Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,159 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
-
import os
|
| 4 |
-
import faiss
|
| 5 |
-
import numpy as np
|
| 6 |
-
from sentence_transformers import SentenceTransformer
|
| 7 |
-
import PyPDF2
|
| 8 |
-
import pytesseract
|
| 9 |
-
from pdf2image import convert_from_path
|
| 10 |
-
import gdown
|
| 11 |
-
import pickle
|
| 12 |
-
|
| 13 |
-
# --- Configuration ---
|
| 14 |
-
MODEL_NAME = "openai/gpt-oss-20b"
|
| 15 |
-
SECURE_HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
-
|
| 17 |
-
if not SECURE_HF_TOKEN:
|
| 18 |
-
raise ValueError("HF_TOKEN environment variable not set. Add a Secret in Space settings.")
|
| 19 |
-
|
| 20 |
-
client = InferenceClient(token=SECURE_HF_TOKEN, model=MODEL_NAME)
|
| 21 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 22 |
-
chunks, sources = [], []
|
| 23 |
-
|
| 24 |
-
# --- Google Drive PDFs: FILE_ID → Subject ---
|
| 25 |
-
drive_files = {
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"1wP4uK_GA6rjg_4maZpmbDNSynhvZnCNo": "PSM",
|
| 29 |
-
"1LtwDGeWLF357elmtbA-R_uujHqmM2jC_": "PSM2",
|
| 30 |
-
"1wnqsdt0st5wy60zAg7DKZFeAl_vMgu4T": "FMT concise reddy",
|
| 31 |
-
"1BhySXMqZxcnLSccq-D0UB9-rGb1YIsN1": "FMT",
|
| 32 |
-
"1sNoc8qLR5VznT28MIrJ0CvCgW6OunF_v": "Pediatrics",
|
| 33 |
-
"1s9772ypXMudsLSdHn1xhtGcZCFFghYB0": "Medicine1",
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
"1sAAwpNCqfbjB-d5GqImj50qZzUDopvtR": "Gynae",
|
| 37 |
-
"1rvgHxpzvE7v4Ed13UXBTaxn3GXljfccE": "ENT",
|
| 38 |
-
"1vd7wg3HlQanVl8Nk-W90wJOyYRzunu0g": "Ophthalmology",
|
| 39 |
-
# Add remaining FILE_IDs here
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
notes_folder = "notes"
|
| 43 |
-
os.makedirs(notes_folder, exist_ok=True)
|
| 44 |
-
cache_file = os.path.join(notes_folder, "embeddings_cache.pkl")
|
| 45 |
-
|
| 46 |
-
# --- Load cached embeddings if available ---
|
| 47 |
-
if os.path.exists(cache_file):
|
| 48 |
-
with open(cache_file, "rb") as f:
|
| 49 |
-
chunks, sources, embeddings = pickle.load(f)
|
| 50 |
-
dim = embeddings.shape[1]
|
| 51 |
-
index = faiss.IndexFlatL2(dim)
|
| 52 |
-
index.add(np.array(embeddings).astype("float32"))
|
| 53 |
-
else:
|
| 54 |
-
# --- Download PDFs and extract text safely ---
|
| 55 |
-
for file_id, subject in drive_files.items():
|
| 56 |
-
output_path = os.path.join(notes_folder, f"{subject}.pdf")
|
| 57 |
-
if not os.path.exists(output_path):
|
| 58 |
-
url = f"https://drive.google.com/uc?id={file_id}"
|
| 59 |
-
try:
|
| 60 |
-
gdown.download(url, output_path, quiet=False)
|
| 61 |
-
except Exception as e:
|
| 62 |
-
print(f"Warning: Could not download {subject}: {e}")
|
| 63 |
-
continue # skip this PDF
|
| 64 |
-
|
| 65 |
-
# Extract text
|
| 66 |
-
text = ""
|
| 67 |
-
try:
|
| 68 |
-
reader = PyPDF2.PdfReader(output_path)
|
| 69 |
-
text = " ".join([p.extract_text() for p in reader.pages if p.extract_text()])
|
| 70 |
-
except:
|
| 71 |
-
text = ""
|
| 72 |
-
|
| 73 |
-
# OCR if text empty
|
| 74 |
-
if not text.strip():
|
| 75 |
-
try:
|
| 76 |
-
images = convert_from_path(output_path)
|
| 77 |
-
for img in images:
|
| 78 |
-
text += pytesseract.image_to_string(img) + " "
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"Warning: OCR failed for {subject}: {e}")
|
| 81 |
-
