Spaces:
Configuration error
Configuration error
| import cv2 | |
| import gradio as gr | |
| import fast_colorthief | |
| import webcolors | |
| from PIL import Image | |
| import numpy as np | |
| thres = 0.45 # Threshold to detect object | |
| def Detection(filename): | |
| cap = cv2.VideoCapture(filename) | |
| framecount=0 | |
| cap.set(3,1280) | |
| cap.set(4,720) | |
| cap.set(10,70) | |
| error="in function 'cv::imshow'" | |
| classNames= [] | |
| FinalItems=[] | |
| classFile = 'coco.names' | |
| with open(classFile,'rt') as f: | |
| #classNames = f.read().rstrip('n').split('n') | |
| classNames = f.readlines() | |
| # remove new line characters | |
| classNames = [x.strip() for x in classNames] | |
| print(classNames) | |
| configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' | |
| weightsPath = 'frozen_inference_graph.pb' | |
| net = cv2.dnn_DetectionModel(weightsPath,configPath) | |
| net.setInputSize(320,320) | |
| net.setInputScale(1.0/ 127.5) | |
| net.setInputMean((127.5, 127.5, 127.5)) | |
| net.setInputSwapRB(True) | |
| while True: | |
| success,img = cap.read() | |
| # #Colour | |
| try: | |
| image = Image.fromarray(img) | |
| image = image.convert('RGBA') | |
| image = np.array(image).astype(np.uint8) | |
| palette=fast_colorthief.get_palette(image) | |
| for i in range(len(palette)): | |
| diff={} | |
| for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items(): | |
| r, g, b = webcolors.hex_to_rgb(color_hex) | |
| diff[sum([(r - palette[i][0])**2, | |
| (g - palette[i][1])**2, | |
| (b - palette[i][2])**2])]= color_name | |
| if FinalItems.count(diff[min(diff.keys())])==0: | |
| FinalItems.append(diff[min(diff.keys())]) | |
| except: | |
| pass | |
| try: | |
| classIds, confs, bbox = net.detect(img,confThreshold=thres) | |
| except: | |
| pass | |
| print(classIds,bbox) | |
| try: | |
| if len(classIds) != 0: | |
| for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox): | |
| #cv2.rectangle(img,box,color=(0,255,0),thickness=2) | |
| #cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30), | |
| #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) | |
| #cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30), | |
| #cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) | |
| if FinalItems.count(classNames[classId-1]) == 0: | |
| FinalItems.append(classNames[classId-1]) | |
| #cv2.imshow("Output",img) | |
| cv2.waitKey(10) | |
| if framecount>cap.get(cv2.CAP_PROP_FRAME_COUNT): | |
| break | |
| else: | |
| framecount+=1 | |
| except Exception as err: | |
| print(err) | |
| t=str(err) | |
| if t.__contains__(error): | |
| break | |
| print(FinalItems) | |
| return str(FinalItems) | |
| interface = gr.Interface(fn=Detection, | |
| inputs=["video"], | |
| outputs="text", | |
| title='Object & Color Detection in Video') | |
| interface.launch(inline=False,debug=True) |