Update README.md
Browse files
README.md
CHANGED
|
@@ -1,135 +1,96 @@
|
|
| 1 |
-
---
|
| 2 |
-
language:
|
| 3 |
-
- ru
|
| 4 |
-
|
| 5 |
-
pipeline_tag: sentence-similarity
|
| 6 |
-
|
| 7 |
-
tags:
|
| 8 |
-
- russian
|
| 9 |
-
- pretraining
|
| 10 |
-
- embeddings
|
| 11 |
-
- tiny
|
| 12 |
-
- feature-extraction
|
| 13 |
-
- sentence-similarity
|
| 14 |
-
- sentence-transformers
|
| 15 |
-
- transformers
|
| 16 |
-
|
| 17 |
-
license: mit
|
| 18 |
-
base_model: cointegrated/rubert-tiny2
|
| 19 |
-
|
| 20 |
-
---
|
| 21 |
-
|
| 22 |
-
## Быстрый Bert для Semantic text similarity (STS) на CPU
|
| 23 |
-
|
| 24 |
-
Быстрая модель BERT для расчетов компактных
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
-
|
| 90 |
-
|
| 91 |
-
-
|
| 92 |
-
-
|
| 93 |
-
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
На бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
| 98 |
-
|
| 99 |
-
| Модель | CPU | GPU | size | dim | n_ctx | n_vocab |
|
| 100 |
-
|:---------------------------------|----------:|----------:|----------:|----------:|----------:|----------:|
|
| 101 |
-
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 |
|
| 102 |
-
| [sergeyzh/LaBSE-ru-sts](https://huggingface.co/sergeyzh/LaBSE-ru-sts) | 42.835 | 8.561 | 490 | 768 | 512 | 55083 |
|
| 103 |
-
| [sergeyzh/rubert-mini-sts](https://huggingface.co/sergeyzh/rubert-mini-sts) | 6.417 | 5.517 | 123 | 312 | 2048 | 83828 |
|
| 104 |
-
| **sergeyzh/rubert-tiny-sts** | **3.208** | **3.379** | **111** | **312** | **2048** | **83828** |
|
| 105 |
-
| [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 43.314 | 9.338 | 532 | 768 | 512 | 69382 |
|
| 106 |
-
| [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 42.867 | 8.549 | 490 | 768 | 512 | 55083 |
|
| 107 |
-
| [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
При использовании батчей с `sentence_transformers`:
|
| 112 |
-
|
| 113 |
-
```python
|
| 114 |
-
from sentence_transformers import SentenceTransformer
|
| 115 |
-
|
| 116 |
-
model_name = 'sergeyzh/rubert-tiny-sts'
|
| 117 |
-
model = SentenceTransformer(model_name, device='cpu')
|
| 118 |
-
sentences = ["Тест быстродействия на CPU Ryzen 7 3800X: batch = 1000"] * 1000
|
| 119 |
-
%timeit -n 5 -r 3 model.encode(sentences)
|
| 120 |
-
|
| 121 |
-
# 840 ms ± 8.08 ms per loop (mean ± std. dev. of 3 runs, 5 loops each)
|
| 122 |
-
# 1000/0.840 = 1190 snt/s
|
| 123 |
-
|
| 124 |
-
model = SentenceTransformer(model_name, device='cuda')
|
| 125 |
-
sentences = ["Тест быстродействия на GPU RTX 3060: batch = 8000"] * 8000
|
| 126 |
-
%timeit -n 5 -r 3 model.encode(sentences)
|
| 127 |
-
|
| 128 |
-
# 922 ms ± 29.5 ms per loop (mean ± std. dev. of 3 runs, 5 loops each)
|
| 129 |
-
# 8000/0.922 = 8677 snt/s
|
| 130 |
-
```
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
## Связанные ресурсы
|
| 134 |
-
Вопросы использования модели обсуждаются в [русскоязычном чате NLP](https://t.me/natural_language_processing).
|
| 135 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ru
|
| 4 |
+
|
| 5 |
+
pipeline_tag: sentence-similarity
|
| 6 |
+
|
| 7 |
+
tags:
|
| 8 |
+
- russian
|
| 9 |
+
- pretraining
|
| 10 |
+
- embeddings
|
| 11 |
+
- tiny
|
| 12 |
+
- feature-extraction
|
| 13 |
+
- sentence-similarity
|
| 14 |
+
- sentence-transformers
|
| 15 |
+
- transformers
|
| 16 |
+
|
| 17 |
+
license: mit
|
| 18 |
+
base_model: cointegrated/rubert-tiny2
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## Быстрый Bert для Semantic text similarity (STS) на CPU
|
| 23 |
+
|
| 24 |
+
Быстрая модель BERT для расчетов компактных эмбеддингов предложений на русском языке. Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) - имеет аналогичные размеры контекста (2048), ембеддинга (312) и быстродействие.
