Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,7 @@ def infer(
|
|
| 24 |
width,
|
| 25 |
height,
|
| 26 |
guidance_scale,
|
|
|
|
| 27 |
num_inference_steps,
|
| 28 |
progress=gr.Progress(track_tqdm=True),
|
| 29 |
):
|
|
@@ -42,8 +43,9 @@ def infer(
|
|
| 42 |
if model == "Ramzes":
|
| 43 |
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
| 44 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
|
| 45 |
-
#pipe.load_lora_weights("Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
|
| 46 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="text_encoder")
|
|
|
|
|
|
|
| 47 |
else:
|
| 48 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
|
| 49 |
pipe = pipe.to(device)
|
|
@@ -138,6 +140,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 138 |
value=7.0, # Replace with defaults that work for your model
|
| 139 |
)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
num_inference_steps = gr.Slider(
|
| 142 |
label="Number of inference steps",
|
| 143 |
minimum=1,
|
|
@@ -158,6 +168,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 158 |
width,
|
| 159 |
height,
|
| 160 |
guidance_scale,
|
|
|
|
| 161 |
num_inference_steps,
|
| 162 |
],
|
| 163 |
outputs=[result, seed],
|
|
|
|
| 24 |
width,
|
| 25 |
height,
|
| 26 |
guidance_scale,
|
| 27 |
+
lora_scale,
|
| 28 |
num_inference_steps,
|
| 29 |
progress=gr.Progress(track_tqdm=True),
|
| 30 |
):
|
|
|
|
| 43 |
if model == "Ramzes":
|
| 44 |
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
|
| 45 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
|
|
|
|
| 46 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="text_encoder")
|
| 47 |
+
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
|
| 48 |
+
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
|
| 49 |
else:
|
| 50 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
|
| 51 |
pipe = pipe.to(device)
|
|
|
|
| 140 |
value=7.0, # Replace with defaults that work for your model
|
| 141 |
)
|
| 142 |
|
| 143 |
+
lora_scale = gr.Slider(
|
| 144 |
+
label="LoRA scale",
|
| 145 |
+
minimum=0.0,
|
| 146 |
+
maximum=1.0,
|
| 147 |
+
step=0.05,
|
| 148 |
+
value=0.9
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
num_inference_steps = gr.Slider(
|
| 152 |
label="Number of inference steps",
|
| 153 |
minimum=1,
|
|
|
|
| 168 |
width,
|
| 169 |
height,
|
| 170 |
guidance_scale,
|
| 171 |
+
lora_scale,
|
| 172 |
num_inference_steps,
|
| 173 |
],
|
| 174 |
outputs=[result, seed],
|