    args_dict['domain'] = args.domain
    args_dict['rnn_mode'] = args.rnn_mode
    args_dict['gating'] = args.gating
    args_dict['num_gates'] = args.num_gates
    args_dict['arc_decode'] = args.arc_decode
    # args_dict['splits'] = ['train', 'dev', 'test']
    args_dict['splits'] = ['train', 'dev', 'test','poetry','prose']
    args_dict['model_path'] = args.model_path
    if not path.exists(args_dict['model_path']):
        makedirs(args_dict['model_path'])
    args_dict['data_paths'] = {}
    if args_dict['dataset'] == 'ontonotes':
        data_path = 'data/Pre_MRL/onto_pos_ner_dp'
    else:
        data_path = 'data/Prep_MRL/ud_pos_ner_dp'
    for split in args_dict['splits']:
        args_dict['data_paths'][split] = data_path + '_' + split + '_' + args_dict['domain']
    ###################################    
    args_dict['data_paths']['poetry'] = data_path + '_' + 'test' + '_' + args_dict['domain']
    args_dict['data_paths']['prose'] = data_path + '_' + 'test' + '_' + args_dict['domain']
    ###################################
    args_dict['alphabet_data_paths'] = {}
    for split in args_dict['splits']:
        if args_dict['dataset'] == 'ontonotes':
            args_dict['alphabet_data_paths'][split] = data_path + '_' + split + '_' + 'all'
        else:
            if '_' in args_dict['domain']:
                args_dict['alphabet_data_paths'][split] = data_path + '_' + split + '_' + args_dict['domain'].split('_')[0]
            else:
                args_dict['alphabet_data_paths'][split] = args_dict['data_paths'][split]
    args_dict['model_name'] = 'domain_' + args_dict['domain']
    args_dict['full_model_name'] = path.join(args_dict['model_path'],args_dict['model_name'])
    args_dict['load_path'] = args.load_path
    args_dict['load_sequence_taggers_paths'] = args.load_sequence_taggers_paths
    if args_dict['load_sequence_taggers_paths'] is not None:
        args_dict['gating'] = True
        args_dict['num_gates'] = len(args_dict['load_sequence_taggers_paths']) + 1
    else:
        if not args_dict['gating']:
            args_dict['num_gates'] = 0
    args_dict['strict'] = args.strict
    args_dict['num_epochs'] = args.num_epochs
    args_dict['batch_size'] = args.batch_size
    args_dict['hidden_size'] = args.hidden_size
    args_dict['arc_space'] = args.arc_space
    args_dict['arc_tag_space'] = args.arc_tag_space
    args_dict['num_layers'] = args.num_layers
    args_dict['num_filters'] = args.num_filters
    args_dict['kernel_size'] = args.kernel_size
    args_dict['learning_rate'] = args.learning_rate
    args_dict['initializer'] = nn.init.xavier_uniform_ if args.initializer == 'xavier' else None
    args_dict['opt'] = args.opt
    args_dict['momentum'] = args.momentum
    args_dict['betas'] = tuple(args.betas)
    args_dict['epsilon'] = args.epsilon
    args_dict['decay_rate'] = args.decay_rate
    args_dict['clip'] = args.clip
    args_dict['gamma'] = args.gamma
    args_dict['schedule'] = args.schedule
    args_dict['p_rnn'] = tuple(args.p_rnn)
    args_dict['p_in'] = args.p_in
    args_dict['p_out'] = args.p_out
    args_dict['unk_replace'] = args.unk_replace
    args_dict['set_num_training_samples'] = args.set_num_training_samples
    args_dict['punct_set'] = None
    if args.punct_set is not None:
        args_dict['punct_set'] = set(args.punct_set)
        logger.info("punctuations(%d): %s" % (len(args_dict['punct_set']), ' '.join(args_dict['punct_set'])))
    args_dict['freeze_word_embeddings'] = args.freeze_word_embeddings
    args_dict['freeze_sequence_taggers'] = args.freeze_sequence_taggers
    args_dict['word_embedding'] = args.word_embedding
    args_dict['word_path'] = args.word_path
    args_dict['use_char'] = args.use_char
    args_dict['char_embedding'] = args.char_embedding
    args_dict['char_path'] = args.char_path
    args_dict['pos_embedding'] = args.pos_embedding
    args_dict['pos_path'] = args.pos_path
    args_dict['use_pos'] = args.use_pos
    args_dict['pos_dim'] = args.pos_dim
    args_dict['word_dict'] = None
    args_dict['word_dim'] = args.word_dim
    if args_dict['word_embedding'] != 'random' and args_dict['word_path']:
        args_dict['word_dict'], args_dict['word_dim'] = load_word_embeddings.load_embedding_dict(args_dict['word_embedding'],
                                                                                                 args_dict['word_path'])
    args_dict['char_dict'] = None
    args_dict['char_dim'] = args.char_dim
    if args_dict['char_embedding'] != 'random':
        args_dict['char_dict'], args_dict['char_dim'] = load_word_embeddings.load_embedding_dict(args_dict['char_embedding'],
                                                                                                 args_dict['char_path'])
    args_dict['pos_dict'] = None
    if args_dict['pos_embedding'] != 'random':
        args_dict['pos_dict'], args_dict['pos_dim'] = load_word_embeddings.load_embedding_dict(args_dict['pos_embedding'],
                                                                                                 args_dict['pos_path'])
    args_dict['alphabet_path'] = path.join(args_dict['model_path'], 'alphabets' + '_src_domain_' + args_dict['domain'] + '/')
    args_dict['model_name'] = path.join(args_dict['model_path'], args_dict['model_name'])
    args_dict['eval_mode'] = args.eval_mode
    args_dict['device'] = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    args_dict['word_status'] = 'frozen' if args.freeze_word_embeddings else 'fine tune'
    args_dict['char_status'] = 'enabled' if args.use_char else 'disabled'
    args_dict['pos_status'] = 'enabled' if args.use_pos else 'disabled'
    logger.info("Saving arguments to file")
    save_args(args, args_dict['full_model_name'])
    logger.info("Creating Alphabets")
    alphabet_dict = creating_alphabets(args_dict['alphabet_path'], args_dict['alphabet_data_paths'], args_dict['word_dict'])
    args_dict = {**args_dict, **alphabet_dict}
    ARGS = namedtuple('ARGS', args_dict.keys())
    my_args = ARGS(**args_dict)
    return my_args


