Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -90,6 +90,7 @@ def model(prompt):
|
|
| 90 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
| 91 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
| 92 |
|
|
|
|
| 93 |
# Initialize empty list to hold the trees
|
| 94 |
trees = []
|
| 95 |
|
|
|
|
| 90 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
| 91 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
| 92 |
|
| 93 |
+
|
| 94 |
# Initialize empty list to hold the trees
|
| 95 |
trees = []
|
| 96 |
|
tree.py
CHANGED
|
@@ -1,3 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import plotly.graph_objects as go
|
| 2 |
import textwrap
|
| 3 |
import re
|
|
@@ -105,6 +263,25 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
| 105 |
colored_parts.append(part)
|
| 106 |
return ''.join(colored_parts)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
# Create figure
|
| 109 |
fig = go.Figure()
|
| 110 |
|
|
@@ -134,8 +311,8 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
| 134 |
width=150
|
| 135 |
)
|
| 136 |
|
| 137 |
-
# Add edges
|
| 138 |
-
for edge in edges:
|
| 139 |
x0, y0 = positions[edge[0]]
|
| 140 |
x1, y1 = positions[edge[1]]
|
| 141 |
fig.add_trace(go.Scatter(
|
|
@@ -145,6 +322,23 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
| 145 |
line=dict(color='black', width=1)
|
| 146 |
))
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
fig.update_layout(
|
| 149 |
showlegend=False,
|
| 150 |
margin=dict(t=20, b=20, l=20, r=20),
|
|
@@ -154,4 +348,5 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
| 154 |
height=1000 # Adjusted height to accommodate more levels
|
| 155 |
)
|
| 156 |
|
| 157 |
-
return fig
|
|
|
|
|
|
| 1 |
+
# import plotly.graph_objects as go
|
| 2 |
+
# import textwrap
|
| 3 |
+
# import re
|
| 4 |
+
# from collections import defaultdict
|
| 5 |
+
|
| 6 |
+
# def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
|
| 7 |
+
# # Combine nodes into one list with appropriate labels
|
| 8 |
+
# nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
|
| 9 |
+
# nodes[0] += ' L0' # Paraphrased sentence is level 0
|
| 10 |
+
# para_len = len(scheme_sentences)
|
| 11 |
+
# for i in range(1, para_len + 1):
|
| 12 |
+
# nodes[i] += ' L1' # Scheme sentences are level 1
|
| 13 |
+
# for i in range(para_len + 1, len(nodes)):
|
| 14 |
+
# nodes[i] += ' L2' # Sampled sentences are level 2
|
| 15 |
+
|
| 16 |
+
# # Define the highlight_words function
|
| 17 |
+
# def highlight_words(sentence, color_map):
|
| 18 |
+
# for word, color in color_map.items():
|
| 19 |
+
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
|
| 20 |
+
# return sentence
|
| 21 |
+
|
| 22 |
+
# # Clean and wrap nodes, and highlight specified words globally
|
| 23 |
+
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
| 24 |
+
# global_color_map = dict(highlight_info)
|
| 25 |
+
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
| 26 |
+
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]
|
| 27 |
+
|
| 28 |
+
# # Function to determine tree levels and create edges dynamically
|
| 29 |
+
# def get_levels_and_edges(nodes):
|
| 30 |
+
# levels = {}
|
| 31 |
+
# edges = []
|
| 32 |
+
# for i, node in enumerate(nodes):
|
| 33 |
+
# level = int(node.split()[-1][1])
|
| 34 |
+
# levels[i] = level
|
| 35 |
+
|
| 36 |
+
# # Add edges from L0 to all L1 nodes
|
| 37 |
+
