Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'fix-clickable-links-0511'
Browse files- app.py +5 -0
- src/display/formatting.py +5 -3
- src/display/utils.py +3 -2
- src/leaderboard/read_evals.py +9 -5
app.py
CHANGED
|
@@ -14,6 +14,7 @@ from src.leaderboard.read_evals import get_raw_eval_results, get_leaderboard_df
|
|
| 14 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
| 15 |
from utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols
|
| 16 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def restart_space():
|
|
@@ -122,6 +123,7 @@ with demo:
|
|
| 122 |
|
| 123 |
leaderboard_table = gr.components.Dataframe(
|
| 124 |
value=leaderboard_df_qa,
|
|
|
|
| 125 |
elem_id="leaderboard-table",
|
| 126 |
interactive=False,
|
| 127 |
visible=True,
|
|
@@ -130,6 +132,7 @@ with demo:
|
|
| 130 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 131 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 132 |
value=leaderboard_df_qa,
|
|
|
|
| 133 |
# headers=COLS,
|
| 134 |
# datatype=TYPES,
|
| 135 |
visible=False,
|
|
@@ -229,6 +232,7 @@ with demo:
|
|
| 229 |
|
| 230 |
leaderboard_table_long_doc = gr.components.Dataframe(
|
| 231 |
value=leaderboard_df_long_doc,
|
|
|
|
| 232 |
elem_id="leaderboard-table-long-doc",
|
| 233 |
interactive=False,
|
| 234 |
visible=True,
|
|
@@ -237,6 +241,7 @@ with demo:
|
|
| 237 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 238 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 239 |
value=leaderboard_df_long_doc,
|
|
|
|
| 240 |
visible=False,
|
| 241 |
)
|
| 242 |
|
|
|
|
| 14 |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
| 15 |
from utils import update_table, update_metric, update_table_long_doc, upload_file, get_default_cols
|
| 16 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
| 17 |
+
from src.display.utils import TYPES_QA, TYPES_LONG_DOC
|
| 18 |
|
| 19 |
|
| 20 |
def restart_space():
|
|
|
|
| 123 |
|
| 124 |
leaderboard_table = gr.components.Dataframe(
|
| 125 |
value=leaderboard_df_qa,
|
| 126 |
+
datatype=TYPES_QA,
|
| 127 |
elem_id="leaderboard-table",
|
| 128 |
interactive=False,
|
| 129 |
visible=True,
|
|
|
|
| 132 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 133 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 134 |
value=leaderboard_df_qa,
|
| 135 |
+
datatype=TYPES_QA,
|
| 136 |
# headers=COLS,
|
| 137 |
# datatype=TYPES,
|
| 138 |
visible=False,
|
|
|
|
| 232 |
|
| 233 |
leaderboard_table_long_doc = gr.components.Dataframe(
|
| 234 |
value=leaderboard_df_long_doc,
|
| 235 |
+
datatype=TYPES_LONG_DOC,
|
| 236 |
elem_id="leaderboard-table-long-doc",
|
| 237 |
interactive=False,
|
| 238 |
visible=True,
|
|
|
|
| 241 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 242 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 243 |
value=leaderboard_df_long_doc,
|
| 244 |
+
datatype=TYPES_LONG_DOC,
|
| 245 |
visible=False,
|
| 246 |
)
|
| 247 |
|
src/display/formatting.py
CHANGED
|
@@ -2,9 +2,11 @@ def model_hyperlink(link, model_name):
|
|
| 2 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
|
| 4 |
|
| 5 |
-
def make_clickable_model(model_name):
|
| 6 |
-
link = f"https://huggingface.co/{model_name}"
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def styled_error(error):
|
|
|
|
| 2 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
|
| 4 |
|
| 5 |
+
def make_clickable_model(model_name: str, model_link: str):
|
| 6 |
+
# link = f"https://huggingface.co/{model_name}"
|
| 7 |
+
if not model_link.startswith("https://"):
|
| 8 |
+
return model_name
|
| 9 |
+
return model_hyperlink(model_link, model_name)
|
| 10 |
|
| 11 |
|
| 12 |
def styled_error(error):
|
src/display/utils.py
CHANGED
|
@@ -66,9 +66,10 @@ AutoEvalColumnLongDoc = make_autoevalcolumn(
|
|
| 66 |
# Column selection
|
| 67 |
COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 68 |
COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 69 |
-
|
|
|
|
| 70 |
COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
|
| 71 |
|
| 72 |
QA_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksQA]
|
