Spaces:
Runtime error
Runtime error
Delete train.py
Browse files
train.py
DELETED
|
@@ -1,64 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import torch
|
| 3 |
-
import re
|
| 4 |
-
from datasets import Dataset
|
| 5 |
-
from transformers import (
|
| 6 |
-
AutoModelForTokenClassification,
|
| 7 |
-
AutoTokenizer,
|
| 8 |
-
Trainer,
|
| 9 |
-
TrainingArguments,
|
| 10 |
-
DataCollatorForTokenClassification,
|
| 11 |
-
)
|
| 12 |
-
from huggingface_hub import notebook_login
|
| 13 |
-
|
| 14 |
-
# Login to Hugging Face Hub (Make sure your Space is set to private if needed)
|
| 15 |
-
notebook_login()
|
| 16 |
-
|
| 17 |
-
# Step 1: Load Luxury Fashion Dataset (Replace with actual dataset)
|
| 18 |
-
df = pd.read_csv("luxury_apparel_data.csv") # Update with correct dataset file
|
| 19 |
-
|
| 20 |
-
# Keep only relevant columns
|
| 21 |
-
df = df[['brand', 'category', 'description', 'price']].dropna()
|
| 22 |
-
|
| 23 |
-
# Generate search queries from dataset
|
| 24 |
-
df['query'] = df.apply(lambda x: f"{x['brand']} {x['category']} under {x['price']} AED", axis=1)
|
| 25 |
-
|
| 26 |
-
# Step 2: Tokenization
|
| 27 |
-
model_name = "dslim/bert-base-NER"
|
| 28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
-
|
| 30 |
-
def tokenize_batch(batch):
|
| 31 |
-
return tokenizer(batch['query'], padding=True, truncation=True)
|
| 32 |
-
|
| 33 |
-
# Convert dataframe into Hugging Face dataset
|
| 34 |
-
hf_dataset = Dataset.from_pandas(df[['query']])
|
| 35 |
-
hf_dataset = hf_dataset.map(tokenize_batch, batched=True)
|
| 36 |
-
|
| 37 |
-
# Step 3: Fine-tune the Pretrained NER Model
|
| 38 |
-
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 39 |
-
|
| 40 |
-
training_args = TrainingArguments(
|
| 41 |
-
output_dir="./luxury_ner_model",
|
| 42 |
-
evaluation_strategy="epoch",
|
| 43 |
-
save_strategy="epoch",
|
| 44 |
-
per_device_train_batch_size=8,
|
| 45 |
-
per_device_eval_batch_size=8,
|
| 46 |
-
num_train_epochs=3,
|
| 47 |
-
logging_dir="./logs",
|
| 48 |
-
logging_steps=500,
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
trainer = Trainer(
|
| 52 |
-
model=model,
|
| 53 |
-
args=training_args,
|
| 54 |
-
train_dataset=hf_dataset,
|
| 55 |
-
eval_dataset=hf_dataset,
|
| 56 |
-
tokenizer=tokenizer,
|
| 57 |
-
data_collator=DataCollatorForTokenClassification(tokenizer),
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
trainer.train()
|
| 61 |
-
|
| 62 |
-
# Save model to Hugging Face Hub
|
| 63 |
-
model.push_to_hub("luxury-fashion-ner")
|
| 64 |
-
tokenizer.push_to_hub("luxury-fashion-ner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|