Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| import random | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from .attention import flash_attention, attention | |
| from torch.utils.checkpoint import checkpoint | |
| from einops import rearrange | |
| from .audio_proj import AudioProjModel | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| __all__ = ['WanModel'] | |
| def sinusoidal_embedding_1d(dim, position): | |
| # preprocess | |
| assert dim % 2 == 0 | |
| half = dim // 2 | |
| position = position.type(torch.float32) | |
| # Changed float64 to float32 here | |
| # calculation | |
| sinusoid = torch.outer( | |
| position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x | |
| def rope_params(max_seq_len, dim, theta=10000): | |
| assert dim % 2 == 0 | |
| freqs = torch.outer( | |
| torch.arange(max_seq_len), | |
| 1.0 / torch.pow(theta, | |
| torch.arange(0, dim, 2).to(torch.float32).div(dim))) | |
| # Changed float64 to float32 here | |
| freqs = torch.polar(torch.ones_like(freqs), freqs) | |
| return freqs | |
| def rope_apply(x, grid_sizes, freqs): | |
| n, c = x.size(2), x.size(3) // 2 | |
| # split freqs | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| # loop over samples | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| # precompute multipliers | |
| x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float32).reshape( | |
| seq_len, n, -1, 2)) | |
| # Changed float64 to float32 here | |
| freqs_i = torch.cat([ | |
| freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| # apply rotary embedding | |
| x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
| x_i = torch.cat([x_i, x[i, seq_len:]]) | |
| # append to collection | |
| output.append(x_i) | |
| return torch.stack(output).float() | |
| class WanRMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return self._norm(x.float()).type_as(x) * self.weight | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
| class WanLayerNorm(nn.LayerNorm): | |
| def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
| super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return super().forward(x.float()).type_as(x) | |
| class WanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| # layers | |
| self.q = nn.Linear(dim, dim) | |
| self.k = nn.Linear(dim, dim) | |
| self.v = nn.Linear(dim, dim) | |
| self.o = nn.Linear(dim, dim) | |
| self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, seq_lens, grid_sizes, freqs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| seq_lens(Tensor): Shape [B] | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| x = flash_attention( | |
| q=rope_apply(q, grid_sizes, freqs), | |
| k=rope_apply(k, grid_sizes, freqs), | |
| v=v, | |
| k_lens=seq_lens, | |
| window_size=self.window_size) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanT2VCrossAttention(WanSelfAttention): | |
| def forward(self, x, context, context_lens): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanI2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| class WanA2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.k_audio = nn.Linear(dim, dim) | |
| self.v_audio = nn.Linear(dim, dim) | |
| self.norm_k_audio = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens, temporal_mask=None, face_mask_list=None): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| temporal_mask(Tensor): Shape [B, L2] | |
| face_mask_list(list): Shape [n, B, L1] | |
| """ | |
| context_img = context[1] | |
| context_audio = context[2] | |
| context = context[0] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| k_audio = self.norm_k_audio(self.k_audio(context_audio)).view(b, -1, n, d) | |
| v_audio = self.v_audio(context_audio).view(b, -1, n, d) | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| if temporal_mask is not None: | |
| audio_x = attention(q, k_audio, v_audio, k_lens=None, attn_mask=temporal_mask) | |
| else: | |
| audio_x = flash_attention(q, k_audio, v_audio, k_lens=None) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| audio_x = audio_x.flatten(2) | |
| x = x + img_x + audio_x | |
| x = self.o(x) | |
| return x | |
| class WanAF2VCrossAttention(WanSelfAttention): | |
| """ For audio CA output, apply additional Ref attention | |
| Ref cond input may come from face recognition embedding / clip embedding / 3d vae token | |
| """ | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6, | |
| use_concat_attention=True): # New parameter to control whether to use concat mode | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.k_audio = nn.Linear(dim, dim) | |
| self.v_audio = nn.Linear(dim, dim) | |
| self.norm_k_audio = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.k_face = nn.Linear(dim, dim) | |
| self.v_face = nn.Linear(dim, dim) | |
