| # import torch | |
| # import random | |
| # def sample_word(words, logits, sampling_technique='inverse_transform', temperature=1.0): | |
| # if sampling_technique == 'inverse_transform': | |
| # probs = torch.softmax(torch.tensor(logits), dim=-1) | |
| # cumulative_probs = torch.cumsum(probs, dim=-1) | |
| # random_prob = random.random() | |
| # sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] | |
| # elif sampling_technique == 'exponential_minimum': | |
| # probs = torch.softmax(torch.tensor(logits), dim=-1) | |
| # exp_probs = torch.exp(-torch.log(probs)) | |
| # random_probs = torch.rand_like(exp_probs) | |
| # sampled_index = torch.argmax(random_probs * exp_probs) | |
| # elif sampling_technique == 'temperature': | |
| # scaled_logits = torch.tensor(logits) / temperature | |
| # probs = torch.softmax(scaled_logits, dim=-1) | |
| # sampled_index = torch.multinomial(probs, 1).item() | |
| # elif sampling_technique == 'greedy': | |
| # sampled_index = torch.argmax(torch.tensor(logits)).item() | |
| # else: | |
| # raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") | |
| # sampled_word = words[sampled_index] | |
| # return sampled_word | |
| import torch | |
| import random | |
| def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0): | |
| if sampling_technique == 'inverse_transform': | |
| probs = torch.softmax(torch.tensor(logits), dim=-1) | |
| cumulative_probs = torch.cumsum(probs, dim=-1) | |
| random_prob = random.random() | |
| sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] | |
| elif sampling_technique == 'exponential_minimum': | |
| probs = torch.softmax(torch.tensor(logits), dim=-1) | |
| exp_probs = torch.exp(-torch.log(probs)) | |
| random_probs = torch.rand_like(exp_probs) | |
| sampled_index = torch.argmax(random_probs * exp_probs) | |
| elif sampling_technique == 'temperature': | |
| scaled_logits = torch.tensor(logits) / temperature | |
| probs = torch.softmax(scaled_logits, dim=-1) | |
| sampled_index = torch.multinomial(probs, 1).item() | |
| elif sampling_technique == 'greedy': | |
| sampled_index = torch.argmax(torch.tensor(logits)).item() | |
| else: | |
| raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") | |
| sampled_word = words[sampled_index] | |
| # Replace [MASK] with the sampled word | |
| filled_sentence = sentence.replace('[MASK]', sampled_word) | |
| return filled_sentence |