| 73 |
|
| 74 |
-
LONG_DOC_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksLongDoc]
|
|
|
|
| 66 |
# Column selection
|
| 67 |
COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 68 |
COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 69 |
+
TYPES_QA = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 70 |
+
TYPES_LONG_DOC = [c.type for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 71 |
COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
|
| 72 |
|
| 73 |
QA_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksQA]
|
| 74 |
|
| 75 |
+
LONG_DOC_BENCHMARK_COLS = [t.value.col_name for t in BenchmarksLongDoc]
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -4,7 +4,6 @@ from collections import defaultdict
|
|
| 4 |
from dataclasses import dataclass
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
-
import dateutil.parser._parser
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
from src.benchmarks import get_safe_name
|
|
@@ -22,6 +21,8 @@ from src.display.utils import (
|
|
| 22 |
COL_NAME_RANK
|
| 23 |
)
|
| 24 |
|
|
|
|
|
|
|
| 25 |
|
| 26 |
@dataclass
|
| 27 |
class EvalResult:
|
|
@@ -100,8 +101,10 @@ class FullEvalResult:
|
|
| 100 |
if eval_result.task != task:
|
| 101 |
continue
|
| 102 |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
|
| 103 |
-
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] =
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
|
| 106 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
| 107 |
|
|
@@ -177,16 +180,17 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -
|
|
| 177 |
df = pd.DataFrame.from_records(all_data_json)
|
| 178 |
print(f'dataframe created: {df.shape}')
|
| 179 |
|
| 180 |
-
# calculate the average score for selected benchmarks
|
| 181 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
|
|
|
|
|
|
| 182 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
| 183 |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 184 |
df.reset_index(inplace=True, drop=True)
|
| 185 |
-
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 186 |
|
| 187 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
| 188 |
df = df[_cols].round(decimals=2)
|
| 189 |
|
| 190 |
# filter out if any of the benchmarks have not been produced
|
| 191 |
df = df[has_no_nan_values(df, _benchmark_cols)]
|
|
|
|
| 192 |
return df
|
|
|
|
| 4 |
from dataclasses import dataclass
|
| 5 |
from typing import List
|
| 6 |
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
from src.benchmarks import get_safe_name
|
|
|
|
| 21 |
COL_NAME_RANK
|
| 22 |
)
|
| 23 |
|
| 24 |
+
from src.display.formatting import make_clickable_model
|
| 25 |
+
|
| 26 |
|
| 27 |
@dataclass
|
| 28 |
class EvalResult:
|
|
|
|
| 101 |
if eval_result.task != task:
|
| 102 |
continue
|
| 103 |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
|
| 104 |
+
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = (
|
| 105 |
+
make_clickable_model(self.retrieval_model, self.retrieval_model_link))
|
| 106 |
+
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = (
|
| 107 |
+
make_clickable_model(self.reranking_model, self.reranking_model_link))
|
| 108 |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
|
| 109 |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
|
| 110 |
|
|
|
|
| 180 |
df = pd.DataFrame.from_records(all_data_json)
|
| 181 |
print(f'dataframe created: {df.shape}')
|
| 182 |
|
|
|
|
| 183 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
| 184 |
+
|
| 185 |
+
# calculate the average score for selected benchmarks
|
| 186 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
| 187 |
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 188 |
df.reset_index(inplace=True, drop=True)
|
|
|
|
| 189 |
|
| 190 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
| 191 |
df = df[_cols].round(decimals=2)
|
| 192 |
|
| 193 |
# filter out if any of the benchmarks have not been produced
|
| 194 |
df = df[has_no_nan_values(df, _benchmark_cols)]
|
| 195 |
+
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 196 |
return df
|