| self.norm_k_face = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| # New parameter to control attention mode | |
| self.use_concat_attention = use_concat_attention | |
| def forward( | |
| self, | |
| x, | |
| context, | |
| context_lens, | |
| temporal_mask=None, | |
| face_mask_list=None, | |
| use_token_mask=True, | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| temporal_mask(Tensor): Shape [B, L2] | |
| Usage example: | |
| # Original mode (separated attention) | |
| model = WanModel(model_type='a2v_af', use_concat_attention=False) | |
| # New mode (concat attention) | |
| model = WanModel(model_type='a2v_af', use_concat_attention=True) | |
| # In new mode, face token is always visible, audio part follows temporal_mask logic | |
| """ | |
| # [text, image, audio list, audio ref list] | |
| context_img = context[1] | |
| context_audios = context[2] | |
| face_context_list = context[3] | |
| context = context[0] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| """New face kv for audio focus | |
| n people means n face attn operations | |
| """ | |
| k_face_list = [] | |
| v_face_list = [] | |
| k_audio_list = [] | |
| v_audio_list = [] | |
| # Ensure audio and face lists have consistent length | |
| min_length = min(len(context_audios), len(face_context_list)) | |
| # print(f"WanAF2VCrossAttention: Processing {min_length} audio-face pairs") | |
| for i in range(min_length): | |
| context_audio = context_audios[i] | |
| face_context = face_context_list[i] | |
| # Extract audio features | |
| k_audio = self.norm_k_audio(self.k_audio(context_audio)).view(b, -1, n, d) | |
| v_audio = self.v_audio(context_audio).view(b, -1, n, d) | |
| k_audio_list.append(k_audio) | |
| v_audio_list.append(v_audio) | |
| # Extract face features | |
| k_face = self.norm_k_face(self.k_face(face_context)).view(b, -1, n, d) | |
| v_face = self.v_face(face_context).view(b, -1, n, d) | |
| k_face_list.append(k_face) | |
| v_face_list.append(v_face) | |
| # text attn | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # ref image attn | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| """ For each id, execute identity-aware audio ca | |
| Method 1: Add residual connection between each person, make it causal | |
| Method 2: No residual connection | |
| Method 3: Add residual connection only at the end, preserve original driving information | |
| Method 4: Don't split into two steps, directly do three-modal CA (video, audio, face) | |
| """ | |
| af_output_list = [] | |
| # Ensure all lists have consistent length | |
| min_length = min(len(k_face_list), len(v_face_list), len(k_audio_list), len(v_audio_list), len(face_mask_list)) | |
| # print(f"Processing {min_length} audio-face pairs") | |
| for i in range(min_length): | |
| k_face = k_face_list[i] | |
| v_face = v_face_list[i] | |
| k_audio = k_audio_list[i] | |
| v_audio = v_audio_list[i] | |
| face_mask = face_mask_list[i] | |
| # concat face and audio features | |
| k_concat = torch.cat([k_face, k_audio], dim=1) # [B, L_face+L_audio, n, d] | |
| v_concat = torch.cat([v_face, v_audio], dim=1) # [B, L_face+L_audio, n, d] | |
| # Construct attention mask | |
| if temporal_mask is not None: | |
| # Get face token count | |
| face_len = k_face.shape[1] | |
| audio_len = k_audio.shape[1] | |
| # Create new mask: face part all True, audio part follows original mask | |
| # Fix dimensions: [B, 1, seq_len_q, seq_len_kv] | |
| new_mask = torch.ones((b, 1, q.shape[1], face_len + audio_len), | |
| dtype=torch.bool, device=temporal_mask.device) | |
| # face part is always visible | |
| new_mask[..., :face_len] = True | |
| # audio part follows original mask logic - need to adjust temporal_mask shape | |
| # temporal_mask shape is [B, 1, seq_len_q, audio_len] | |
| if temporal_mask.shape[-1] == audio_len: | |
| # Ensure dimension match | |
| new_mask[..., face_len:] = temporal_mask # [B, 1, seq_len_q, audio_len] | |
| audio_x = attention(q, k_concat, v_concat, k_lens=None, attn_mask=new_mask) | |
| else: | |
| # When no mask, all tokens are visible | |
| audio_x = flash_attention(q, k_concat, v_concat, k_lens=None) | |
| if use_token_mask: | |
| # Multiply output by face_mask | |
| af_output_list.append(audio_x.flatten(2) * face_mask) | |
| else: | |
| af_output_list.append(audio_x.flatten(2)) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| for af_output in af_output_list: | |
| x = x + af_output | |
| x = self.o(x) | |
| return x | |
| WAN_CROSSATTENTION_CLASSES = { | |
| 't2v_cross_attn': WanT2VCrossAttention, | |
| 'i2v_cross_attn': WanI2VCrossAttention, | |
| 'a2v_cross_attn': WanA2VCrossAttention, | |
| 'a2v_cross_attn_af': WanAF2VCrossAttention | |
| } | |
| class WanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6, | |
