Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,57 @@ import os, json, re
|
|
| 2 |
from html import unescape
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from nltk.stem.snowball import RussianStemmer
|
|
|
|
| 8 |
|
| 9 |
-
# =========================
|
| 10 |
-
# 1) Константы/пути
|
| 11 |
-
# =========================
|
| 12 |
-
MODEL_DIR = "." # файлы (config.json, model.safetensors, tokenizer.*) лежат в корне
|
| 13 |
-
INFER_CFG = os.path.join(MODEL_DIR, "inference_config.json")
|
| 14 |
-
|
| 15 |
-
# Порог по умолчанию (если не нашли inference_config.json)
|
| 16 |
-
DEFAULT_THRESHOLD = 0.40
|
| 17 |
-
if os.path.exists(INFER_CFG):
|
| 18 |
-
try:
|
| 19 |
-
with open(INFER_CFG, "r", encoding="utf-8") as f:
|
| 20 |
-
DEFAULT_THRESHOLD = float(json.load(f).get("threshold_val", DEFAULT_THRESHOLD))
|
| 21 |
-
except Exception:
|
| 22 |
-
pass
|
| 23 |
-
|
| 24 |
-
# =========================
|
| 25 |
-
# 2) Предобработка (та же, что при обучении!)
|
| 26 |
-
# =========================
|
| 27 |
_URL_RE = re.compile(r'https?://\S+|www\.\S+')
|
| 28 |
_TAG_RE = re.compile(r'[@#]\w+')
|
| 29 |
_NUM_RE = re.compile(r'\d+')
|
| 30 |
_PUNCT_RE = re.compile(r"[^\w\s]+", flags=re.UNICODE)
|
| 31 |
_WS_RE = re.compile(r"\s+")
|
| 32 |
|
| 33 |
-
stemmer = RussianStemmer(ignore_stopwords=False)
|
| 34 |
-
|
| 35 |
def clean_and_stem(s: str) -> str:
|
| 36 |
if not isinstance(s, str):
|
| 37 |
s = str(s)
|
|
@@ -48,85 +69,106 @@ def clean_and_stem(s: str) -> str:
|
|
| 48 |
out.append(t if t in {"url", "tag", "num"} else stemmer.stem(t))
|
| 49 |
return " ".join(out)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 56 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 57 |
-
model.eval()
|
| 58 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 59 |
-
model.to(DEVICE)
|
| 60 |
-
|
| 61 |
-
@torch.inference_mode()
|
| 62 |
-
def infer_proba(text: str) -> float:
|
| 63 |
-
text = clean_and_stem(text)
|
| 64 |
-
if not text:
|
| 65 |
return 0.0
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
logits = model(**enc).logits
|
| 69 |
-
probs = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
| 70 |
-
return float(probs[1]) # P(toxic)
|
| 71 |
-
|
| 72 |
-
# =========================
|
| 73 |
-
# 4) Gradio UI
|
| 74 |
-
# =========================
|
| 75 |
-
TITLE = "Анализатор токсичности (ruBERT-tiny2)"
|
| 76 |
-
DESCRIPTION = (
|
| 77 |
-
"Введите комментарий на русском языке. Модель вернёт вероятности классов и метку по выбранному порогу."
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
comment = (comment or "").strip()
|
| 87 |
if not comment:
|
| 88 |
return {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
pred = "Токсичный" if p_toxic >= threshold else "Не токсичный"
|
| 91 |
dist = {"Токсичный": p_toxic, "Не токсичный": 1 - p_toxic}
|
| 92 |
-
expl =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return dist, expl
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
gr.Markdown(f"# {TITLE}")
|
| 98 |
gr.Markdown(DESCRIPTION)
|
| 99 |
|
| 100 |
with gr.Row():
|
| 101 |
with gr.Column(scale=2):
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
with gr.Row():
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
| 109 |
with gr.Column(scale=1):
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
examples = gr.Examples(
|
| 114 |
-
examples=[
|
| 115 |
-
["да ты что, совсем с ума сошёл? это полный бред!", DEFAULT_THRESHOLD],
|
| 116 |
-