continue
|
| 82 |
-
|
| 83 |
-
# Split into chunks
|
| 84 |
-
file_chunks = [text[i:i+500] for i in range(0, len(text), 500)]
|
| 85 |
-
chunks.extend(file_chunks)
|
| 86 |
-
sources.extend([subject] * len(file_chunks))
|
| 87 |
-
|
| 88 |
-
# Build FAISS index
|
| 89 |
-
if chunks:
|
| 90 |
-
embeddings = embedder.encode(chunks)
|
| 91 |
-
dim = embeddings.shape[1]
|
| 92 |
-
index = faiss.IndexFlatL2(dim)
|
| 93 |
-
index.add(np.array(embeddings).astype("float32"))
|
| 94 |
-
# Save to cache
|
| 95 |
-
with open(cache_file, "wb") as f:
|
| 96 |
-
pickle.dump((chunks, sources, embeddings), f)
|
| 97 |
-
else:
|
| 98 |
-
index = None
|
| 99 |
-
|
| 100 |
-
# --- Chat respond function with source display ---
|
| 101 |
-
def respond(message, history: list, system_message, max_tokens, temperature, top_p):
|
| 102 |
-
context = ""
|
| 103 |
-
source_names = set()
|
| 104 |
-
if index is not None and len(chunks) > 0:
|
| 105 |
-
query_emb = embedder.encode([message])
|
| 106 |
-
query_emb = np.array(query_emb).astype("float32")
|
| 107 |
-
k = min(3, len(chunks))
|
| 108 |
-
D, I = index.search(query_emb, k=k)
|
| 109 |
-
retrieved_chunks = [chunks[i] for i in I[0] if i != -1]
|
| 110 |
-
retrieved_sources = [sources[i] for i in I[0] if i != -1]
|
| 111 |
-
if retrieved_chunks:
|
| 112 |
-
context = "\n".join([retrieved_chunks[j] for j in range(len(retrieved_chunks))])
|
| 113 |
-
source_names.update(retrieved_sources)
|
| 114 |
-
|
| 115 |
-
messages = [{"role": "system", "content": system_message}]
|
| 116 |
-
messages.extend(history)
|
| 117 |
-
|
| 118 |
-
source_text = ""
|
| 119 |
-
if source_names:
|
| 120 |
-
source_text = "Sources: " + ", ".join(sorted(source_names)) + "\n\n"
|
| 121 |
-
|
| 122 |
-
prompt_content = f"{source_text}Answer using the following notes if relevant:\n{context}\n\nQuestion: {message}"
|
| 123 |
-
messages.append({"role": "user", "content": prompt_content})
|
| 124 |
-
|
| 125 |
-
response = ""
|
| 126 |
-
for message_chunk in client.chat_completion(
|
| 127 |
-
messages,
|
| 128 |
-
max_tokens=max_tokens,
|
| 129 |
-
stream=True,
|
| 130 |
-
temperature=temperature,
|
| 131 |
-
top_p=top_p,
|
| 132 |
-
):
|
| 133 |
-
choices = message_chunk.choices
|
| 134 |
-
token = ""
|
| 135 |
-
if len(choices) and choices[0].delta.content:
|
| 136 |
-
token = choices[0].delta.content
|
| 137 |
-
response += token
|
| 138 |
-
yield response
|
| 139 |
-
|
| 140 |
-
# --- Gradio interface ---
|
| 141 |
-
chatbot = gr.ChatInterface(
|
| 142 |
-
respond,
|
| 143 |
-
type="messages",
|
| 144 |
-
additional_inputs=[
|
| 145 |
-
gr.Textbox(value="Hey, need help?", label="System message"),
|
| 146 |
-
gr.Slider(1, 5000, value=3000, step=1, label="Max new tokens"),
|
| 147 |
-
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
| 148 |
-
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
| 149 |
-
],
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
with gr.Blocks() as demo:
|
| 153 |
-
with gr.Sidebar():
|
| 154 |
-
gr.Markdown("# AI Chatbot with Google Drive PDFs & Source Display")
|
| 155 |
-
gr.Markdown("Handles failed downloads, OCR, caching, and shows sources automatically")
|
| 156 |
-
chatbot.render()
|
| 157 |
-
|
| 158 |
-
if __name__ == "__main__":
|
| 159 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|