| use_concat_attention=False): # New parameter | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
| eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, | |
| elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
| # Create corresponding cross attention based on cross_attn_type | |
| if cross_attn_type == 'a2v_cross_attn_af': | |
| self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps, | |
| use_concat_attention) # Pass new parameter | |
| else: | |
| self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim)) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| temporal_mask=None, # For audio alignment | |
| face_mask_list=None, # Multi-person binding | |
| human_mask_list=None, # Multi-person binding (deprecated, set to None) | |
| use_token_mask=True, | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, 6, C] | |
| seq_lens(Tensor): Shape [B], length of each sequence in batch | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e).chunk(6, dim=1) | |
| assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y = self.self_attn( | |
| self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, | |
| freqs) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[2] | |
| # cross-attention & ffn function | |
| def cross_attn_ffn(x, context, context_lens, e, temporal_mask=None): | |
| if isinstance(self.cross_attn, WanAF2VCrossAttention): | |
| # human_mask_list is now None, no longer used | |
| x = x + self.cross_attn( | |
| self.norm3(x), | |
| context, | |
| context_lens, | |
| temporal_mask, | |
| face_mask_list, | |
| use_token_mask=use_token_mask | |
| ) | |
| elif isinstance(self.cross_attn, WanA2VCrossAttention): | |
| x = x + self.cross_attn(self.norm3(x), context, context_lens, temporal_mask) | |
| else: | |
| x = x + self.cross_attn(self.norm3(x), context, context_lens) | |
| y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[5] | |
| return x | |
| x = cross_attn_ffn(x, context, context_lens, e, temporal_mask) | |
| return x | |
| class Head(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = WanLayerNorm(dim, eps) | |
| self.head = nn.Linear(dim, out_dim) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, C] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
| torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
| torch.nn.LayerNorm(out_dim)) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class WanModel(ModelMixin, ConfigMixin): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| ignore_for_config = [ | |
| 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' | |
| ] | |
| _no_split_modules = ['WanAttentionBlock'] | |
| def __init__(self, | |
| model_type='t2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| temporal_align=True, | |
| use_concat_attention=False): # New parameter to control concat attention mode | |
| r""" | |
| Initialize the diffusion model backbone. | |
| Args: | |
| model_type (`str`, *optional*, defaults to 't2v'): | |
| Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
| patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
| 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
| text_len (`int`, *optional*, defaults to 512): | |
| Fixed length for text embeddings | |
| in_dim (`int`, *optional*, defaults to 16): | |
| Input video channels (C_in) | |
| dim (`int`, *optional*, defaults to 2048): | |
| Hidden dimension of the transformer | |
| ffn_dim (`int`, *optional*, defaults to 8192): | |
| Intermediate dimension in feed-forward network | |
| freq_dim (`int`, *optional*, defaults to 256): | |
| Dimension for sinusoidal time embeddings | |
| text_dim (`int`, *optional*, defaults to 4096): | |
| Input dimension for text embeddings | |
| out_dim (`int`, *optional*, defaults to 16): | |
| Output video channels (C_out) | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads | |
| num_layers (`int`, *optional*, defaults to 32): | |
| Number of transformer blocks | |
| window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
| Window size for local attention (-1 indicates global attention) | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Enable query/key normalization | |
| cross_attn_norm (`bool`, *optional*, defaults to False): | |
| Enable cross-attention normalization | |
| eps (`float`, *optional*, defaults to 1e-6): | |
| Epsilon value for normalization layers | |
| temporal_align (`bool`, *optional*, defaults to True): | |
| Enable temporal alignment for audio features | |
| use_concat_attention (`bool`, *optional*, defaults to False): | |
| Use concatenated face and audio features for attention computation | |
| """ | |
| super().__init__() | |
| self.checkpoint_enabled = True | |