["спасибо за помощь, очень полезный совет!", DEFAULT_THRESHOLD],
|
| 117 |
-
],
|
| 118 |
-
inputs=[inp, thr],
|
| 119 |
-
label="Примеры"
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
btn.click(predict, [inp, thr], [out_label, out_txt])
|
| 123 |
-
inp.submit(predict, [inp, thr], [out_label, out_txt])
|
| 124 |
|
| 125 |
-
|
| 126 |
-
return "", DEFAULT_THRESHOLD, {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 127 |
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|
| 131 |
-
# SSR по умолчанию у новых версий Gradio; дополнительных флагов не нужно
|
| 132 |
demo.launch()
|
|
|
|
| 2 |
from html import unescape
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# ====== TF-IDF + LR (joblib / sklearn) ======
|
| 8 |
+
PIPE = None
|
| 9 |
+
try:
|
| 10 |
+
import joblib
|
| 11 |
+
PIPE = joblib.load("model.joblib") # сохранённый пайплайн TF-IDF+LR
|
| 12 |
+
except Exception as e:
|
| 13 |
+
PIPE = None
|
| 14 |
+
print(f"[WARN] Не удалось загрузить model.joblib: {e}")
|
| 15 |
+
|
| 16 |
+
# ====== Transformer (ruBERT-tiny2) ======
|
| 17 |
+
TRANSFORMER = {"model": None, "tokenizer": None, "device": "cpu"}
|
| 18 |
+
try:
|
| 19 |
+
import torch
|
| 20 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 21 |
+
|
| 22 |
+
MODEL_DIR = "." # в корне лежат config.json, model.safetensors, tokenizer.*
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 26 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 27 |
+
model.to(device).eval()
|
| 28 |
+
|
| 29 |
+
TRANSFORMER["model"] = model
|
| 30 |
+
TRANSFORMER["tokenizer"] = tokenizer
|
| 31 |
+
TRANSFORMER["device"] = device
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"[WARN] Не удалось загрузить ruBERT: {e}")
|
| 34 |
+
|
| 35 |
+
# ====== Порог по умолчанию ======
|
| 36 |
+
DEFAULT_THRESHOLD = 0.70 # как просили
|
| 37 |
+
# если есть inference_config.json от обучения трансформера — подхватим рекомендованный
|
| 38 |
+
try:
|
| 39 |
+
if os.path.exists("inference_config.json"):
|
| 40 |
+
with open("inference_config.json", "r", encoding="utf-8") as f:
|
| 41 |
+
cfg = json.load(f)
|
| 42 |
+
DEFAULT_THRESHOLD = float(cfg.get("threshold_val", DEFAULT_THRESHOLD))
|
| 43 |
+
except Exception:
|
| 44 |
+
pass
|
| 45 |
+
|
| 46 |
+
# ====== Предобработка для трансформера (как в обучении) ======
|
| 47 |
from nltk.stem.snowball import RussianStemmer
|
| 48 |
+
stemmer = RussianStemmer(ignore_stopwords=False)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
_URL_RE = re.compile(r'https?://\S+|www\.\S+')
|
| 51 |
_TAG_RE = re.compile(r'[@#]\w+')
|
| 52 |
_NUM_RE = re.compile(r'\d+')
|
| 53 |
_PUNCT_RE = re.compile(r"[^\w\s]+", flags=re.UNICODE)
|
| 54 |
_WS_RE = re.compile(r"\s+")
|
| 55 |
|
|
|
|
|
|
|
| 56 |
def clean_and_stem(s: str) -> str:
|
| 57 |
if not isinstance(s, str):
|
| 58 |
s = str(s)
|
|
|
|
| 69 |
out.append(t if t in {"url", "tag", "num"} else stemmer.stem(t))
|
| 70 |
return " ".join(out)
|
| 71 |
|
| 72 |
+
# ====== Инференс ======
|
| 73 |
+
def infer_tfidf(text: str) -> float:
|
| 74 |
+
"""Вернёт P(toxic) из TF-IDF+LR. В пайплайне уже есть свой preprocessor."""
|
| 75 |
+
if PIPE is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return 0.0
|
| 77 |
+
proba = PIPE.predict_proba([text])[0, 1]
|
| 78 |
+
return float(proba)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
def infer_transformer(text: str) -> float:
|
| 81 |
+
"""Вернёт P(toxic) из ruBERT-tiny2 (локальный чекпойнт)."""