def creating_alphabets(alphabet_path, alphabet_data_paths, word_dict):
    train_paths = alphabet_data_paths['train']
    extra_paths = [v for k,v in alphabet_data_paths.items() if k != 'train']
    alphabet_dict = {}
    alphabet_dict['alphabets'] = prepare_data.create_alphabets(alphabet_path,
                                                               train_paths,
                                                               extra_paths=extra_paths,
                                                               max_vocabulary_size=100000,
                                                               embedd_dict=word_dict)
    for k, v in alphabet_dict['alphabets'].items():
        num_key = 'num_' + k.split('_')[0]
        alphabet_dict[num_key] = v.size()
        logger.info("%s : %d" % (num_key, alphabet_dict[num_key]))
    return alphabet_dict

def construct_embedding_table(alphabet, tokens_dict, dim, token_type='word'):
    if tokens_dict is None:
        return None
    scale = np.sqrt(3.0 / dim)
    table = np.empty([alphabet.size(), dim], dtype=np.float32)
    table[prepare_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, dim]).astype(np.float32)
    oov_tokens = 0
    for token, index in alphabet.items():
        if token in ['aTA']:
            embedding = np.random.uniform(-scale, scale, [1, dim]).astype(np.float32)
            oov_tokens += 1
        elif token in tokens_dict:
            embedding = tokens_dict[token]
        elif token.lower() in tokens_dict:
            embedding = tokens_dict[token.lower()]
        else:
            embedding = np.random.uniform(-scale, scale, [1, dim]).astype(np.float32)
            oov_tokens += 1
        # print(token)
        table[index, :] = embedding
    print('token type : %s, number of oov: %d' % (token_type, oov_tokens))
    table = torch.from_numpy(table)
    return table