| assert model_type in ['t2v', 'i2v', 'a2v', 'a2v_af'] | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| self.has_temporal_align = temporal_align | |
| self.use_concat_attention = use_concat_attention # Save new parameter | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| attn_type = { | |
| 't2v':'t2v_cross_attn', | |
| 'i2v':'i2v_cross_attn', | |
| 'a2v':'a2v_cross_attn', | |
| 'a2v_af':'a2v_cross_attn_af' | |
| } | |
| # blocks | |
| cross_attn_type = attn_type[model_type] | |
| self.blocks = nn.ModuleList([ | |
| WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| window_size, qk_norm, cross_attn_norm, eps, | |
| self.use_concat_attention) # Pass new parameter | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = Head(dim, out_dim, patch_size, eps) | |
| # buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| self.freqs = torch.cat([ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], | |
| dim=1) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| elif model_type=='a2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| self.audio_emb = AudioProjModel(seq_len=5, | |
| blocks=12, | |
| channels=768, | |
| intermediate_dim=512, | |
| output_dim=dim, | |
| context_tokens=32,) | |
| elif model_type=='a2v_af': | |
| self.img_emb = MLPProj(1280, dim) | |
| self.audio_emb = AudioProjModel(seq_len=5, | |
| blocks=12, | |
| channels=768, | |
| intermediate_dim=512, | |
| output_dim=dim, | |
| context_tokens=32,) | |
| self.audio_ref_emb = MLPProj(1280, dim) # Used for audio ref attention | |
| # initialize weights | |
| self.init_weights() | |
| def enable_gradient_checkpointing(self,use_reentrant=False): | |
| self.checkpoint_enabled = True | |
| self._use_reentrant = use_reentrant | |
| def forward( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clip_fea=None, | |
| y=None, | |
| audio_feature=None, | |
| audio_ref_features=None, # For audio ref | |
| face_mask_list=None, # Multi-person binding | |
| human_mask_list=None, # Multi-person binding (deprecated, set to None) | |
| masks_flattened=False, | |
| use_token_mask=True, | |
| ): | |
| r""" | |
| Forward pass through the diffusion model | |
| Args: | |
| x (List[Tensor]): | |
| List of input video tensors, each with shape [C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| audio_ref_features (List[Tensor], *optional*): | |
| Conditional audio features for audio-to-video mode | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| c, f, h, w = x[0].shape | |
| h, w = h//self.patch_size[-2], w//self.patch_size[-1] | |
| b = len(x) | |
| # params | |
| device = self.patch_embedding.weight.device | |
| if self.freqs.device != device: | |
| self.freqs = self.freqs.to(device) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # x arrangement: [noisy frames, mask, ref frame + padding frames] | |
| # embeddings, before: [[36, F, H, W], ...] | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| # after: [[1, 1536, F, H/2 , W/2], ...] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] # [[1, seq_len, 1536], ...] | |
| # Also flatten mask for each id | |
| if use_token_mask: | |
| if not masks_flattened and face_mask_list is not None: | |
| for m_index in range(len(face_mask_list)): | |
| # Only take first channel | |
| face_mask_list[m_index] = [m[0].flatten(0) for m in face_mask_list[m_index]] | |
| face_mask_list[m_index] = torch.stack(face_mask_list[m_index]) # [B, seq_len] | |
| # Add a dimension at the end | |
| face_mask_list[m_index] = face_mask_list[m_index][..., None] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| # print("="*25,self.model_type) | |
| if self.model_type=="i2v": | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| elif self.model_type == 'a2v_af': | |
| # New list mode: supports multiple audio and faces | |
| if "ref_face_list" in audio_ref_features and "audio_list" in audio_ref_features: | |
| # Use new list mode | |
| ref_face_list = audio_ref_features["ref_face_list"] | |
| audio_list = audio_ref_features["audio_list"] | |
| # Process audio feature list | |
| audio_embeding_list = [] | |
| for i, audio_feat in enumerate(audio_list): | |
| audio_embeding = self.audio_emb(audio_feat) | |
| audio_embeding_list.append(audio_embeding) | |
| # Process face feature list | |
| ref_context_list = [] | |
| for i, ref_features in enumerate(ref_face_list): | |
| audio_ref_embeding = self.audio_ref_emb(ref_features) | |
| ref_context_list.append(audio_ref_embeding) | |
| # Original a2v required features | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| # [text, image, audio list, audio ref list] | |
| context = [context] | |
| context.append(context_clip) | |
| context.append(audio_embeding_list) | |
| context.append(ref_context_list) | |
| # Currently testing does not use temporal_mask | |
| self.has_temporal_align = True | |
