Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,366 Bytes
53a42bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import numpy as np
import os, random, json, spaces, torch, time, subprocess
import torch
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImagePipeline
from utils.image_utils import rescale_image
from utils.prompt_utils import polish_prompt
# GIT_DIR = "LongCat-Image"
# GIT_URL = "https://github.com/yourusername/LongCat-Image.git"
# if not os.path.isdir(GIT_DIR):
# subprocess.run(["git", "clone", GIT_URL])
# else:
# print("Folder already exists.")
def prepare(prompt, is_polish_prompt):
if not is_polish_prompt: return prompt, False
polished_prompt = polish_prompt(prompt)
return polished_prompt, True
@spaces.GPU
def inference(
prompt,
negative_prompt,
input_image,
image_scale=1.0,
control_mode='Canny',
control_context_scale = 0.75,
seed=42,
randomize_seed=True,
guidance_scale=1.5,
num_inference_steps=8,
progress=gr.Progress(track_tqdm=True),
):
# timestamp = time.time()
# print(f"timestamp: {timestamp}")
# # process image
# print("DEBUG: process image")
# if input_image is None:
# print("Error: input_image is empty.")
# return None
# # input_image, width, height = scale_image(input_image, image_scale)
# # control_mode='HED'
# processor_id = 'canny'
# if control_mode == 'HED':
# processor_id = 'softedge_hed'
# if control_mode =='Depth':
# processor_id = 'depth_midas'
# if control_mode =='MLSD':
# processor_id = 'mlsd'
# if control_mode =='Pose':
# processor_id = 'openpose_full'
# print(f"DEBUG: processor_id={processor_id}")
# processor = Processor(processor_id)
# # Width must be divisible by 16
# control_image, width, height = rescale_image(input_image, image_scale, 16)
# control_image = control_image.resize((1024, 1024))
# print("DEBUG: processor running")
# control_image = processor(control_image, to_pil=True)
# control_image = control_image.resize((width, height))
# print("DEBUG: control_image_torch")
# control_image_torch = get_image_latent(control_image, sample_size=[height, width])[:, :, 0]
# # generation
# if randomize_seed: seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt = negative_prompt,
# height=height,
# width=width,
# generator=generator,
# guidance_scale=guidance_scale,
# control_image=control_image_torch,
# num_inference_steps=num_inference_steps,
# control_context_scale=control_context_scale,
# ).images[0]
# return image, seed, control_image
return True
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with open('static/data.json', 'r') as file:
data = json.load(file)
examples = data['examples']
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Column():
gr.HTML(read_file("static/header.html"))
with gr.Row():
with gr.Column():
input_image = gr.Image(
height=290, sources=['upload', 'clipboard'],
image_mode='RGB',
# elem_id="image_upload",
type="pil", label="Upload")
prompt = gr.Textbox(
label="Prompt",
show_label=False,
lines=2,
placeholder="Enter your prompt",
# container=False,
)
is_polish_prompt = gr.Checkbox(label="Polish prompt", value=True)
control_mode = gr.Radio(
choices=["Canny", "Depth", "HED", "MLSD", "Pose"],
value="Canny",
label="Control Mode"
)
run_button = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
lines=2,
container=False,
placeholder="Enter your negative prompt",
value="blurry ugly bad"
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
step=1,
value=9,
)
control_context_scale = gr.Slider(
label="Context scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.75,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=1.0,
)
image_scale = gr.Slider(
label="Image scale",
minimum=0.5,
maximum=2.0,
step=0.1,
value=1.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Column():
output_image = gr.Image(label="Generated image", show_label=False)
polished_prompt = gr.Textbox(label="Polished prompt", interactive=False)
with gr.Accordion("Preprocessor output", open=False):
control_image = gr.Image(label="Control image", show_label=False)
gr.Examples(examples=examples, inputs=[input_image, prompt, control_mode])
gr.Markdown(read_file("static/footer.md"))
run_button.click(
fn=prepare,
inputs=[prompt, is_polish_prompt],
outputs=[polished_prompt, is_polish_prompt]
# outputs=gr.State(), # Pass to the next function, not to UI at this step
).then(
fn=inference,
inputs=[
polished_prompt,
negative_prompt,
input_image,
image_scale,
control_mode,
control_context_scale,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[output_image, seed, control_image],
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
|