def save_args(args, full_model_name):
    arg_path = full_model_name + '.arg.json'
    argparse_dict = vars(args)
    with open(arg_path, 'w') as f:
        json.dump(argparse_dict, f)

def generate_optimizer(args, lr, params):
    params = filter(lambda param: param.requires_grad, params)
    if args.opt == 'adam':
        return Adam(params, lr=lr, betas=args.betas, weight_decay=args.gamma, eps=args.epsilon)
    elif args.opt == 'sgd':
        return SGD(params, lr=lr, momentum=args.momentum, weight_decay=args.gamma, nesterov=True)
    else:
        raise ValueError('Unknown optimization algorithm: %s' % args.opt)


def save_checkpoint(model, optimizer, opt, dev_eval_dict, test_eval_dict, full_model_name):
    path_name = full_model_name + '.pt'
    print('Saving model to: %s' % path_name)
    state = {'model_state_dict': model.state_dict(),
             'optimizer_state_dict': optimizer.state_dict(),
             'opt': opt,
             'dev_eval_dict': dev_eval_dict,
             'test_eval_dict': test_eval_dict}
    torch.save(state, path_name)


def load_checkpoint(args, model, optimizer, dev_eval_dict, test_eval_dict, start_epoch, load_path, strict=True):
    print('Loading saved model from: %s' % load_path)
    checkpoint = torch.load(load_path, map_location=args.device)
    if checkpoint['opt'] != args.opt:
        raise ValueError('loaded optimizer type is: %s instead of: %s' % (checkpoint['opt'], args.opt))
    model.load_state_dict(checkpoint['model_state_dict'], strict=strict)

    if strict:
        generate_optimizer(args, args.learning_rate, model.parameters())
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        for state in optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.to(args.device)
        dev_eval_dict = checkpoint['dev_eval_dict']
        test_eval_dict = checkpoint['test_eval_dict']
        start_epoch = dev_eval_dict['in_domain']['epoch']
    return model, optimizer, dev_eval_dict, test_eval_dict, start_epoch


def build_model_and_optimizer(args):
    word_table = construct_embedding_table(args.alphabets['word_alphabet'], args.word_dict, args.word_dim, token_type='word')
    char_table = construct_embedding_table(args.alphabets['char_alphabet'], args.char_dict, args.char_dim, token_type='char')
    pos_table = construct_embedding_table(args.alphabets['pos_alphabet'], args.pos_dict, args.pos_dim, token_type='pos')
    model = BiAffine_Parser_Gated(args.word_dim, args.num_word, args.char_dim, args.num_char,
                            args.use_pos, args.use_char, args.pos_dim, args.num_pos,
                            args.num_filters, args.kernel_size, args.rnn_mode,
                            args.hidden_size, args.num_layers, args.num_arc,
                            args.arc_space, args.arc_tag_space, args.num_gates,
                            embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table,
                            p_in=args.p_in, p_out=args.p_out,  p_rnn=args.p_rnn,
                            biaffine=True, arc_decode=args.arc_decode, initializer=args.initializer)
    print(model)
    optimizer = generate_optimizer(args, args.learning_rate, model.parameters())
    start_epoch = 0
    dev_eval_dict = {'in_domain': initialize_eval_dict()}
    test_eval_dict = {'in_domain': initialize_eval_dict()}
    if args.load_path:
        model, optimizer, dev_eval_dict, test_eval_dict, start_epoch = \
            load_checkpoint(args, model, optimizer,
                            dev_eval_dict, test_eval_dict,
                            start_epoch, args.load_path, strict=args.strict)
    if args.load_sequence_taggers_paths:
        pretrained_dict = {}
        model_dict = model.state_dict()
        for idx, path in enumerate(args.load_sequence_taggers_paths):
            print('Loading saved sequence_tagger from: %s' % path)
            checkpoint = torch.load(path, map_location=args.device)
            for k, v in checkpoint['model_state_dict'].items():
                if 'rnn_encoder.' in k:
                    pretrained_dict['extra_rnn_encoders.' + str(idx) + '.' + k.replace('rnn_encoder.', '')] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
    if args.freeze_sequence_taggers:
        print('Freezing Classifiers')
        for name, parameter in model.named_parameters():
            if 'extra_rnn_encoders' in name:
                parameter.requires_grad = False
    if args.freeze_word_embeddings:
        model.rnn_encoder.word_embedd.weight.requires_grad = False
        # model.rnn_encoder.char_embedd.weight.requires_grad = False
        # model.rnn_encoder.pos_embedd.weight.requires_grad = False
    device = args.device
    model.to(device)
    return model, optimizer, dev_eval_dict, test_eval_dict, start_epoch