# root_node = next(i for i, level in levels.items() if level == 0)
|
| 38 |
+
# for i, level in levels.items():
|
| 39 |
+
# if level == 1:
|
| 40 |
+
# edges.append((root_node, i))
|
| 41 |
+
|
| 42 |
+
# # Add edges from each L1 node to their corresponding L2 nodes
|
| 43 |
+
# l1_indices = [i for i, level in levels.items() if level == 1]
|
| 44 |
+
# l2_indices = [i for i, level in levels.items() if level == 2]
|
| 45 |
+
|
| 46 |
+
# for i, l1_node in enumerate(l1_indices):
|
| 47 |
+
# l2_start = i * 4
|
| 48 |
+
# for j in range(4):
|
| 49 |
+
# l2_index = l2_start + j
|
| 50 |
+
# if l2_index < len(l2_indices):
|
| 51 |
+
# edges.append((l1_node, l2_indices[l2_index]))
|
| 52 |
+
|
| 53 |
+
# # Add edges from each L2 node to their corresponding L3 nodes
|
| 54 |
+
# l2_indices = [i for i, level in levels.items() if level == 2]
|
| 55 |
+
# l3_indices = [i for i, level in levels.items() if level == 3]
|
| 56 |
+
|
| 57 |
+
# l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}
|
| 58 |
+
|
| 59 |
+
# # Map L3 nodes to L2 nodes
|
| 60 |
+
# for l3_node in l3_indices:
|
| 61 |
+
# l2_node = l3_node % len(l2_indices)
|
| 62 |
+
# l2_to_l3_map[l2_indices[l2_node]].append(l3_node)
|
| 63 |
+
|
| 64 |
+
# for l2_node, l3_nodes in l2_to_l3_map.items():
|
| 65 |
+
# for l3_node in l3_nodes:
|
| 66 |
+
# edges.append((l2_node, l3_node))
|
| 67 |
+
|
| 68 |
+
# return levels, edges
|
| 69 |
+
|
| 70 |
+
# # Get levels and dynamic edges
|
| 71 |
+
# levels, edges = get_levels_and_edges(nodes)
|
| 72 |
+
# max_level = max(levels.values(), default=0)
|
| 73 |
+
|
| 74 |
+
# # Calculate positions
|
| 75 |
+
# positions = {}
|
| 76 |
+
# level_heights = defaultdict(int)
|
| 77 |
+
# for node, level in levels.items():
|
| 78 |
+
# level_heights[level] += 1
|
| 79 |
+
|
| 80 |
+
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
| 81 |
+
# x_gap = 2
|
| 82 |
+
# l1_y_gap = 10
|
| 83 |
+
# l2_y_gap = 6
|
| 84 |
+
|
| 85 |
+
# for node, level in levels.items():
|
| 86 |
+
# if level == 1:
|
| 87 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
| 88 |
+
# elif level == 2:
|
| 89 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
| 90 |
+
# else:
|
| 91 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
| 92 |
+
# y_offsets[level] += 1
|
| 93 |
+
|
| 94 |
+
# # Function to highlight words in a wrapped node string
|
| 95 |
+
# def color_highlighted_words(node, color_map):
|
| 96 |
+
# parts = re.split(r'(\{\{.*?\}\})', node)
|
| 97 |
+
# colored_parts = []
|
| 98 |
+
# for part in parts:
|
| 99 |
+
# match = re.match(r'\{\{(.*?)\}\}', part)
|
| 100 |
+
# if match:
|
| 101 |
+
# word = match.group(1)
|
| 102 |
+
# color = color_map.get(word, 'black')
|
| 103 |
+
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
|
| 104 |
+
# else:
|
| 105 |
+
# colored_parts.append(part)
|
| 106 |
+
# return ''.join(colored_parts)
|
| 107 |
+
|
| 108 |
+
# # Create figure
|
| 109 |
+
# fig = go.Figure()
|
| 110 |
+
|
| 111 |
+
# # Add nodes to the figure
|
| 112 |
+
# for i, node in enumerate(wrapped_nodes):
|
| 113 |
+
# colored_node = color_highlighted_words(node, global_color_map)
|
| 114 |
+
# x, y = positions[i]
|
| 115 |
+
# fig.add_trace(go.Scatter(
|
| 116 |
+
# x=[-x], # Reflect the x coordinate
|
| 117 |
+
# y=[y],
|
| 118 |
+
# mode='markers',
|
| 119 |
+
# marker=dict(size=10, color='blue'),
|
| 120 |
+
