Spaces:
Sleeping
Sleeping
File size: 10,775 Bytes
dc084a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# ======================================================================================
# 1. SETUP: Patch SQLite and Import Libraries
# ======================================================================================
# This MUST be the first import to ensure ChromaDB uses the correct SQLite version
import sys
import os
os.environ['PYSQLITE3_BUNDLED'] = '1'
__import__('pysqlite3')
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# Standard and third-party libraries
import json
import pandas as pd
from typing import List, Union
import chromadb
import gradio as gr
from pydantic import BaseModel, ValidationError
from sentence_transformers import SentenceTransformer, CrossEncoder
# LangChain imports
from langchain_openai.chat_models import ChatOpenAI
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from langchain.output_parsers import PydanticOutputParser
from langchain_community.embeddings import SentenceTransformerEmbeddings
# ======================================================================================
# 2. CONSTANTS AND CONFIGURATION
# ======================================================================================
DB_DIR = "./chroma_db"
COLLECTION_NAME = "clinical_examples"
EMBEDDING_MODEL_NAME = "pritamdeka/S-Biomed-Roberta-snli-multinli-stsb"
RERANKER_MODEL_NAME = 'cross-encoder/ms-marco-MiniLM-L-6-v2'
DATASET_URL = "https://huggingface.co/datasets/DanFed/patient_encounters1_notes_preprocessed/raw/main/patient_encounters1_notes_preprocessed.csv"
# ======================================================================================
# 3. DATABASE SETUP: One-time data loading and embedding
# ======================================================================================
def setup_database(client: chromadb.Client):
"""
Loads data, generates embeddings, and populates the ChromaDB collection
only if it's empty.
"""
collection = client.get_or_create_collection(name=COLLECTION_NAME)
if collection.count() > 0:
print(f"Collection '{COLLECTION_NAME}' already exists with {collection.count()} documents. Skipping setup.")
return
print(f"Collection '{COLLECTION_NAME}' is empty. Starting data population...")
# Load dataset
df = pd.read_csv(DATASET_URL)
df.drop(['index', 'ENCOUNTER_ID', 'CLINICAL_NOTES', 'BIRTHDATE', 'FIRST',
'START', 'STOP', 'PATIENT_ID', 'ENCOUNTERCLASS', 'CODE', 'DESCRIPTION',
'BASE_ENCOUNTER_COST', 'TOTAL_CLAIM_COST', 'PAYER_COVERAGE',
'REASONCODE', 'REASONDESCRIPTION', 'PATIENT_AGE',
'DESCRIPTION_OBSERVATIONS', 'DESCRIPTION_CONDITIONS',
'DESCRIPTION_MEDICATIONS', 'DESCRIPTION_PROCEDURES', 'AGE_GROUP'], axis=1, inplace=True)
# Create example strings
def create_examples(row):
return f"Message: \n\n{row['ENCOUNTER_PROMPT'].strip()}\n\nResult: \n\n{row['COND_MED_PRO_STRUCTURED'].strip()}"
df['EXAMPLES'] = df.apply(create_examples, axis=1)
# Generate embeddings
model = SentenceTransformer(EMBEDDING_MODEL_NAME)
examples = df["EXAMPLES"].tolist()
embeddings = model.encode(
examples,
batch_size=32,
show_progress_bar=True,
convert_to_numpy=True
)
# Add to collection
collection.add(
documents=df["EXAMPLES"].tolist(),
embeddings=embeddings.tolist(),
ids=[str(i) for i in range(len(df["EXAMPLES"]))]
)
print(f"Successfully added {len(df['EXAMPLES'])} documents to the '{COLLECTION_NAME}' collection.")
# ======================================================================================
# 4. APPLICATION GLOBALS AND AI COMPONENTS
# ======================================================================================
# Pydantic schema for structured output
class ClinicalExtraction(BaseModel):
conditions: List[str]
medications: List[str]
procedures: List[str]
# Parser and format instructions
parser = PydanticOutputParser(pydantic_object=ClinicalExtraction)
format_instructions = parser.get_format_instructions().replace("{", "{{").replace("}", "}}")
# Global variables for AI components
LANGCHAIN_LLM = None
FINAL_PROMPT = None
FINAL_CHAIN = None
VECTOR_STORE = None
RERANKER = CrossEncoder(RERANKER_MODEL_NAME)
def initialize_ai_components(api_key: str):
"""Initializes all AI components needed for the RAG pipeline."""
global LANGCHAIN_LLM, FINAL_PROMPT, FINAL_CHAIN
if not api_key:
raise gr.Error("OpenAI API Key is required!")
# LLM
LANGCHAIN_LLM = ChatOpenAI(openai_api_key=api_key, temperature=0.2)
# Prompt Template
FINAL_PROMPT = ChatPromptTemplate.from_template(
f"""You are a clinical information extractor.