def initialize_eval_dict():
    eval_dict = {}
    eval_dict['dp_uas'] = 0.0
    eval_dict['dp_las'] = 0.0
    eval_dict['epoch'] = 0
    eval_dict['dp_ucorrect'] = 0.0
    eval_dict['dp_lcorrect'] = 0.0
    eval_dict['dp_total'] = 0.0
    eval_dict['dp_ucomplete_match'] = 0.0
    eval_dict['dp_lcomplete_match'] = 0.0
    eval_dict['dp_ucorrect_nopunc'] = 0.0
    eval_dict['dp_lcorrect_nopunc'] = 0.0
    eval_dict['dp_total_nopunc'] = 0.0
    eval_dict['dp_ucomplete_match_nopunc'] = 0.0
    eval_dict['dp_lcomplete_match_nopunc'] = 0.0
    eval_dict['dp_root_correct'] = 0.0
    eval_dict['dp_total_root'] = 0.0
    eval_dict['dp_total_inst'] = 0.0
    eval_dict['dp_total'] = 0.0
    eval_dict['dp_total_inst'] = 0.0
    eval_dict['dp_total_nopunc'] = 0.0
    eval_dict['dp_total_root'] = 0.0
    return eval_dict

def in_domain_evaluation(args, datasets, model, optimizer, dev_eval_dict, test_eval_dict, epoch,
                         best_model, best_optimizer, patient):
    # In-domain evaluation
    curr_dev_eval_dict = evaluation(args, datasets['dev'], 'dev', model, args.domain, epoch, 'current_results')
    is_best_in_domain = dev_eval_dict['in_domain']['dp_lcorrect_nopunc'] <= curr_dev_eval_dict['dp_lcorrect_nopunc'] or \
              (dev_eval_dict['in_domain']['dp_lcorrect_nopunc'] == curr_dev_eval_dict['dp_lcorrect_nopunc'] and
               dev_eval_dict['in_domain']['dp_ucorrect_nopunc'] <= curr_dev_eval_dict['dp_ucorrect_nopunc'])

    if is_best_in_domain:
        for key, value in curr_dev_eval_dict.items():
            dev_eval_dict['in_domain'][key] = value
        curr_test_eval_dict = evaluation(args, datasets['test'], 'test', model, args.domain, epoch, 'current_results')
        for key, value in curr_test_eval_dict.items():
            test_eval_dict['in_domain'][key] = value
        best_model = deepcopy(model)
        best_optimizer = deepcopy(optimizer)
        patient = 0
    else:
        patient += 1
    if epoch == args.num_epochs:
        # save in-domain checkpoint
        if args.set_num_training_samples is not None:
            splits_to_write = datasets.keys()
        else:
            splits_to_write = ['dev', 'test']
        for split in splits_to_write:
            if split == 'dev':
                eval_dict = dev_eval_dict['in_domain']
            elif split == 'test':
                eval_dict = test_eval_dict['in_domain']
            else:
                eval_dict = None
            write_results(args, datasets[split], args.domain, split, best_model, args.domain, eval_dict)
        print("Saving best model")
        save_checkpoint(best_model, best_optimizer, args.opt, dev_eval_dict, test_eval_dict, args.full_model_name)

