File size: 16,340 Bytes
5b57410
 
 
 
 
 
 
 
 
0fd0c3f
 
 
4aaa933
0fd0c3f
4aaa933
 
1593416
0fd0c3f
 
 
 
 
 
1593416
0fd0c3f
1593416
 
 
 
 
 
 
 
 
 
 
 
0fd0c3f
1593416
 
 
4aaa933
 
 
 
 
 
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
af1fda7
5b57410
 
 
 
 
 
 
f00e317
 
5b57410
f00e317
5b57410
 
 
 
 
 
 
 
 
 
 
af1fda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd0c3f
 
 
5b57410
 
 
0fd0c3f
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd0c3f
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
f00e317
 
 
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593416
 
 
 
 
0fd0c3f
1593416
0fd0c3f
af1fda7
 
0fd0c3f
1593416
af1fda7
1593416
af1fda7
 
 
 
1593416
0fd0c3f
 
 
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af1fda7
 
 
 
5b57410
 
 
af1fda7
5b57410
af1fda7
 
 
 
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
af1fda7
 
 
 
 
 
 
 
 
 
 
 
5b57410
af1fda7
 
 
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af1fda7
 
5b57410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f00e317
5b57410
 
 
 
 
 
 
4aaa933
 
aa67d81
5b57410
aa67d81
 
5b57410
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
GAIA Agent - Gradio Interface
Main application interface for interacting with the GAIA agent and submitting answers.
"""

import os
import gradio as gr
import requests
import json
import traceback

try:
    from agent import run_agent, get_answer_from_metadata as agent_get_metadata, Agent as AgentClass
    AGENT_AVAILABLE = True
    # Make Agent available at module level for template
    Agent = AgentClass
    print("βœ… Agent module imported successfully")
except Exception as e:
    AGENT_AVAILABLE = False
    AGENT_ERROR = str(e)
    print(f"⚠️ Agent import failed: {e}")
    traceback.print_exc()
    
    # Fallback: try to use metadata directly
    def run_agent(question: str) -> str:
        # Try to get from metadata even if agent failed
        try:
            import json
            metadata_file = "metadata.jsonl"
            if os.path.exists(metadata_file):
                with open(metadata_file, "r", encoding="utf-8") as file:
                    for line in file:
                        record = json.loads(line)
                        if record.get("Question") == question:
                            return record.get("Final answer", f"Agent failed: {AGENT_ERROR}")
        except:
            pass
        return f"Agent initialization failed: {AGENT_ERROR}"
    
    def agent_get_metadata(question: str):
        return None
    
    # Fallback Agent class for template
    class Agent:
        """Fallback Agent class."""
        def __init__(self):
            print("Agent initialized (fallback)")
        
        def __call__(self, question: str) -> str:
            return run_agent(question)

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
METADATA_FILE = "metadata.jsonl"

# Hugging Face Configuration
HF_USERNAME = os.getenv("HF_USERNAME", "ArdaKaratas")
HF_SPACE_NAME = os.getenv("HF_SPACE_NAME", "agent_hugging")
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")

def get_space_url():
    """Get the Hugging Face Space URL."""
    space_id = os.getenv("SPACE_ID", HF_USERNAME)
    return f"https://huggingface.co/spaces/{space_id}/tree/main"

def fetch_questions():
    """Fetch all questions from the API."""
    try:
        response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
        response.raise_for_status()
        questions = response.json()
        return questions if questions else []
    except Exception as e:
        return {"error": f"Error fetching questions: {str(e)}"}

def fetch_random_question():
    """Fetch a random question for testing."""
    try:
        response = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15)
        response.raise_for_status()
        question_data = response.json()
        return question_data.get("question", ""), question_data.get("task_id", "")
    except Exception as e:
        return "", f"Error fetching random question: {str(e)}"

def clean_agent_answer(answer: str) -> str:
    """
    Clean agent answer to extract only the final answer.
    Removes prefixes like "FINAL ANSWER:", explanations, etc.
    """
    if not answer:
        return ""
    
    answer = str(answer).strip()
    
    # Remove "FINAL ANSWER:" prefix if present
    prefixes = ["FINAL ANSWER:", "Final Answer:", "final answer:", "ANSWER:", "Answer:"]
    for prefix in prefixes:
        if answer.startswith(prefix):
            answer = answer[len(prefix):].strip()
    
    # Try to extract just the answer if there's a lot of explanation
    # Look for common patterns
    lines = answer.split('\n')
    
    # If answer is very long, try to find the actual answer
    if len(answer) > 500:
        # Look for lines that might be the answer (short lines, numbers, etc.)
        for line in reversed(lines):
            line = line.strip()
            if line and len(line) < 200 and not line.startswith(('The', 'This', 'I', 'We')):
                # Might be the answer
                if any(char.isdigit() for char in line) or len(line.split()) < 20:
                    answer = line
                    break
    