|
| 82 |
+
if TRANSFORMER["model"] is None:
|
| 83 |
+
return 0.0
|
| 84 |
+
import torch
|
| 85 |
|
| 86 |
+
text = clean_and_stem(text)
|
| 87 |
+
if not text:
|
| 88 |
+
return 0.0
|
| 89 |
+
tok = TRANSFORMER["tokenizer"](text, return_tensors="pt", truncation=True, max_length=256)
|
| 90 |
+
tok = {k: v.to(TRANSFORMER["device"]) for k, v in tok.items()}
|
| 91 |
+
with torch.inference_mode():
|
| 92 |
+
logits = TRANSFORMER["model"](**tok).logits
|
| 93 |
+
p = torch.softmax(logits, dim=1)[0, 1].detach().cpu().item()
|
| 94 |
+
return float(p)
|
| 95 |
+
|
| 96 |
+
def predict(model_name: str, comment: str, threshold: float):
|
| 97 |
comment = (comment or "").strip()
|
| 98 |
if not comment:
|
| 99 |
return {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 100 |
+
|
| 101 |
+
if model_name == "ruBERT-tiny2 (трансформер)":
|
| 102 |
+
p_toxic = infer_transformer(comment)
|
| 103 |
+
else: # TF-IDF + Логистическая регрессия
|
| 104 |
+
p_toxic = infer_tfidf(comment)
|
| 105 |
+
|
| 106 |
pred = "Токсичный" if p_toxic >= threshold else "Не токсичный"
|
| 107 |
dist = {"Токсичный": p_toxic, "Не токсичный": 1 - p_toxic}
|
| 108 |
+
expl = (
|
| 109 |
+
f"Модель: **{model_name}** \n"
|
| 110 |
+
f"Порог: **{threshold:.2f}** \n"
|
| 111 |
+
f"Вероятность токсичности: **{p_toxic:.3f}** \n"
|
| 112 |
+
f"Предсказание: **{pred}**"
|
| 113 |
+
)
|
| 114 |
return dist, expl
|
| 115 |
|
| 116 |
+
def clear_all():
|
| 117 |
+
return "ruBERT-tiny2 (трансформер)", "", DEFAULT_THRESHOLD, {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 118 |
+
|
| 119 |
+
# ====== UI ======
|
| 120 |
+
TITLE = "Анализатор токсичности (две модели)"
|
| 121 |
+
DESCRIPTION = "Выберите модель, задайте порог (по умолчанию 0.70) и введите комментарий."
|
| 122 |
+
|
| 123 |
+
CUSTOM_CSS = """
|
| 124 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
|
| 125 |
+
:root { --font: 'Inter', system-ui, -apple-system, Segoe UI, Roboto, sans-serif; }
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
ABOUT_MD = """
|
| 129 |
+
### Параметры и описание моделей
|
| 130 |
+
|
| 131 |
+
**1) ruBERT-tiny2 (трансформер)**
|
| 132 |
+
- База: `cointegrated/rubert-tiny2` (BERT-tiny для русского).
|
| 133 |
+
- Токенизация: BERT WordPiece.
|
| 134 |
+
- Предобработка: удаление пунктуации, нормализация спец-токенов (`url`, `tag`, `num`), стемминг Snowball.
|
| 135 |
+
- Обучение: 10 эпох с early stopping (по macro-F1), class weights (balanced).
|
| 136 |
+
- Рекомендованный порог по валидации: ~**0.70**.
|
| 137 |
+
|
| 138 |
+
**2) TF-IDF + Логистическая регрессия**
|
| 139 |
+
- Векторизация: `TfidfVectorizer(analyzer="char_wb", ngram_range=(4,5), max_features=200k, min_df≈1.75e-4, max_df≈0.96)`.
|
| 140 |
+
- Классификатор: `LogisticRegression(penalty="l1", solver="liblinear", C≈5.52, class_weight="balanced", max_iter=5000, tol≈2.4e-4)`.
|
| 141 |
+
- Рекомендованный порог (по ранее полученным метрикам): ~**0.40**.
|
| 142 |
+
|
| 143 |
+
**Порог** можно свободно менять слайдером — выберите баланс precision/recall под задачу.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=CUSTOM_CSS) as demo:
|
| 147 |
gr.Markdown(f"# {TITLE}")
|
| 148 |
gr.Markdown(DESCRIPTION)
|
| 149 |
|
| 150 |
with gr.Row():
|
| 151 |
with gr.Column(scale=2):
|
| 152 |
+
model_sel = gr.Dropdown(
|
| 153 |
+
["ruBERT-tiny2 (трансформер)", "TF-IDF + Логистическая регрессия"],
|
| 154 |
+
value="ruBERT-tiny2 (трансформер)",
|
| 155 |
+
label="Модель"
|
| 156 |
+
)
|
| 157 |
+
comment_input = gr.Textbox(label="Текст комментария", lines=6, placeholder="Напишите что-нибудь…")
|
| 158 |
+
thr = gr.Slider(label="Порог классификации", minimum=0.0, maximum=1.0, value=DEFAULT_THRESHOLD, step=0.01)
|
| 159 |
with gr.Row():
|
| 160 |
+
analyze_btn = gr.Button("Анализ", variant="primary")
|
| 161 |
+
clear_btn = gr.Button("Очистить", variant="secondary")
|
| 162 |
|
| 163 |
with gr.Column(scale=1):
|
| 164 |
+
result_label = gr.Label(label="Распределение по классам", num_top_classes=2)
|
| 165 |
+
result_md = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
gr.Markdown(ABOUT_MD)
|
|
|
|
| 168 |
|
| 169 |
+
analyze_btn.click(predict, [model_sel, comment_input, thr], [result_label, result_md])
|
| 170 |
+
comment_input.submit(predict, [model_sel, comment_input, thr], [result_label, result_md])
|
| 171 |
+
clear_btn.click(clear_all, [], [model_sel, comment_input, thr, result_label, result_md])
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
|
|
|
| 174 |
demo.launch()
|