    print('\n')
    return dev_eval_dict, test_eval_dict, best_model, best_optimizer, patient


def evaluation(args, data, split, model, domain, epoch, str_res='results'):
    # evaluate performance on data
    model.eval()

    eval_dict = initialize_eval_dict()
    eval_dict['epoch'] = epoch
    for batch in prepare_data.iterate_batch(data, args.batch_size, args.device):
        word, char, pos, ner, heads, arc_tags, auto_label, masks, lengths = batch
        out_arc, out_arc_tag, masks, lengths = model.forward(word, char, pos, mask=masks, length=lengths)
        heads_pred, arc_tags_pred, _ = model.decode(args.model_path,word, pos, ner,out_arc, out_arc_tag, mask=masks, length=lengths,
                                                    leading_symbolic=prepare_data.NUM_SYMBOLIC_TAGS)
        lengths = lengths.cpu().numpy()
        word = word.data.cpu().numpy()
        pos = pos.data.cpu().numpy()
        ner = ner.data.cpu().numpy()
        heads = heads.data.cpu().numpy()
        arc_tags = arc_tags.data.cpu().numpy()
        heads_pred = heads_pred.data.cpu().numpy()
        arc_tags_pred = arc_tags_pred.data.cpu().numpy()
        stats, stats_nopunc, stats_root, num_inst = parse.eval_(word, pos, heads_pred, arc_tags_pred, heads,
                                                                arc_tags, args.alphabets['word_alphabet'], args.alphabets['pos_alphabet'],
                                                                lengths, punct_set=args.punct_set, symbolic_root=True)
        ucorr, lcorr, total, ucm, lcm = stats
        ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
        corr_root, total_root = stats_root
        eval_dict['dp_ucorrect'] += ucorr
        eval_dict['dp_lcorrect'] += lcorr
        eval_dict['dp_total'] += total
        eval_dict['dp_ucomplete_match'] += ucm
        eval_dict['dp_lcomplete_match'] += lcm
        eval_dict['dp_ucorrect_nopunc'] += ucorr_nopunc
        eval_dict['dp_lcorrect_nopunc'] += lcorr_nopunc
        eval_dict['dp_total_nopunc'] += total_nopunc
        eval_dict['dp_ucomplete_match_nopunc'] += ucm_nopunc
        eval_dict['dp_lcomplete_match_nopunc'] += lcm_nopunc
        eval_dict['dp_root_correct'] += corr_root
        eval_dict['dp_total_root'] += total_root
        eval_dict['dp_total_inst'] += num_inst

    eval_dict['dp_uas'] = eval_dict['dp_ucorrect'] * 100 / eval_dict['dp_total']  # considering w. punctuation
    eval_dict['dp_las'] = eval_dict['dp_lcorrect'] * 100 / eval_dict['dp_total']  # considering w. punctuation
    print_results(eval_dict, split, domain, str_res)
    return eval_dict


def print_results(eval_dict, split, domain, str_res='results'):
    print('----------------------------------------------------------------------------------------------------------------------------')
    print('Testing model on domain %s' % domain)
    print('--------------- Dependency Parsing - %s ---------------' % split)
    print(
        str_res + ' on ' + split + '  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
            eval_dict['dp_ucorrect'], eval_dict['dp_lcorrect'], eval_dict['dp_total'],
            eval_dict['dp_ucorrect'] * 100 / eval_dict['dp_total'],
            eval_dict['dp_lcorrect'] * 100 / eval_dict['dp_total'],
            eval_dict['dp_ucomplete_match'] * 100 / eval_dict['dp_total_inst'],
            eval_dict['dp_lcomplete_match'] * 100 / eval_dict['dp_total_inst'],
            eval_dict['epoch']))
    print(
        str_res + ' on ' + split + '  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
            eval_dict['dp_ucorrect_nopunc'], eval_dict['dp_lcorrect_nopunc'], eval_dict['dp_total_nopunc'],
            eval_dict['dp_ucorrect_nopunc'] * 100 / eval_dict['dp_total_nopunc'],
            eval_dict['dp_lcorrect_nopunc'] * 100 / eval_dict['dp_total_nopunc'],
            eval_dict['dp_ucomplete_match_nopunc'] * 100 / eval_dict['dp_total_inst'],
            eval_dict['dp_lcomplete_match_nopunc'] * 100 / eval_dict['dp_total_inst'],
            eval_dict['epoch']))
    print(str_res + ' on ' + split + '  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (
        eval_dict['dp_root_correct'], eval_dict['dp_total_root'],
        eval_dict['dp_root_correct'] * 100 / eval_dict['dp_total_root'], eval_dict['epoch']))
    print('\n')

