File size: 7,366 Bytes
53a42bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import numpy as np
import os, random, json, spaces, torch, time, subprocess

import torch
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImagePipeline

from utils.image_utils import rescale_image
from utils.prompt_utils import polish_prompt


# GIT_DIR = "LongCat-Image"
# GIT_URL = "https://github.com/yourusername/LongCat-Image.git"

# if not os.path.isdir(GIT_DIR):
#     subprocess.run(["git", "clone", GIT_URL])
# else:
#     print("Folder already exists.")


def prepare(prompt, is_polish_prompt):
    if not is_polish_prompt: return prompt, False
    polished_prompt = polish_prompt(prompt)
    return polished_prompt, True

@spaces.GPU
def inference(
    prompt,
    negative_prompt,
    input_image,
    image_scale=1.0,
    control_mode='Canny',
    control_context_scale = 0.75,
    seed=42,
    randomize_seed=True,
    guidance_scale=1.5,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    # timestamp = time.time()
    # print(f"timestamp: {timestamp}")

    # # process image
    # print("DEBUG: process image")
    # if input_image is None:
    #     print("Error: input_image is empty.")
    #     return None
    
    # # input_image, width, height = scale_image(input_image, image_scale)
    # # control_mode='HED'
    # processor_id = 'canny'
    # if control_mode == 'HED':
    #     processor_id = 'softedge_hed'
    # if control_mode =='Depth':
    #     processor_id = 'depth_midas'
    # if control_mode =='MLSD':
    #     processor_id = 'mlsd'
    # if control_mode =='Pose':
    #     processor_id = 'openpose_full'

    # print(f"DEBUG: processor_id={processor_id}")
    # processor = Processor(processor_id)

    # # Width must be divisible by 16
    # control_image, width, height = rescale_image(input_image, image_scale, 16)
    # control_image = control_image.resize((1024, 1024))

    # print("DEBUG: processor running")
    # control_image = processor(control_image, to_pil=True)
    # control_image = control_image.resize((width, height))

    # print("DEBUG: control_image_torch")
    # control_image_torch = get_image_latent(control_image, sample_size=[height, width])[:, :, 0]

    # # generation
    # if randomize_seed: seed = random.randint(0, MAX_SEED)
    # generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt = negative_prompt,
    #     height=height,
    #     width=width,
    #     generator=generator,
    #     guidance_scale=guidance_scale,
    #     control_image=control_image_torch,
    #     num_inference_steps=num_inference_steps,
    #     control_context_scale=control_context_scale,
    # ).images[0]

    # return image, seed, control_image
    return True


def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with open('static/data.json', 'r') as file:
    data = json.load(file)
examples = data['examples']

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Column():
            gr.HTML(read_file("static/header.html"))
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    height=290, sources=['upload', 'clipboard'], 
                    image_mode='RGB', 
                    # elem_id="image_upload", 
                    type="pil", label="Upload")
                
                prompt = gr.Textbox(
                    label="Prompt",
                    show_label=False,
                    lines=2,
                    placeholder="Enter your prompt",
                    # container=False,
                )
                is_polish_prompt = gr.Checkbox(label="Polish prompt", value=True)
                control_mode = gr.Radio(
                    choices=["Canny", "Depth", "HED", "MLSD", "Pose"],
                    value="Canny",
                    label="Control Mode"
                )
                run_button = gr.Button("Generate", variant="primary")
                with gr.Accordion("Advanced Settings", open=False):
                    
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        lines=2,
                        container=False,
                        placeholder="Enter your negative prompt",
                        value="blurry ugly bad"
                    )
                    with gr.Row():
                        num_inference_steps = gr.Slider(
                            label="Steps",
                            minimum=1,
                            maximum=30,
                            step=1,
                            value=9,
                        )
                        control_context_scale = gr.Slider(
                            label="Context scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=0.75,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=1.0,
                        )

                        image_scale = gr.Slider(
                            label="Image scale",
                            minimum=0.5,
                            maximum=2.0,
                            step=0.1,
                            value=1.0,
                        )

                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Column():
                output_image = gr.Image(label="Generated image", show_label=False)
                polished_prompt = gr.Textbox(label="Polished prompt", interactive=False)

                with gr.Accordion("Preprocessor output", open=False):
                    control_image = gr.Image(label="Control image", show_label=False)
                    

        
        gr.Examples(examples=examples, inputs=[input_image, prompt, control_mode])
        gr.Markdown(read_file("static/footer.md"))

    run_button.click(
        fn=prepare,
        inputs=[prompt, is_polish_prompt],
        outputs=[polished_prompt, is_polish_prompt]
        # outputs=gr.State(),  # Pass to the next function, not to UI at this step
    ).then(
        fn=inference,
        inputs=[
            polished_prompt,
            negative_prompt,
            input_image,
            image_scale,
            control_mode,
            control_context_scale,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[output_image, seed, control_image],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)