# hoverinfo='none'
|
| 121 |
+
# ))
|
| 122 |
+
# fig.add_annotation(
|
| 123 |
+
# x=-x, # Reflect the x coordinate
|
| 124 |
+
# y=y,
|
| 125 |
+
# text=colored_node,
|
| 126 |
+
# showarrow=False,
|
| 127 |
+
# xshift=15,
|
| 128 |
+
# align="center",
|
| 129 |
+
# font=dict(size=8),
|
| 130 |
+
# bordercolor='black',
|
| 131 |
+
# borderwidth=1,
|
| 132 |
+
# borderpad=2,
|
| 133 |
+
# bgcolor='white',
|
| 134 |
+
# width=150
|
| 135 |
+
# )
|
| 136 |
+
|
| 137 |
+
# # Add edges to the figure
|
| 138 |
+
# for edge in edges:
|
| 139 |
+
# x0, y0 = positions[edge[0]]
|
| 140 |
+
# x1, y1 = positions[edge[1]]
|
| 141 |
+
# fig.add_trace(go.Scatter(
|
| 142 |
+
# x=[-x0, -x1], # Reflect the x coordinates
|
| 143 |
+
# y=[y0, y1],
|
| 144 |
+
# mode='lines',
|
| 145 |
+
# line=dict(color='black', width=1)
|
| 146 |
+
# ))
|
| 147 |
+
|
| 148 |
+
# fig.update_layout(
|
| 149 |
+
# showlegend=False,
|
| 150 |
+
# margin=dict(t=20, b=20, l=20, r=20),
|
| 151 |
+
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 152 |
+
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 153 |
+
# width=1200, # Adjusted width to accommodate more levels
|
| 154 |
+
# height=1000 # Adjusted height to accommodate more levels
|
| 155 |
+
# )
|
| 156 |
+
|
| 157 |
+
# return fig
|
| 158 |
+
|
| 159 |
import plotly.graph_objects as go
|
| 160 |
import textwrap
|
| 161 |
import re
|
|
|
|
| 263 |
colored_parts.append(part)
|
| 264 |
return ''.join(colored_parts)
|
| 265 |
|
| 266 |
+
# Define the text for each edge
|
| 267 |
+
edge_texts = [
|
| 268 |
+
"Highest Entropy Masking",
|
| 269 |
+
"Pseudo-random Masking",
|
| 270 |
+
"Random Masking",
|
| 271 |
+
"Greedy Sampling",
|
| 272 |
+
"Temperature Sampling",
|
| 273 |
+
"Exponential Minimum Sampling",
|
| 274 |
+
"Inverse Transform Sampling",
|
| 275 |
+
"Greedy Sampling",
|
| 276 |
+
"Temperature Sampling",
|
| 277 |
+
"Exponential Minimum Sampling",
|
| 278 |
+
"Inverse Transform Sampling",
|
| 279 |
+
"Greedy Sampling",
|
| 280 |
+
"Temperature Sampling",
|
| 281 |
+
"Exponential Minimum Sampling",
|
| 282 |
+
"Inverse Transform Sampling"
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
# Create figure
|
| 286 |
fig = go.Figure()
|
| 287 |
|
|
|
|
| 311 |
width=150
|
| 312 |
)
|
| 313 |
|
| 314 |
+
# Add edges and text above each edge
|
| 315 |
+
for i, edge in enumerate(edges):
|
| 316 |
x0, y0 = positions[edge[0]]
|
| 317 |
x1, y1 = positions[edge[1]]
|
| 318 |
fig.add_trace(go.Scatter(
|
|
|
|
| 322 |
line=dict(color='black', width=1)
|
| 323 |
))
|
| 324 |
|
| 325 |
+
# Calculate the midpoint of the edge
|
| 326 |
+
mid_x = (-x0 + -x1) / 2
|
| 327 |
+
mid_y = (y0 + y1) / 2
|
| 328 |
+
|
| 329 |
+
# Adjust y position to shift text upwards
|
| 330 |
+
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
| 331 |
+
|
| 332 |
+
# Add text annotation above the edge
|
| 333 |
+
fig.add_annotation(
|
| 334 |
+
x=mid_x,
|
| 335 |
+
y=text_y_position,
|
| 336 |
+
text=edge_texts[i], # Use the text specific to this edge
|
| 337 |
+
showarrow=False,
|
| 338 |
+
font=dict(size=10),
|
| 339 |
+
align="center"
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
fig.update_layout(
|
| 343 |
showlegend=False,
|
| 344 |
margin=dict(t=20, b=20, l=20, r=20),
|
|
|
|
| 348 |
height=1000 # Adjusted height to accommodate more levels
|
| 349 |
)
|
| 350 |
|
| 351 |
+
return fig
|
| 352 |
+
|