def write_results(args, data, data_domain, split, model, model_domain, eval_dict):
    str_file = args.full_model_name + '_' + split + '_model_domain_' + model_domain + '_data_domain_' + data_domain
    res_filename = str_file + '_res.txt'
    pred_filename = str_file + '_pred.txt'
    gold_filename = str_file + '_gold.txt'
    if eval_dict is not None:
        # save results dictionary into a file
        with open(res_filename, 'w') as f:
            json.dump(eval_dict, f)

    # save predictions and gold labels into files
    pred_writer = Writer(args.alphabets)
    gold_writer = Writer(args.alphabets)
    pred_writer.start(pred_filename)
    gold_writer.start(gold_filename)
    for batch in prepare_data.iterate_batch(data, args.batch_size, args.device):
        word, char, pos, ner, heads, arc_tags, auto_label, masks, lengths = batch
        out_arc, out_arc_tag, masks, lengths = model.forward(word, char, pos, mask=masks, length=lengths)
        heads_pred, arc_tags_pred, _ = model.decode(args.model_path,word, pos,ner,out_arc, out_arc_tag, mask=masks, length=lengths,
                                                    leading_symbolic=prepare_data.NUM_SYMBOLIC_TAGS)
        lengths = lengths.cpu().numpy()
        word = word.data.cpu().numpy()
        pos = pos.data.cpu().numpy()
        ner = ner.data.cpu().numpy()
        heads = heads.data.cpu().numpy()
        arc_tags = arc_tags.data.cpu().numpy()
        heads_pred = heads_pred.data.cpu().numpy()
        arc_tags_pred = arc_tags_pred.data.cpu().numpy()
        # writing predictions
        pred_writer.write(word, pos, ner, heads_pred, arc_tags_pred, lengths, symbolic_root=True)
        # writing gold labels
        gold_writer.write(word, pos, ner, heads, arc_tags, lengths, symbolic_root=True)

    pred_writer.close()
    gold_writer.close()

def main():
    logger.info("Reading and creating arguments")
    args = read_arguments()
    logger.info("Reading Data")
    datasets = {}
    for split in args.splits:
        print("Splits are:",split)
        dataset = prepare_data.read_data_to_variable(args.data_paths[split], args.alphabets, args.device,
                                                     symbolic_root=True)
        datasets[split] = dataset
    if args.set_num_training_samples is not None:
        print('Setting train and dev to %d samples' % args.set_num_training_samples)
        datasets = rearrange_splits.rearranging_splits(datasets, args.set_num_training_samples)
    logger.info("Creating Networks")
    num_data = sum(datasets['train'][1])
    model, optimizer, dev_eval_dict, test_eval_dict, start_epoch = build_model_and_optimizer(args)
    best_model = deepcopy(model)
    best_optimizer = deepcopy(optimizer)

    logger.info('Training INFO of in domain %s' % args.domain)
    logger.info('Training on Dependecy Parsing')
    logger.info("train: gamma: %f, batch: %d, clip: %.2f, unk replace: %.2f" % (args.gamma, args.batch_size, args.clip, args.unk_replace))
    logger.info('number of training samples for %s is: %d' % (args.domain, num_data))
    logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (args.p_in, args.p_out, args.p_rnn))
    logger.info("num_epochs: %d" % (args.num_epochs))
    print('\n')