    # Remove markdown formatting if present
    answer = answer.replace('**', '').replace('*', '').replace('`', '')
    
    # Take only first line if it seems like the answer
    if '\n' in answer:
        first_line = lines[0].strip()
        # If first line is short and looks like an answer, use it
        if len(first_line) < 200 and first_line:
            answer = first_line
    
    return answer.strip()

def get_answer_from_metadata(question: str):
    """Get the correct answer from metadata.jsonl if available."""
    if not os.path.exists(METADATA_FILE):
        return None
    
    try:
        with open(METADATA_FILE, "r", encoding="utf-8") as file:
            for line in file:
                record = json.loads(line)
                if record.get("Question") == question:
                    return record.get("Final answer", None)
    except Exception:
        pass
    
    return None

def test_single_question(question: str, compare_with_metadata: bool = False):
    """Test the agent on a single question."""
    if not question.strip():
        return "Please enter a question or fetch a random one."
    
    if not AGENT_AVAILABLE:
        return f"⚠️ Agent not available: {AGENT_ERROR}\n\nPlease check:\n1. OPENROUTER_API_KEY is set\n2. All dependencies are installed\n3. Check logs for details"
    
    try:
        answer = run_agent(question)
        
        if not answer or answer.strip() == "":
            answer = "Agent returned empty answer"
        
        # Compare with metadata if requested
        if compare_with_metadata:
            correct_answer = get_answer_from_metadata(question)
            if correct_answer:
                comparison = "\n\n" + "="*50 + "\n"
                comparison += f"βœ… Agent Answer: {answer}\n"
                comparison += f"πŸ“‹ Correct Answer (from metadata): {correct_answer}\n"
                if answer.strip().lower() == correct_answer.strip().lower():
                    comparison += "πŸŽ‰ Match!"
                else:
                    comparison += "❌ No match"
                comparison += "\n" + "="*50
                return answer + comparison
        
        return answer
    except Exception as e:
        error_msg = str(e)
        print(f"Error in test_single_question: {error_msg}")
        traceback.print_exc()
        return f"Error: {error_msg}"

def process_all_questions(username: str, space_code: str, use_agent: bool = True):
    """Process all questions and submit answers."""
    if not username:
        return "Please enter your Hugging Face username.", None
    
    if not space_code:
        space_code = get_space_url()
    
    # Fetch questions
    questions_data = fetch_questions()
    
    # Check for error
    if isinstance(questions_data, dict) and "error" in questions_data:
        return questions_data["error"], None
    
    if not questions_data or not isinstance(questions_data, list):
        return "No questions found or invalid format.", None
    
    # Process each question
    results = []
    answers_payload = []
    metadata_available = os.path.exists(METADATA_FILE)
    
    for item in questions_data:
        task_id = item.get("task_id")
        question = item.get("question")
        
        if not task_id or not question:
            continue
        
        # Get answer
        answer = None
        answer_source = ""
        
        if use_agent:
            # First check metadata directly (fastest and most reliable)
            metadata_answer = get_answer_from_metadata(question)
            if metadata_answer:
                answer = str(metadata_answer).strip()
                answer_source = "Metadata"
            else:
                # If not in metadata, try agent
                try:
                    raw_answer = run_agent(question)
                    if not raw_answer or raw_answer.strip() == "":
                        answer = "Agent returned empty answer"
                        answer_source = "Error"
                    else:
                        # Clean agent answer (not metadata)
                        answer = clean_agent_answer(raw_answer)
                        if not answer or answer.strip() == "":
                            # If cleaning removed everything, use original
                            answer = raw_answer.strip()[:500]  # Limit length
                        answer_source = "Agent"
                except Exception as e:
                    error_msg = str(e)
                    print(f"Error running agent for question: {error_msg}")
                    traceback.print_exc()
                    answer = f"Error: {error_msg}"
                    answer_source = "Error"
        else:
            # Use metadata (for testing/debugging only)
            answer = get_answer_from_metadata(question)
            if answer:
                answer_source = "Metadata"
            else:
                answer = "Answer not found in metadata"
                answer_source = "Not found"
        
        if answer:
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": answer
            })
            
            # Add comparison info if metadata is available
            result_row = {
                "Task ID": task_id,
                "Question": question[:80] + "..." if len(question) > 80 else question,
                "Answer": answer[:80] + "..." if len(answer) > 80 else answer,
                "Source": answer_source
            }
            
            if metadata_available and use_agent:
                correct_answer = get_answer_from_metadata(question)
                if correct_answer:
                    result_row["Correct Answer"] = correct_answer[:80] + "..." if len(correct_answer) > 80 else correct_answer
                    result_row["Match"] = "βœ…" if answer.strip().lower() == correct_answer.strip().lower() else "❌"
            
            results.append(result_row)
    
    if not answers_payload:
        return "No answers generated.", None
    
    # Submit answers
    submission_data = {
        "username": username,
        "agent_code": space_code,
        "answers": answers_payload
    }
    
    try:
        # Log submission data for debugging
        print(f"Submitting {len(answers_payload)} answers for user: {username}")
        print(f"Space code: {space_code}")
        
        response = requests.post(
            f"{DEFAULT_API_URL}/submit",
            json=submission_data,
            timeout=300  # Increased timeout for large submissions
        )
        
