import torch from diffusers import ConfigMixin, ModelMixin from einops import rearrange from torch import nn import math class AudioProjModel(ModelMixin, ConfigMixin): def __init__( self, seq_len=5, blocks=12, # add a new parameter blocks channels=768, # add a new parameter channels intermediate_dim=512, output_dim=768, context_tokens=32, ): super().__init__() self.seq_len = seq_len self.blocks = blocks self.channels = channels self.input_dim = seq_len * blocks * channels # update input_dim to be the product of blocks and channels. self.intermediate_dim = intermediate_dim self.context_tokens = context_tokens self.output_dim = output_dim # define multiple linear layers self.proj1 = nn.Linear(self.input_dim, intermediate_dim) self.proj2 = nn.Linear(intermediate_dim, intermediate_dim) self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim) self.norm = nn.LayerNorm(output_dim) def forward(self, audio_embeds): if audio_embeds.dim() == 4: audio_embeds = audio_embeds.unsqueeze(0) video_length = audio_embeds.shape[1] audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c") batch_size, window_size, blocks, channels = audio_embeds.shape audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels) audio_embeds = torch.relu(self.proj1(audio_embeds)) audio_embeds = torch.relu(self.proj2(audio_embeds)) context_tokens = self.proj3(audio_embeds).reshape(batch_size, self.context_tokens, self.output_dim) context_tokens = self.norm(context_tokens) context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length) return context_tokens class PeriodicPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, period=25, max_seq_len=600): super(PeriodicPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(period, d_model) position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # (1, period, d_model) repeat_num = (max_seq_len//period) + 1 pe = pe.repeat(1, repeat_num, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1), :] return self.dropout(x) if __name__ == "__main__": audio_proj = AudioProjModel( seq_len=5, blocks=12, channels=768, intermediate_dim=512, output_dim=768, context_tokens=32, ) audio = torch.randn(1, 41, 5, 12, 768) # Example input tensor output = audio_proj(audio) print(output.shape)