Extract EXACTLY this JSON format and nothing else:
{format_instructions}
CONTEXT (examples):
{{context}}
INPUT MESSAGE (clinical note + surrounding metadata):
{{input}}
Result:"""
)
# RAG Chain
FINAL_CHAIN = (
{"context": RunnablePassthrough(), "input": RunnablePassthrough()}
| FINAL_PROMPT
| LANGCHAIN_LLM
| StrOutputParser()
)
return "<p style='color:green;'>AI components initialized successfully!</p>"
# ======================================================================================
# 5. RAG PIPELINE
# ======================================================================================
def format_docs(docs):
"""Join doc.page_content with blank lines."""
return "\n\n".join(d.page_content for d in docs)
def generate_rag_response(input_text: str) -> Union[dict, str]:
"""
Performs retrieval, reranking, generation, and validation.
"""
if not FINAL_CHAIN or not VECTOR_STORE:
return "Error: AI components not initialized. Please set your API key."
# Initial embedding retrieval (top 20)
retriever = VECTOR_STORE.as_retriever(search_kwargs={"k": 20})
candidates = retriever.get_relevant_documents(input_text)
# Cross-encoder rerank -> top 5
pairs = [(input_text, d.page_content) for d in candidates]
scores = RERANKER.predict(pairs)
sorted_docs = [d for _, d in sorted(zip(scores, candidates), reverse=True)]
top_docs = sorted_docs[:5]
# Build context and invoke chain
context = format_docs(top_docs)
raw_output = FINAL_CHAIN.invoke({"context": context, "input": input_text})
# Parse and validate the output
try:
parsed = parser.parse(raw_output)
return parsed.dict()
except ValidationError as e:
return f"Schema validation failed: {e}. Raw output was: {raw_output}"
# ======================================================================================
# 6. GRADIO UI
# ======================================================================================
def create_gradio_ui():
"""Defines and returns the Gradio UI blocks."""
with gr.Blocks(title="Clinical Information Extractor") as demo:
gr.Markdown("# Clinical Information Extractor with RAG and Reranking")
with gr.Accordion("API Key Configuration", open=True):
key_box = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
key_btn = gr.Button("Set API Key")
key_status = gr.Markdown("")
key_btn.click(initialize_ai_components, inputs=[key_box], outputs=[key_status])
gr.Markdown("---")
gr.Markdown("## Enter Clinical Note and Metadata")
with gr.Row():
age_group_input = gr.Textbox(label="Age Group", placeholder="e.g., middle adulthood")
visit_type_input = gr.Textbox(label="Visit Type", placeholder="e.g., ambulatory")
description_input = gr.Textbox(label="Description", placeholder="e.g., encounter for check up (procedure)")
note_input = gr.Textbox(label="Clinical Note", placeholder="Type the clinical note here...", lines=5)
chatbot = gr.Chatbot(label="Extraction History", height=400)
send_btn = gr.Button("➡️ Extract Information")
def chat_interface(age, visit, desc, note, history):
history = history or []
# Build full input with metadata
metadata_parts = []
if age: metadata_parts.append(f"Age group: {age}")
if visit: metadata_parts.append(f"Visit type: {visit}")
if desc: metadata_parts.append(f"Description: {desc}")
metadata_str = " | ".join(metadata_parts)
full_input = f"{metadata_str}\n\nClinical Note:\n{note}" if metadata_str else note
user_display = f"**Metadata**: {metadata_str}\n\n**Note**: {note}"
# Get response from RAG pipeline
response = generate_rag_response(full_input)
# Format bot response
if isinstance(response, dict):
bot_response = f"```json\n{json.dumps(response, indent=2)}\n```"
else:
bot_response = str(response)
history.append((user_display, bot_response))
return history, "" # Return updated history and clear the input textbox
send_btn.click(
fn=chat_interface,
inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot],
outputs=[chatbot, note_input]
)
note_input.submit(
fn=chat_interface,
inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot],
outputs=[chatbot, note_input]
)
return demo
# ======================================================================================
# 7. MAIN EXECUTION
# ======================================================================================
def main():
"""
Main function to set up the database, initialize components, and launch the UI.
"""
global VECTOR_STORE
# 1. Setup ChromaDB client
client = chromadb.PersistentClient(path=DB_DIR)
# 2. Populate the database if needed
setup_database(client)
# 3. Initialize the LangChain vector store wrapper
embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL_NAME)
VECTOR_STORE = Chroma(
client=client,
collection_name=COLLECTION_NAME,
embedding_function=embeddings,
)
print(f"Vector store initialized with {VECTOR_STORE._collection.count()} documents.")
# 4. Create and launch the Gradio UI
demo = create_gradio_ui()
print("Launching Clinical IE Demo...")
demo.launch(server_name="0.0.0.0")
if __name__ == "__main__":
main() |