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## Использование модели с библиотекой `transformers`:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
# pip install transformers sentencepiece
|
| 31 |
+
import torch
|
| 32 |
+
from transformers import AutoTokenizer, AutoModel
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/rubert-tiny-sts")
|
| 34 |
+
model = AutoModel.from_pretrained("sergeyzh/rubert-tiny-sts")
|
| 35 |
+
# model.cuda() # uncomment it if you have a GPU
|
| 36 |
+
|
| 37 |
+
def embed_bert_cls(text, model, tokenizer):
|
| 38 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
| 41 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 42 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
| 43 |
+
return embeddings[0].cpu().numpy()
|
| 44 |
+
|
| 45 |
+
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
| 46 |
+
# (312,)
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Использование с `sentence_transformers`:
|
| 50 |
+
```Python
|
| 51 |
+
from sentence_transformers import SentenceTransformer, util
|
| 52 |
+
|
| 53 |
+
model = SentenceTransformer('sergeyzh/rubert-tiny-sts')
|
| 54 |
+
|
| 55 |
+
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
|
| 56 |
+
embeddings = model.encode(sentences)
|
| 57 |
+
print(util.dot_score(embeddings, embeddings))
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Метрики
|
| 61 |
+
Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
| 62 |
+
|
| 63 |
+
| Модель | STS | PI | NLI | SA | TI |
|
| 64 |
+
|:---------------------------------|:---------:|:---------:|:---------:|:---------:|:---------:|
|
| 65 |
+
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 |
|
| 66 |
+
| [sergeyzh/LaBSE-ru-sts](https://huggingface.co/sergeyzh/LaBSE-ru-sts) | 0.845 | 0.737 | 0.481 | 0.805 | 0.957 |
|
| 67 |
+
| [sergeyzh/rubert-mini-sts](https://huggingface.co/sergeyzh/rubert-mini-sts) | 0.815 | 0.723 | 0.477 | 0.791 | 0.949 |
|
| 68 |
+
| **sergeyzh/rubert-tiny-sts** | 0.797 | 0.702 | 0.453 | 0.778 | 0.946 |
|
| 69 |
+
| [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 |
|
| 70 |
+
| [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 |
|
| 71 |
+
| [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 |
|
| 72 |
+
|
| 73 |
+
**Задачи:**
|
| 74 |
+
|
| 75 |
+
- Semantic text similarity (**STS**);
|
| 76 |
+
- Paraphrase identification (**PI**);
|
| 77 |
+
- Natural language inference (**NLI**);
|
| 78 |
+
- Sentiment analysis (**SA**);
|
| 79 |
+
- Toxicity identification (**TI**).
|
| 80 |
+
|
| 81 |
+
## Быстродействие и размеры
|
| 82 |
+
|
| 83 |
+
На бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
| 84 |
+
|
| 85 |
+
| Модель | CPU | GPU | size | dim | n_ctx | n_vocab |
|
| 86 |
+
|:---------------------------------|----------:|----------:|----------:|----------:|----------:|----------:|
|
| 87 |
+
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 |
|
| 88 |
+
| [sergeyzh/LaBSE-ru-sts](https://huggingface.co/sergeyzh/LaBSE-ru-sts) | 42.835 | 8.561 | 490 | 768 | 512 | 55083 |
|
| 89 |
+
| [sergeyzh/rubert-mini-sts](https://huggingface.co/sergeyzh/rubert-mini-sts) | 6.417 | 5.517 | 123 | 312 | 2048 | 83828 |
|
| 90 |
+
| **sergeyzh/rubert-tiny-sts** | 3.208 | 3.379 | 111 | 312 | 2048 | 83828 |
|
| 91 |
+
| [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 43.314 | 9.338 | 532 | 768 | 512 | 69382 |
|
| 92 |
+
| [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 42.867 | 8.549 | 490 | 768 | 512 | 55083 |
|
| 93 |
+
| [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|