    if not args.eval_mode:
        logger.info("Training")
        num_batches = prepare_data.calc_num_batches(datasets['train'], args.batch_size)
        lr = args.learning_rate
        patient = 0
        decay = 0
        for epoch in range(start_epoch + 1, args.num_epochs + 1):
            print('Epoch %d (Training: rnn mode: %s, optimizer: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, decay=%d)): ' % (
                epoch, args.rnn_mode, args.opt, lr, args.epsilon, args.decay_rate, args.schedule, decay))
            model.train()
            total_loss = 0.0
            total_arc_loss = 0.0
            total_arc_tag_loss = 0.0
            total_train_inst = 0.0

            train_iter = prepare_data.iterate_batch_rand_bucket_choosing(
                    datasets['train'], args.batch_size, args.device, unk_replace=args.unk_replace)
            start_time = time.time()
            batch_num = 0
            for batch_num, batch in enumerate(train_iter):
                batch_num = batch_num + 1
                optimizer.zero_grad()
                # compute loss of main task
                word, char, pos, ner_tags, heads, arc_tags, auto_label, masks, lengths = batch
                out_arc, out_arc_tag, masks, lengths = model.forward(word, char, pos, mask=masks, length=lengths)
                loss_arc, loss_arc_tag = model.loss(out_arc, out_arc_tag, heads, arc_tags, mask=masks, length=lengths)
                loss = loss_arc + loss_arc_tag

                # update losses
                num_insts = masks.data.sum() - word.size(0)
                total_arc_loss += loss_arc.item() * num_insts
                total_arc_tag_loss += loss_arc_tag.item() * num_insts
                total_loss += loss.item() * num_insts
                total_train_inst += num_insts
                # optimize parameters
                loss.backward()
                clip_grad_norm_(model.parameters(), args.clip)
                optimizer.step()

                time_ave = (time.time() - start_time) / batch_num
                time_left = (num_batches - batch_num) * time_ave

                # update log
                if batch_num % 50 == 0:
                    log_info = 'train: %d/%d, domain: %s, total loss: %.2f, arc_loss: %.2f, arc_tag_loss: %.2f, time left: %.2fs' % \
                               (batch_num, num_batches, args.domain, total_loss / total_train_inst, total_arc_loss / total_train_inst,
                                total_arc_tag_loss / total_train_inst, time_left)
                    sys.stdout.write(log_info)
                    sys.stdout.write('\n')
                    sys.stdout.flush()
            print('\n')
            print('train: %d/%d, domain: %s, total_loss: %.2f, arc_loss: %.2f, arc_tag_loss: %.2f, time: %.2fs' %
                  (batch_num, num_batches, args.domain, total_loss / total_train_inst, total_arc_loss / total_train_inst,
                   total_arc_tag_loss / total_train_inst, time.time() - start_time))

            dev_eval_dict, test_eval_dict, best_model, best_optimizer, patient = in_domain_evaluation(args, datasets, model, optimizer, dev_eval_dict, test_eval_dict, epoch, best_model, best_optimizer, patient)
            if patient >= args.schedule:
                lr = args.learning_rate / (1.0 + epoch * args.decay_rate)
                optimizer = generate_optimizer(args, lr, model.parameters())
                print('updated learning rate to %.6f' % lr)
                patient = 0
            print_results(test_eval_dict['in_domain'], 'test', args.domain, 'best_results')
            print('\n')
        for split in datasets.keys():
            eval_dict = evaluation(args, datasets[split], split, best_model, args.domain, epoch, 'best_results')
            write_results(args, datasets[split], args.domain, split, model, args.domain, eval_dict)

    else:
        logger.info("Evaluating")
        epoch = start_epoch
        for split in ['train', 'dev', 'test','poetry','prose']:
            eval_dict = evaluation(args, datasets[split], split, model, args.domain, epoch, 'best_results')
            write_results(args, datasets[split], args.domain, split, model, args.domain, eval_dict)


if __name__ == '__main__':
    main()