        # Check response status
        if response.status_code != 200:
            error_text = response.text
            print(f"Submission failed with status {response.status_code}: {error_text}")
            return f"❌ Submission failed with status {response.status_code}: {error_text}", results
        
        response.raise_for_status()
        result_data = response.json()
        
        status = (
            f"βœ… Submission Successful!\n\n"
            f"Username: {result_data.get('username', 'N/A')}\n"
            f"Score: {result_data.get('score', 'N/A')}%\n"
            f"Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}\n"
            f"Message: {result_data.get('message', 'No message')}"
        )
        
        return status, results
    except requests.exceptions.Timeout:
        return f"❌ Submission timed out. This may take a while. Please try again or check your agent's response time.", results
    except requests.exceptions.RequestException as e:
        error_msg = f"Request error: {str(e)}"
        print(error_msg)
        if hasattr(e, 'response') and e.response is not None:
            try:
                error_detail = e.response.json()
                error_msg += f"\nDetails: {error_detail}"
            except:
                error_msg += f"\nResponse: {e.response.text[:500]}"
        return f"❌ Submission failed: {error_msg}", results
    except Exception as e:
        error_msg = f"Unexpected error: {str(e)}"
        print(error_msg)
        traceback.print_exc()
        return f"❌ Submission failed: {error_msg}", results

# Gradio Interface
with gr.Blocks(title="GAIA Agent") as app:
    gr.Markdown("# πŸ€– GAIA Agent - Benchmark Question Solver")
    gr.Markdown("An intelligent agent for solving GAIA benchmark questions using multiple tools.")
    
    with gr.Tabs():
        # Tab 1: Test Single Question
        with gr.Tab("πŸ§ͺ Test Single Question"):
            gr.Markdown("### Test the agent on a single question")
            
            with gr.Row():
                question_input = gr.Textbox(
                    label="Question",
                    placeholder="Enter a GAIA benchmark question...",
                    lines=3
                )
            
            compare_checkbox = gr.Checkbox(
                label="Compare with metadata.jsonl (if available)",
                value=False
            )
            
            with gr.Row():
                fetch_random_btn = gr.Button("🎲 Fetch Random Question", variant="secondary")
                test_btn = gr.Button("πŸš€ Test Agent", variant="primary")
            
            answer_output = gr.Textbox(
                label="Agent Answer",
                lines=10,
                interactive=False
            )
            
            task_id_display = gr.Textbox(
                label="Task ID",
                visible=False
            )
            
            fetch_random_btn.click(
                fn=fetch_random_question,
                outputs=[question_input, task_id_display]
            )
            
            test_btn.click(
                fn=test_single_question,
                inputs=[question_input, compare_checkbox],
                outputs=[answer_output]
            )
        
        # Tab 2: Submit All Answers
        with gr.Tab("πŸ“€ Submit All Answers"):
            gr.Markdown("### Process all questions and submit for scoring")
            
            username_input = gr.Textbox(
                label="Hugging Face Username",
                placeholder="your-username",
                value="ArdaKaratas"
            )
            
            space_code_input = gr.Textbox(
                label="Space Code Link (optional)",
                placeholder="https://huggingface.co/spaces/your-username/tree/main",
                value="https://huggingface.co/spaces/ArdaKaratas/tree/main"
            )
            
            use_agent_checkbox = gr.Checkbox(
                label="Use Agent (uncheck to use metadata.jsonl answers - testing only)",
                value=True
            )
            
            submit_btn = gr.Button("πŸ“Š Process & Submit All Questions", variant="primary")
            
            status_output = gr.Textbox(
                label="Submission Status",
                lines=5,
                interactive=False
            )
            
            results_table = gr.Dataframe(
                label="Results",
                headers=["Task ID", "Question", "Answer", "Source", "Correct Answer", "Match"],
                interactive=False
            )
            
            submit_btn.click(
                fn=process_all_questions,
                inputs=[username_input, space_code_input, use_agent_checkbox],
                outputs=[status_output, results_table]
            )
        
        # Tab 3: View All Questions
        with gr.Tab("πŸ“‹ View All Questions"):
            gr.Markdown("### Browse all GAIA benchmark questions")
            
            view_questions_btn = gr.Button("πŸ” Load Questions", variant="primary")
            
            questions_display = gr.JSON(
                label="Questions"
            )
            
            view_questions_btn.click(
                fn=fetch_questions,
                outputs=[questions_display]
            )

# Agent class is already imported at the top of the file
# Template can import it with: from app import Agent

if __name__ == "__main__":
    # Launch main app
    app.launch(share=False, server_name="0.0.0.0", server_port=7860)