| if self.has_temporal_align and len(audio_embeding_list) > 0 and audio_embeding_list[0] is not None: | |
| # Use first audio's shape to build temporal_mask | |
| audio_shape = audio_embeding_list[0].shape | |
| temporal_mask = torch.zeros((f, audio_shape[-3]), dtype=torch.bool, device=x.device) | |
| temporal_mask[0] = True # First frame image and all speech compute attention | |
| # print(f"temporal_mask {temporal_mask.shape},{torch.sum(temporal_mask)}") | |
| for i in range(1, f): | |
| temporal_mask[i, (i - 1)* 4 + 1: i*4 + 1]=True # In dataloader, audio is already taken with sliding window of 5, no need to do overlap here | |
| temporal_mask = temporal_mask.reshape(f, 1, 1 , audio_shape[-3], 1).repeat(1, h, w, 1, audio_shape[-2]) | |
| # print(f"temporal_mask {temporal_mask.shape},{h},{w},{torch.sum(temporal_mask)}") | |
| temporal_mask = rearrange(temporal_mask, 'f h w c d -> (f h w) (c d)').contiguous()[None,None,...] | |
| temporal_mask = temporal_mask.expand(b, 1, temporal_mask.shape[-2], temporal_mask.shape[-1]) | |
| else: | |
| temporal_mask = None | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| temporal_mask=temporal_mask, # For audio alignment | |
| face_mask_list=face_mask_list, # Multi-person binding | |
| human_mask_list=None, # human_mask_list no longer used | |
| use_token_mask=use_token_mask | |
| ) | |
| def create_custom_forward(module): | |
| def custom_forward(x, **kwargs): # Explicitly accept x and **kwargs | |
| return module(x, **kwargs) | |
| return custom_forward | |
| for block in self.blocks: | |
| if self.training and self.checkpoint_enabled: | |
| x = checkpoint( | |
| create_custom_forward(block), | |
| x, # Positional argument | |
| **kwargs, # Keyword arguments | |
| use_reentrant=False, | |
| ) | |
| else: | |
| x = block(x, **kwargs) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return [u.float() for u in x] | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def from_pretrained(cls, pretrained_model_name_or_path, config: dict = None, **kwargs): | |
| import glob | |
| import os | |
| from omegaconf import ListConfig | |
| from typing import Union | |
| if isinstance(pretrained_model_name_or_path, str) and os.path.isdir(pretrained_model_name_or_path) and (config is None) and not pretrained_model_name_or_path.endswith('.pth'): | |
| print(">>> Using diffusers from_pretrained with provided config") | |
| return super().from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| else: | |
| # === Custom loading logic === | |
| print(">>> Using custom from_pretrained with provided config") | |
| from diffusers.models.model_loading_utils import load_model_dict_into_meta, load_state_dict | |
| import accelerate | |
| torch_dtype = kwargs.pop("torch_dtype", torch.bfloat16) | |
| map_location = kwargs.pop("map_location", 'cpu') | |
| # step 1. Initialize model | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config) | |
| # step 2. Find weight files | |
| if isinstance(pretrained_model_name_or_path, Union[list, ListConfig]): | |
| weight_files = pretrained_model_name_or_path | |
| elif os.path.isdir(pretrained_model_name_or_path): | |
| weight_files = glob.glob(f'{pretrained_model_name_or_path}/*.safetensors') | |
| else: | |
| weight_files = [pretrained_model_name_or_path] | |
| state_dict = {} | |
| for wf in weight_files: | |
| _state_dict = load_state_dict(wf, map_location=map_location) | |
| if "model" in _state_dict: | |
| state_dict.update(_state_dict["model"]) | |
| else: | |
| state_dict.update(_state_dict) | |
| del _state_dict | |
| empty_state_dict = model.state_dict() | |
| n_miss = 0 | |
| n_unexpect = 0 | |
| for param_name in model.state_dict().keys(): | |
| if param_name not in state_dict: | |
| n_miss+=1 | |
| for param_name in state_dict.keys(): | |
| if param_name not in model.state_dict(): | |
| n_unexpect+=1 | |
| # Initialize weights for missing modules | |
| for name, param in empty_state_dict.items(): | |
| if name not in state_dict: | |
| if param.dim() > 1: | |
| state_dict[name] = nn.init.xavier_uniform_(torch.zeros(param.shape)) | |
| elif '.norm_' in name: | |
| state_dict[name] = nn.init.constant_(torch.zeros(param.shape), 1) | |
| else: | |
| state_dict[name] = nn.init.zeros_(torch.zeros(param.shape)) | |
| state_dict = {k:v.to(dtype=torch.bfloat16) for k, v in state_dict.items()} | |
| # step 3. Load weights | |
| load_model_dict_into_meta(model, state_dict, dtype=torch_dtype) | |
| n_updated = len(empty_state_dict.keys()) - n_miss | |
| print(f"{n_updated} parameters are loaded from {pretrained_model_name_or_path}, {n_miss} parameters are miss, {n_unexpect} parameters are unexpected.") | |
| del state_dict | |
| return model | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) | |