Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import Wav2Vec2ForClassification, Wav2Vec2Processor
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
model_id = "AescF/hubert-base-ls960-finetuned-common_language"
|
| 9 |
+
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
| 10 |
+
model = Wav2Vec2ForClassification.from_pretrained(model_id)
|
| 11 |
+
language_classes = {
|
| 12 |
+
0: "Arabic",
|
| 13 |
+
1: "Basque",
|
| 14 |
+
2: "Breton",
|
| 15 |
+
3: "Catalan",
|
| 16 |
+
4: "Chinese_China",
|
| 17 |
+
5: "Chinese_Hongkong",
|
| 18 |
+
6: "Chinese_Taiwan",
|
| 19 |
+
7: "Chuvash",
|
| 20 |
+
8: "Czech",
|
| 21 |
+
9: "Dhivehi",
|
| 22 |
+
10: "Dutch",
|
| 23 |
+
11: "English",
|
| 24 |
+
12: "Esperanto",
|
| 25 |
+
13: "Estonian",
|
| 26 |
+
14: "French",
|
| 27 |
+
15: "Frisian",
|
| 28 |
+
16: "Georgian",
|
| 29 |
+
17: "German",
|
| 30 |
+
18: "Greek",
|
| 31 |
+
19: "Hakha_Chin",
|
| 32 |
+
20: "Indonesian",
|
| 33 |
+
21: "Interlingua",
|
| 34 |
+
22: "Italian",
|
| 35 |
+
23: "Japanese",
|
| 36 |
+
24: "Kabyle",
|
| 37 |
+
25: "Kinyarwanda",
|
| 38 |
+
26: "Kyrgyz",
|
| 39 |
+
27: "Latvian",
|
| 40 |
+
28: "Maltese",
|
| 41 |
+
29: "Mongolian",
|
| 42 |
+
30: "Persian",
|
| 43 |
+
31: "Polish",
|
| 44 |
+
32: "Portuguese",
|
| 45 |
+
33: "Romanian",
|
| 46 |
+
34: "Romansh_Sursilvan",
|
| 47 |
+
35: "Russian",
|
| 48 |
+
36: "Sakha",
|
| 49 |
+
37: "Slovenian",
|
| 50 |
+
38: "Spanish",
|
| 51 |
+
39: "Swedish",
|
| 52 |
+
40: "Tamil",
|
| 53 |
+
41: "Tatar",
|
| 54 |
+
42: "Turkish",
|
| 55 |
+
43: "Ukranian",
|
| 56 |
+
44: "Welsh"
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def predict_language(audio):
|
| 61 |
+
# Read audio file
|
| 62 |
+
audio_input, sr = librosa.load(audio, sr=16000)
|
| 63 |
+
|
| 64 |
+
# Convert to suitable format
|
| 65 |
+
input_values = processor(audio_input, return_tensors="pt", padding=True).input_values
|
| 66 |
+
|
| 67 |
+
# Make prediction
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
logits = model(input_values).logits
|
| 70 |
+
|
| 71 |
+
# Compute probabilities
|
| 72 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 73 |
+
|
| 74 |
+
# Retrieve label
|
| 75 |
+
predicted_language_idx = torch.argmax(probabilities[0]).item()
|
| 76 |
+
|
| 77 |
+
return {language_classes[predicted_language_idx]: float(probabilities[0][predicted_language_idx])}
|
| 78 |
+
|
| 79 |
+
iface = gr.Interface(
|
| 80 |
+
predict_language,
|
| 81 |
+
inputs=gr.inputs.Audio(type="filepath", label="Upload Language Audio file"),
|
| 82 |
+
outputs=gr.outputs.Label(),
|
| 83 |
+
title="Language Classifier",
|
| 84 |
+
live=True
|
| 85 |
+
)
|
| 86 |
+
script_dir = os.path.abspath(os.path.join(os.path.abspath(''), os.pardir))
|
| 87 |
+
iface.launch()
|